دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Joseph Katz, Allen Plotkin سری: Cambridge aerospace series, 13 ISBN (شابک) : 0521662192, 9780521665520 ناشر: Cambridge University Press سال نشر: 2001 تعداد صفحات: 629 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Low speed aerodynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آیرودینامیک سرعت پایین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Low-speed aerodynamics is important in the design and operation
of aircraft flying at low Mach number, and ground and marine
vehicles. This text offers a modern treatment of both the
theory of inviscid, incompressible, and irrotational
aerodynamics, and the computational techniques now available to
solve complex problems. A unique feature is that the
computational approach--from a single vortex element to a
three-dimensional panel formulation--is interwoven throughout.
This second edition features a new chapter on the laminar
boundary layer (emphasis on the viscous-inviscid coupling), the
latest versions of computational techniques, and additional
coverage of interaction problems. The authors include a
systematic treatment of two-dimensional panel methods and a
detailed presentation of computational techniques for
three-dimensional and unsteady flows
1.1 Description of Fluid Motion 1 -- 1.2 Choice of Coordinate
System 2 -- 1.3 Pathlines, Streak Lines, and Streamlines 3 --
1.4 Forces in a Fluid 4 -- 1.5 Integral Form of the Fluid
Dynamic Equations 6 -- 1.6 Differential Form of the Fluid
Dynamic Equations 8 -- 1.7 Dimensional Analysis of the Fluid
Dynamic Equations 14 -- 1.8 Flow with High Reynolds Number 17
-- 1.9 Similarity of Flows 19 -- 2 Fundamentals of Inviscid,
Incompressible Flow 21 -- 2.1 Angular Velocity, Vorticity, and
Circulation 21 -- 2.2 Rate of Change of Vorticity 24 -- 2.3
Rate of Change of Circulation: Kelvin's Theorem 25 -- 2.4
Irrotational Flow and the Velocity Potential 26 -- 2.5 Boundary
and Infinity Conditions 27 -- 2.6 Bernoulli's Equation for the
Pressure 28 -- 2.7 Simply and Multiply Connected Regions 29 --
2.8 Uniqueness of the Solution 30 -- 2.9 Vortex Quantities 32
-- 2.10 Two-Dimensional Vortex 34 -- 2.11 The Biot-Savart Law
36 -- 2.12 The Velocity Induced by a Straight Vortex Segment 38
-- 2.13 The Stream Function 41 -- 3 General Solution of the
Incompressible, Potential Flow Equations 44 -- 3.1 Statement of
the Potential Flow Problem 44 -- 3.2 The General Solution,
Based on Green's Identity 44 -- 3.3 Summary: Methodology of
Solution 48 -- 3.4 Basic Solution: Point Source 49 -- 3.5 Basic
Solution: Point Doublet 51 -- 3.6 Basic Solution: Polynomials
54 -- 3.7 Two-Dimensional Version of the Basic Solutions 56 --
3.8 Basic Solution: Vortex 58 -- 3.9 Principle of Superposition
60 -- 3.10 Superposition of Sources and Free Stream: Rankine's
Oval 60 -- 3.11 Superposition of Doublet and Free Stream: Flow
around a Cylinder 62 -- 3.12 Superposition of a
Three-Dimensional Doublet and Free Stream: Flow around a Sphere
67 -- 3.13 Some Remarks about the Flow over the Cylinder and
the Sphere 69 -- 3.14 Surface Distribution of the Basic
Solutions 70 -- 4 Small-Disturbance Flow over Three-Dimensional
Wings: Formulation of the Problem 75 -- 4.1 Definition of the
Problem 75 -- 4.2 The Boundary Condition on the Wing 76 -- 4.3
Separation of the Thickness and the Lifting Problems 78 -- 4.4
Symmetric Wing with Nonzero Thickness at Zero Angle of Attack
79 -- 4.5 Zero-Thickness Cambered Wing at Angle of
Attack-Lifting Surfaces 82 -- 4.6 The Aerodynamic Loads 85 --
4.7 The Vortex Wake 88 -- 4.8 Linearized Theory of
Small-Disturbance Compressible Flow 90 -- 5 Small-Disturbance
Flow over Two-Dimensional Airfoils 94 -- 5.1 Symmetric Airfoil
with Nonzero Thickness at Zero Angle of Attack 94 -- 5.2
Zero-Thickness Airfoil at Angle of Attack 100 -- 5.3 Classical
Solution of the Lifting Problem 104 -- 5.4 Aerodynamic Forces
and Moments on a Thin Airfoil 106 -- 5.5 The Lumped-Vortex
Element 114 -- 5.6 Summary and Conclusions from Thin Airfoil
Theory 120 -- 6 Exact Solutions with Complex Variables 122 --
6.1 Summary of Complex Variable Theory 122 -- 6.2 The Complex
Potential 125 -- 6.3 Simple Examples 126 -- 6.3.1 Uniform
Stream and Singular Solutions 126 -- 6.3.2 Flow in a Corner 127
-- 6.4 Blasius Formula, Kutta-Joukowski Theorem 128 -- 6.5
Conformal Mapping and the Joukowski Transformation 128 -- 6.5.1
Flat Plate Airfoil 130 -- 6.5.2 Leading-Edge Suction 131 --
6.5.3 Flow Normal to a Flat Plate 133 -- 6.5.4 Circular Arc
Airfoil 134 -- 6.5.5 Symmetric Joukowski Airfoil 135 -- 6.6
Airfoil with Finite Trailing-Edge Angle 137 -- 6.7 Summary of
Pressure Distributions for Exact Airfoil Solutions 138 -- 6.8
Method of Images 141 -- 6.9 Generalized Kutta-Joukowski Theorem
146 -- 7 Perturbation Methods 151 -- 7.1 Thin-Airfoil Problem
151 -- 7.2 Second-Order Solution 154 -- 7.3 Leading-Edge
Solution 157 -- 7.4 Matched Asymptotic Expansions 160 -- 7.5
Thin Airfoil between Wind Tunnel Walls 163 -- 8
Three-Dimensional Small-Disturbance Solutions 167 -- 8.1 Finite
Wing: The Lifting Line Model 167 -- 8.1.1 Definition of the
Problem 167 -- 8.1.2 The Lifting-Line Model 168 -- 8.1.3 The
Aerodynamic Loads 172 -- 8.1.4 The Elliptic Lift Distribution
173 -- 8.1.5 General Spanwise Circulation Distribution 178 --
8.1.6 Twisted Elliptic Wing 181 -- 8.1.7 Conclusions from
Lifting-Line Theory 183 -- 8.2 Slender Wing Theory 184 -- 8.2.1
Definition of the Problem 184 -- 8.2.2 Solution of the Flow
over Slender Pointed Wings 186 -- 8.2.3 The Method of R. T.
Jones 192 -- 8.2.4 Conclusions from Slender Wing Theory 194 --
8.3 Slender Body Theory 195 -- 8.3.1 Axisymmetric Longitudinal
Flow Past a Slender Body of Revolution 196 -- 8.3.2 Transverse
Flow Past a Slender Body of Revolution 198 -- 8.3.3 Pressure
and Force Information 199 -- 8.3.4 Conclusions from Slender
Body Theory 201 -- 8.4 Far Field Calculation of Induced Drag
201 -- 9 Numerical (Panel) Methods 206 -- 9.1 Basic Formulation
206 -- 9.2 The Boundary Conditions 207 -- 9.3 Physical
Considerations 209 -- 9.4 Reduction of the Problem to a Set of
Linear Algebraic Equations 213 -- 9.5 Aerodynamic Loads 216 --
9.6 Preliminary Considerations, Prior to Establishing Numerical
Solutions 217 -- 9.7 Steps toward Constructing a Numerical
Solution 220 -- 9.8 Example: Solution of Thin Airfoil with the
Lumped-Vortex Element 222 -- 9.9 Accounting for Effects of
Compressibility and Viscosity 226 -- 10 Singularity Elements
and Influence Coefficients 230 -- 10.1 Two-Dimensional Point
Singularity Elements 230 -- 10.1.1 Two-Dimensional Point Source
230 -- 10.1.2 Two-Dimensional Point Doublet 231 -- 10.1.3
Two-Dimensional Point Vortex 231 -- 10.2 Two-Dimensional
Constant-Strength Singularity Elements 232 -- 10.2.1
Constant-Strength Source Distribution 233 -- 10.2.2
Constant-Strength Doublet Distribution 235 -- 10.2.3
Constant-Strength Vortex Distribution 236 -- 10.3
Two-Dimensional Linear-Strength Singularity Elements 237 --
10.3.1 Linear Source Distribution 238 -- 10.3.2 Linear Doublet
Distribution 239 -- 10.3.3 Linear Vortex Distribution 241 --
10.3.4 Quadratic Doublet Distribution 242 -- 10.4
Three-Dimensional Constant-Strength Singularity Elements 244 --
10.4.1 Quadrilateral Source 245 -- 10.4.2 Quadrilateral Doublet
247 -- 10.4.3 Constant Doublet Panel Equivalence to Vortex Ring
250 -- 10.4.4 Comparison of Near and Far Field Formulas 251 --
10.4.5 Constant-Strength Vortex Line Segment 251 -- 10.4.6
Vortex Ring 255 -- 10.4.7 Horseshoe Vortex 256 -- 10.5
Three-Dimensional Higher Order Elements 258 -- 11
Two-Dimensional Numerical Solutions 262 -- 11.1 Point
Singularity Solutions 262 -- 11.1.1 Discrete Vortex Method 263
-- 11.1.2 Discrete Source Method 272 -- 11.2 Constant-Strength
Singularity Solutions (Using the Neumann B.C.) 276 -- 11.2.1
Constant Strength Source Method 276 -- 11.2.2 Constant-Strength
Doublet Method 280 -- 11.2.3 Constant-Strength Vortex Method
284 -- 11.3 Constant-Potential (Dirichlet Boundary Condition)
Methods 288 -- 11.3.1 Combined Source and Doublet Method 290 --
11.3.2 Constant-Strength Doublet Method 294 -- 11.4 Linearly
Varying Singularity Strength Methods (Using the Neumann B.C.)
298 -- 11.4.1 Linear-Strength Source Method 299 -- 11.4.2
Linear-Strength Vortex Method 303 -- 11.5 Linearly Varying
Singularity Strength Methods (Using the Dirichlet B.C.) 306 --
11.5.1 Linear Source/Doublet Method 306 -- 11.5.2 Linear
Doublet Method 312 -- 11.6 Methods Based on Quadratic Doublet
Distribution (Using the Dirichlet B.C.) 315 -- 11.6.1 Linear
Source/Quadratic Doublet Method 315 -- 11.6.2 Quadratic Doublet
Method 320 -- 11.7 Some Conclusions about Panel Methods 323 --
12 Three-Dimensional Numerical Solutions 331 -- 12.1
Lifting-Line Solution by Horseshoe Elements 331 -- 12.2
Modeling of Symmetry and Reflections from Solid Boundaries 338
-- 12.3 Lifting-Surface Solution by Vortex Ring Elements 340 --
12.4 Introduction to Panel Codes: A Brief History 351 -- 12.5
First-Order Potential-Based Panel Methods 353 -- 12.6 Higher
Order Panel Methods 358 -- 12.7 Sample Solutions with Panel
Codes 360 -- 13 Unsteady Incompressible Potential Flow 369 --
13.1 Formulation of the Problem and Choice of Coordinates 369
-- 13.2 Method of Solution 373 -- 13.3 Additional Physical
Considerations 375 -- 13.4 Computation of Pressures 376 -- 13.5
Examples for the Unsteady Boundary Condition 377 -- 13.6
Summary of Solution Methodology 380 -- 13.7 Sudden Acceleration
of a Flat Plate 381 -- 13.7.1 The Added Mass 385 -- 13.8
Unsteady Motion of a Two-Dimensional Thin Airfoil 387 -- 13.8.1
Kinematics 388 -- 13.8.2 Wake Model 389 -- 13.8.3 Solution by
the Time-Stepping Method 391 -- 13.8.4 Fluid Dynamic Loads 394
-- 13.9 Unsteady Motion of a Slender Wing 400 -- 13.9.1
Kinematics 401 -- 13.9.2 Solution of the Flow over the Unsteady
Slender Wing 401 -- 13.10 Algorithm for Unsteady Airfoil Using
the Lumped-Vortex Element 407 -- 13.11 Some Remarks about the
Unsteady Kutta Condition 416 -- 13.12 Unsteady Lifting-Surface
Solution by Vortex Ring Elements 419 -- 13.13 Unsteady Panel
Methods 433 -- 14 The Laminar Boundary Layer 448 -- 14.1 The
Concept of the Boundary Layer 448 -- 14.2 Boundary Layer on a
Curved Surface 452 -- 14.3 Similar Solutions to the Boundary
Layer Equations 457 -- 14.4 The von Karman Integral Momentum
Equation 463 -- 14.5 Solutions Using the von Karman Integral
Equation 467 -- 14.5.1 Approximate Polynomial Solution 468 --
14.5.2 The Correlation Method of Thwaites 469 -- 14.6 Weak
Interactions, the Goldstein Singularity, and Wakes 471 -- 14.7
Two-Equation Integral Boundary Layer Method 473 -- 14.8
Viscous-Inviscid Interaction Method 475