ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Low speed aerodynamics

دانلود کتاب آیرودینامیک سرعت پایین

Low speed aerodynamics

مشخصات کتاب

Low speed aerodynamics

ویرایش: [2 ed.] 
نویسندگان: ,   
سری: Cambridge aerospace series, 13 
ISBN (شابک) : 0521662192, 9780521665520 
ناشر: Cambridge University Press 
سال نشر: 2001 
تعداد صفحات: 629 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Low speed aerodynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آیرودینامیک سرعت پایین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی

Low-speed aerodynamics is important in the design and operation of aircraft flying at low Mach number, and ground and marine vehicles. This text offers a modern treatment of both the theory of inviscid, incompressible, and irrotational aerodynamics, and the computational techniques now available to solve complex problems. A unique feature is that the computational approach--from a single vortex element to a three-dimensional panel formulation--is interwoven throughout. This second edition features a new chapter on the laminar boundary layer (emphasis on the viscous-inviscid coupling), the latest versions of computational techniques, and additional coverage of interaction problems. The authors include a systematic treatment of two-dimensional panel methods and a detailed presentation of computational techniques for three-dimensional and unsteady flows
1.1 Description of Fluid Motion 1 -- 1.2 Choice of Coordinate System 2 -- 1.3 Pathlines, Streak Lines, and Streamlines 3 -- 1.4 Forces in a Fluid 4 -- 1.5 Integral Form of the Fluid Dynamic Equations 6 -- 1.6 Differential Form of the Fluid Dynamic Equations 8 -- 1.7 Dimensional Analysis of the Fluid Dynamic Equations 14 -- 1.8 Flow with High Reynolds Number 17 -- 1.9 Similarity of Flows 19 -- 2 Fundamentals of Inviscid, Incompressible Flow 21 -- 2.1 Angular Velocity, Vorticity, and Circulation 21 -- 2.2 Rate of Change of Vorticity 24 -- 2.3 Rate of Change of Circulation: Kelvin's Theorem 25 -- 2.4 Irrotational Flow and the Velocity Potential 26 -- 2.5 Boundary and Infinity Conditions 27 -- 2.6 Bernoulli's Equation for the Pressure 28 -- 2.7 Simply and Multiply Connected Regions 29 -- 2.8 Uniqueness of the Solution 30 -- 2.9 Vortex Quantities 32 -- 2.10 Two-Dimensional Vortex 34 -- 2.11 The Biot-Savart Law 36 -- 2.12 The Velocity Induced by a Straight Vortex Segment 38 -- 2.13 The Stream Function 41 -- 3 General Solution of the Incompressible, Potential Flow Equations 44 -- 3.1 Statement of the Potential Flow Problem 44 -- 3.2 The General Solution, Based on Green's Identity 44 -- 3.3 Summary: Methodology of Solution 48 -- 3.4 Basic Solution: Point Source 49 -- 3.5 Basic Solution: Point Doublet 51 -- 3.6 Basic Solution: Polynomials 54 -- 3.7 Two-Dimensional Version of the Basic Solutions 56 -- 3.8 Basic Solution: Vortex 58 -- 3.9 Principle of Superposition 60 -- 3.10 Superposition of Sources and Free Stream: Rankine's Oval 60 -- 3.11 Superposition of Doublet and Free Stream: Flow around a Cylinder 62 -- 3.12 Superposition of a Three-Dimensional Doublet and Free Stream: Flow around a Sphere 67 -- 3.13 Some Remarks about the Flow over the Cylinder and the Sphere 69 -- 3.14 Surface Distribution of the Basic Solutions 70 -- 4 Small-Disturbance Flow over Three-Dimensional Wings: Formulation of the Problem 75 -- 4.1 Definition of the Problem 75 -- 4.2 The Boundary Condition on the Wing 76 -- 4.3 Separation of the Thickness and the Lifting Problems 78 -- 4.4 Symmetric Wing with Nonzero Thickness at Zero Angle of Attack 79 -- 4.5 Zero-Thickness Cambered Wing at Angle of Attack-Lifting Surfaces 82 -- 4.6 The Aerodynamic Loads 85 -- 4.7 The Vortex Wake 88 -- 4.8 Linearized Theory of Small-Disturbance Compressible Flow 90 -- 5 Small-Disturbance Flow over Two-Dimensional Airfoils 94 -- 5.1 Symmetric Airfoil with Nonzero Thickness at Zero Angle of Attack 94 -- 5.2 Zero-Thickness Airfoil at Angle of Attack 100 -- 5.3 Classical Solution of the Lifting Problem 104 -- 5.4 Aerodynamic Forces and Moments on a Thin Airfoil 106 -- 5.5 The Lumped-Vortex Element 114 -- 5.6 Summary and Conclusions from Thin Airfoil Theory 120 -- 6 Exact Solutions with Complex Variables 122 -- 6.1 Summary of Complex Variable Theory 122 -- 6.2 The Complex Potential 125 -- 6.3 Simple Examples 126 -- 6.3.1 Uniform Stream and Singular Solutions 126 -- 6.3.2 Flow in a Corner 127 -- 6.4 Blasius Formula, Kutta-Joukowski Theorem 128 -- 6.5 Conformal Mapping and the Joukowski Transformation 128 -- 6.5.1 Flat Plate Airfoil 130 -- 6.5.2 Leading-Edge Suction 131 -- 6.5.3 Flow Normal to a Flat Plate 133 -- 6.5.4 Circular Arc Airfoil 134 -- 6.5.5 Symmetric Joukowski Airfoil 135 -- 6.6 Airfoil with Finite Trailing-Edge Angle 137 -- 6.7 Summary of Pressure Distributions for Exact Airfoil Solutions 138 -- 6.8 Method of Images 141 -- 6.9 Generalized Kutta-Joukowski Theorem 146 -- 7 Perturbation Methods 151 -- 7.1 Thin-Airfoil Problem 151 -- 7.2 Second-Order Solution 154 -- 7.3 Leading-Edge Solution 157 -- 7.4 Matched Asymptotic Expansions 160 -- 7.5 Thin Airfoil between Wind Tunnel Walls 163 -- 8 Three-Dimensional Small-Disturbance Solutions 167 -- 8.1 Finite Wing: The Lifting Line Model 167 -- 8.1.1 Definition of the Problem 167 -- 8.1.2 The Lifting-Line Model 168 -- 8.1.3 The Aerodynamic Loads 172 -- 8.1.4 The Elliptic Lift Distribution 173 -- 8.1.5 General Spanwise Circulation Distribution 178 -- 8.1.6 Twisted Elliptic Wing 181 -- 8.1.7 Conclusions from Lifting-Line Theory 183 -- 8.2 Slender Wing Theory 184 -- 8.2.1 Definition of the Problem 184 -- 8.2.2 Solution of the Flow over Slender Pointed Wings 186 -- 8.2.3 The Method of R. T. Jones 192 -- 8.2.4 Conclusions from Slender Wing Theory 194 -- 8.3 Slender Body Theory 195 -- 8.3.1 Axisymmetric Longitudinal Flow Past a Slender Body of Revolution 196 -- 8.3.2 Transverse Flow Past a Slender Body of Revolution 198 -- 8.3.3 Pressure and Force Information 199 -- 8.3.4 Conclusions from Slender Body Theory 201 -- 8.4 Far Field Calculation of Induced Drag 201 -- 9 Numerical (Panel) Methods 206 -- 9.1 Basic Formulation 206 -- 9.2 The Boundary Conditions 207 -- 9.3 Physical Considerations 209 -- 9.4 Reduction of the Problem to a Set of Linear Algebraic Equations 213 -- 9.5 Aerodynamic Loads 216 -- 9.6 Preliminary Considerations, Prior to Establishing Numerical Solutions 217 -- 9.7 Steps toward Constructing a Numerical Solution 220 -- 9.8 Example: Solution of Thin Airfoil with the Lumped-Vortex Element 222 -- 9.9 Accounting for Effects of Compressibility and Viscosity 226 -- 10 Singularity Elements and Influence Coefficients 230 -- 10.1 Two-Dimensional Point Singularity Elements 230 -- 10.1.1 Two-Dimensional Point Source 230 -- 10.1.2 Two-Dimensional Point Doublet 231 -- 10.1.3 Two-Dimensional Point Vortex 231 -- 10.2 Two-Dimensional Constant-Strength Singularity Elements 232 -- 10.2.1 Constant-Strength Source Distribution 233 -- 10.2.2 Constant-Strength Doublet Distribution 235 -- 10.2.3 Constant-Strength Vortex Distribution 236 -- 10.3 Two-Dimensional Linear-Strength Singularity Elements 237 -- 10.3.1 Linear Source Distribution 238 -- 10.3.2 Linear Doublet Distribution 239 -- 10.3.3 Linear Vortex Distribution 241 -- 10.3.4 Quadratic Doublet Distribution 242 -- 10.4 Three-Dimensional Constant-Strength Singularity Elements 244 -- 10.4.1 Quadrilateral Source 245 -- 10.4.2 Quadrilateral Doublet 247 -- 10.4.3 Constant Doublet Panel Equivalence to Vortex Ring 250 -- 10.4.4 Comparison of Near and Far Field Formulas 251 -- 10.4.5 Constant-Strength Vortex Line Segment 251 -- 10.4.6 Vortex Ring 255 -- 10.4.7 Horseshoe Vortex 256 -- 10.5 Three-Dimensional Higher Order Elements 258 -- 11 Two-Dimensional Numerical Solutions 262 -- 11.1 Point Singularity Solutions 262 -- 11.1.1 Discrete Vortex Method 263 -- 11.1.2 Discrete Source Method 272 -- 11.2 Constant-Strength Singularity Solutions (Using the Neumann B.C.) 276 -- 11.2.1 Constant Strength Source Method 276 -- 11.2.2 Constant-Strength Doublet Method 280 -- 11.2.3 Constant-Strength Vortex Method 284 -- 11.3 Constant-Potential (Dirichlet Boundary Condition) Methods 288 -- 11.3.1 Combined Source and Doublet Method 290 -- 11.3.2 Constant-Strength Doublet Method 294 -- 11.4 Linearly Varying Singularity Strength Methods (Using the Neumann B.C.) 298 -- 11.4.1 Linear-Strength Source Method 299 -- 11.4.2 Linear-Strength Vortex Method 303 -- 11.5 Linearly Varying Singularity Strength Methods (Using the Dirichlet B.C.) 306 -- 11.5.1 Linear Source/Doublet Method 306 -- 11.5.2 Linear Doublet Method 312 -- 11.6 Methods Based on Quadratic Doublet Distribution (Using the Dirichlet B.C.) 315 -- 11.6.1 Linear Source/Quadratic Doublet Method 315 -- 11.6.2 Quadratic Doublet Method 320 -- 11.7 Some Conclusions about Panel Methods 323 -- 12 Three-Dimensional Numerical Solutions 331 -- 12.1 Lifting-Line Solution by Horseshoe Elements 331 -- 12.2 Modeling of Symmetry and Reflections from Solid Boundaries 338 -- 12.3 Lifting-Surface Solution by Vortex Ring Elements 340 -- 12.4 Introduction to Panel Codes: A Brief History 351 -- 12.5 First-Order Potential-Based Panel Methods 353 -- 12.6 Higher Order Panel Methods 358 -- 12.7 Sample Solutions with Panel Codes 360 -- 13 Unsteady Incompressible Potential Flow 369 -- 13.1 Formulation of the Problem and Choice of Coordinates 369 -- 13.2 Method of Solution 373 -- 13.3 Additional Physical Considerations 375 -- 13.4 Computation of Pressures 376 -- 13.5 Examples for the Unsteady Boundary Condition 377 -- 13.6 Summary of Solution Methodology 380 -- 13.7 Sudden Acceleration of a Flat Plate 381 -- 13.7.1 The Added Mass 385 -- 13.8 Unsteady Motion of a Two-Dimensional Thin Airfoil 387 -- 13.8.1 Kinematics 388 -- 13.8.2 Wake Model 389 -- 13.8.3 Solution by the Time-Stepping Method 391 -- 13.8.4 Fluid Dynamic Loads 394 -- 13.9 Unsteady Motion of a Slender Wing 400 -- 13.9.1 Kinematics 401 -- 13.9.2 Solution of the Flow over the Unsteady Slender Wing 401 -- 13.10 Algorithm for Unsteady Airfoil Using the Lumped-Vortex Element 407 -- 13.11 Some Remarks about the Unsteady Kutta Condition 416 -- 13.12 Unsteady Lifting-Surface Solution by Vortex Ring Elements 419 -- 13.13 Unsteady Panel Methods 433 -- 14 The Laminar Boundary Layer 448 -- 14.1 The Concept of the Boundary Layer 448 -- 14.2 Boundary Layer on a Curved Surface 452 -- 14.3 Similar Solutions to the Boundary Layer Equations 457 -- 14.4 The von Karman Integral Momentum Equation 463 -- 14.5 Solutions Using the von Karman Integral Equation 467 -- 14.5.1 Approximate Polynomial Solution 468 -- 14.5.2 The Correlation Method of Thwaites 469 -- 14.6 Weak Interactions, the Goldstein Singularity, and Wakes 471 -- 14.7 Two-Equation Integral Boundary Layer Method 473 -- 14.8 Viscous-Inviscid Interaction Method 475





نظرات کاربران