ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Liquid-phase Extraction

دانلود کتاب استخراج فاز مایع

Liquid-phase Extraction

مشخصات کتاب

Liquid-phase Extraction

ویرایش:  
نویسندگان:   
سری: Handbooks in Separation Science 
ISBN (شابک) : 0128169117, 9780128169117 
ناشر: Elsevier Science Ltd 
سال نشر: 2019 
تعداد صفحات: 796 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 29 مگابایت 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Liquid-phase Extraction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب استخراج فاز مایع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب استخراج فاز مایع



استخراج فاز مایع به طور کامل تکنیک های موجود و جدید را در استخراج فاز مایع ارائه می دهد. این نه تنها تمام اطلاعات مورد نیاز دانشمندان آزمایشگاهی را برای انتخاب و استفاده از روش‌های آماده‌سازی نمونه مناسب برای هر نوع نمونه فراهم می‌کند، بلکه کاربردهای معاصر تکنیک‌های آماده‌سازی نمونه را در مهمترین محیط‌های پروژه صنعتی و دانشگاهی، از جمله کروماتوگرافی جریان مخالف، مایع تحت فشار، به نمایش می‌گذارد. استخراج، میکرواستخراج تک قطره و موارد دیگر. نوشته شده توسط متخصصان شناخته شده در زمینه های مربوطه، به عنوان یک مرجع یک مرحله ای برای کسانی که نیاز دارند بدانند کدام تکنیک را برای استخراج فاز مایع انتخاب کنند، عمل می کند.

که همراه با نسخه مشابه، استخراج فاز جامد استفاده می‌شود، به کاربران اجازه می‌دهد تا بر این جنبه حیاتی آماده‌سازی نمونه مسلط شوند.

  • تعریف می‌کند. پیشرفته ترین تکنیک های استخراج و روش ها و روش های اجرای آنها در آزمایشگاه
  • شامل ارجاع گسترده ای است که شناسایی اطلاعات کلیدی را تسهیل می کند
  • با هدف هر دو ورود دانشمندان سطح و کسانی که می خواهند تکنیک ها و روش های جدید را کشف کنند

توضیحاتی درمورد کتاب به خارجی

Liquid Phase Extraction thoroughly presents both existing and new techniques in liquid phase extraction. It not only provides all information laboratory scientists need for choosing and utilizing suitable sample preparation procedures for any kind of sample, but also showcases the contemporary uses of sample preparation techniques in the most important industrial and academic project environments, including countercurrent chromatography, pressurized-liquid extraction, single-drop Microextraction, and more. Written by recognized experts in their respective fields, it serves as a one-stop reference for those who need to know which technique to choose for liquid phase extraction.

Used in conjunction with a similar release, Solid Phase Extraction, it allows users to master this crucial aspect of sample preparation.

  • Defines the current state-of-the-art in extraction techniques and the methods and procedures for implementing them in laboratory practice
  • Includes extensive referencing that facilitates the identification of key information
  • Aimed at both entry-level scientists and those who want to explore new techniques and methods


فهرست مطالب

Front Matter
Copyright
Contributors
Milestones in the Development of Liquid-Phase Extraction Techniques
	Introduction
	Techniques of Solvent Extraction
		Liquid-liquid extraction
			Continuous Liquid-Liquid Extraction
			Multistage Countercurrent Distribution
			Liquid-Liquid Chromatography
			Steam Distillation-Solvent Extraction
			Solvent Sublation
			Salting-Out Assisted Liquid-Liquid Extraction
			Aqueous Two-Phase Extraction
			Micelle-Mediated Extraction
			Liquid-Membrane Extraction
			Liquid-Phase Microextraction
			Segmented Continuous Flow Extraction
		Gas-liquid extraction
		Solid-liquid extraction
			Shake Flask Extraction
			Soxhlet Extraction
			Ultrasound-Assisted Extraction
			Microwave-Assisted Extraction
			Pressurized Liquid Extraction
	Solvent Reduction Methods
	Applications of Classical Liquid-Liquid Extraction
		Bioassay-directed screening techniques
		Extraction of drugs from biological fluids
		Extraction of lipids from animal tissue
		Extraction of pesticides from agricultural commodities
	Conclusions
	References
Solvent Selection for Liquid-Phase Extraction
	Introduction
	Physical Properties of Common Solvents
		Impurities
		Solvents forming biphasic systems with water
	Solvent Classification Methods
		Hildebrand's solubility parameter
		Solvent selectivity triangle
		Solvatochromic parameters
		Abraham's solvation parameter model
		Conductor-like screening model for real solvents
	Distribution Model for Water-Organic Solvent Two-Phase Systems
	Green Solvents
		Bio-derived solvents
		Surfactant-based solvents
		Ionic liquids
		Deep eutectic solvents
	Conclusions
	References
Aqueous-Organic Biphasic Systems: Extraction of Organic Compounds
	Introduction
	Fundamentals
		Partition constant and distribution constants
		Brief description of molecular interactions
			Dispersive Interactions
			Dipole-Dipole Interactions (Keesom Forces)
			Inductive Interactions
			Hydrogen-Bond Interactions
			Charge Transfer Interactions
		Predictive models of the distribution constants
	Extraction Efficiency
		Fraction extracted
		Selectivity and enrichment factor
	Secondary Chemical Equilibria. Distribution Ratio
		Dissociation in aqueous phase. Influence of pH on LLE
		Association in the organic phase
		Reactive extractions
	Methods of Extraction
		Batch extractions
		Continuous LLEs
		Countercurrent extractions
		Microextractions
		Supported liquid membrane extractions
		Automation
		Optimization of the extraction process
			Selection of Solvent
			Phase Ratio
			Salting-Out Effects
			Extraction Time and Shaking
	Conclusions
	References
Fundamentals of Solvent Extraction of Metal Ions
	Introduction
	Thermodynamic Considerations
		Partition and distribution
		Separation factor
	Metal-Containing Solutes in Solvent Extraction Systems
		Metal ions
		Simple inert molecules (neutral metal compounds)
		Metal complexes with lipophilic ligands
			Solvated Salts
			Neutral Metal Chelates
			Cationic Metal Chelates
		Synergic effects in solvent extraction
	Solute-Solvent Interactions in the Aqueous Phase
		Hydrophobic effect
		Inner-sphere hydration of metal complexes
		Outer-sphere hydration of metal complexes
		Salting out in solvent extraction systems
	Solute-Solvent Interactions in the Organic Phase
		Inert solvents. Regular solutions
		Reactive solvents
	Kinetics of Solvent Extraction Processes
		Diffusional and kinetic regimes. Mechanisms of metals extraction
		Accelerated solvent extraction of metal ions
	Summary
	Funding
	References
Aqueous Two-Phase Systems
	Introduction
	Thermodynamic Fundamentals and Properties
		Phase diagrams and tie-lines
		Physicochemical properties of the phases and kinetics of separation
	Types of Aqueous Two-Phase Systems
		Polymer/polymer ATPS
		Polymer/salt ATPS
		Salt/salt ATPS
		Other types of ATPS
		Effect of temperature and pH
	Applications of Aqueous Two-Phase Systems
		Partition of molecules and particulates
		Extraction and purification of products
		Analytical applications
		Emerging and non-conventional applications
	Scaling-Up and Continuous Processing
	Final Remarks and Future Perspectives
	Acknowledgments
	References
Octanol-Water Partition Constant
	Introduction
	Methods Used to Determine the Octanol-Water Partition Constant
		Shake-flask method
		Potentiometric method
		Liquid chromatographic methods
		Comparision between experimental methods
	Lipophilicity and Biological Activity
	References
Surfactant-Based Extraction Systems
	Types and Properties of Surfactants
	Surfactant Aggregation
	Surfactant Coacervation as Extraction Solvent
		Cloud-point extraction
			CPE of Metal Ions
			CPE Coupled to Chromatography
			New Trends in CPE
		Mixed micelle mediated extraction
		Supramolecular solvents (SUPRASs)
			Reverse Micelle of Carboxylic Acid as Extraction Phase
				Alkyl Carboxylic Acid Based-Reverse Micelles Coupled to Chromatography
				Reversed Micelles of Alkyl Carboxylic Acids for Metal Ion Extraction
			Vesicle of Carboxylic Acid as Extraction Phase
			Alkanol Aggregates as Extraction Phase
			Gemini Surfactant Aggregates as Extraction Phase
	Emulsification of Organic Solvent by Surfactants
		Dispersive liquid-liquid microextraction (DLLME)
		Ultrasound-based LPME
		Vortex-assisted microextraction (VALLME)
	Surfactant as Ion Pairing Agent for Liquid Membrane Extraction
		Biphasic solvent extraction
		Triphasic solvent extraction
	Conclusions
	References
Microextraction With Supported Liquid Membranes
	Introduction
	Extraction Principles
	Mass Transfer
	Method Optimization
	Selected Applications
	Outlook
	References
	Further Reading
Totally Organic Biphasic Systems
	Introduction
	Totally Organic Distribution Systems and Their Properties
		Mutual solubility and stability
		Solvation properties
			Binay Biphasic Systems Containing n-Alkane Solvents
			Binary Biphasic Systems Containing Isopentyl Ether
			Binary Biphasic Systems Containing 1,2-Dichloroethane and Octan-1-ol
			Binary Biphasic Systems Containing Triethylamine
			Classification of Totally Organic Biphasic Systems
	Applications
		n-Alkane-acetonitrile
		n-Alkane-dimethyl sulfoxide
		Further biphasic systems
		Estimation of physicochemical properties
	Conclusions
	References
Countercurrent Chromatography-When Liquid-Liquid Extraction Meets Chromatography
	Principle, Instrumentation, Basic Parameters and Terms
		History and principle of CCC
		The CCC centrifuge and operation modes
		Stationary phase retention (Sf value) and prediction of elution times (volumes) from P values
			Calculation of Elution Volumes From P Values and Sf Values
	Solvent Systems
	Taking Advantage of the Liquid Nature of the Stationary Phase
		Methods suited to elute compounds with P values outside the sweet spot range
			Elution Extrusion and Back Extrusion Modes
			Dual Mode
			Co-Current Mode
			Gradient Elution in CCC
			Triphasic Solvent Systems
		Modes that improve the separation of compounds with similar P values
			Recycling Mode
			Multiple Dual Mode (MDM)
			Two-Dimensional Heart-Cut CCC
	pH-Zone Refining CCC
	Concluding Remarks and Recommended Reading
	References
Soxhlet Extraction
	Introduction
	Performance of the Soxhlet Extractor: Positive and Negative Features
		Description of SE
		Positive and negative aspects of SE
	Minor Improvements to the Soxhlet Extractor
	Major Improvements to the Soxhlet Extractor
		Ultrasound-assisted soxhlet extractors
		Microwave-assisted soxhlet extractors
	Commercial Extractors Based on the Soxhlet Principles
		Commercial soxhlet extractors with electrical heating
		Commercial soxhlet extractors with microwave heating
	Applications of SE
	Comparison of Soxhlet With Other Extraction Methods
	Comparison of Conventional Methods
		Comparison of methods assisted by high-energy sources versus SE
			MAE Versus the SE Method
			USAE Versus the SE Method
			High-Pressure/High-Temperature Extraction as Compared with SE
			Comparison of Several Extraction Methods and SE
	Acknowledgments
	References
Ultrasound and Microwave as Green Tools for Solid-Liquid Extraction
	Introduction
	Ultrasound
		Principle and theory
			General Definitions
			Acoustic Cavitation Phenomenon
			Factors Influencing Ultrasound Assisted Extraction
		Protocols and applications
		Laboratory and industrial scale ultrasonic devices
	Microwave
		Principle and theory
			General Definitions
			MW Mechanism
			Parameters Influencing the Propagation of Microwaves
		Protocols and theory
		Microwave devices for laboratory and industrial scale extraction
	Conclusion and Perspectives
	References
Pressurized Liquid Extraction
	Introduction
	Principles of PLE-Parameters Affecting Performance
		Temperature
		Pressure
		Flow rate and extraction time
		Other parameters (matrix, dispersants, solvent/sample ratio)
	Instrumentation
	Applications
		Contaminants, toxins and residues
			Organic Contaminants
			Pesticides
			Toxins
			Metals
			Antibiotics and Other Pharmaceuticals
		Matrix components
			Polyphenols
			Terpenoids
			Lipids
			Essential Oils
	Conclusions
	Acknowledgments
	References
Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Extraction
	Introduction
	The Original Method
	First Modifications
	Recent Developments
		New sorbents
		Extraction/partitioning modifications
		Variations in the SPE format and automation
	Applications
	Conclusions and Trends
	References
Single-Drop Microextraction
	Introduction
	Modes of SDME
	Attributes of Different Modes of Single-Drop Microextraction and New Strategies
		Direct immersion single-drop microextraction
		Drop-to-drop single-drop microextraction
		Headspace single-drop microextraction
		Liquid-liquid-liquid microextraction
	Solvent Drop Protection
	Solvents for Single-Drop Microextraction
	Automation
	Recent Applications
	Conclusions
	Acknowledgment
	References
Dispersive Liquid-Liquid Microextraction
	Introduction
	Nomenclature
	Dispersion Methods
		Solvent assisted dispersive liquid-liquid microextraction (DLLME)
		Vortex assisted-DLLME (VA-DLLME)
		Ultrasound assisted-DLLME (UA-DLLME)
		Gas assisted-DLLME (GA-DLLME) and effervescence assisted DLLLME (EA-DLLME)
		Air-assisted-DLLME (AA-DLLME)
		In situ-DLLME
			In Situ-Ionic Liquid-DLLME (In-Situ-IL-DLLME)
			In Situ-Deep Eutectic Solvent-DLLME (In Situ-DES-DLLME)
	Extraction and Dispersion Solvents
		Traditional extraction solvents
		Ionic liquid extraction solvents
		Deep eutectic extraction solvents
		Magnetic extraction solvents
		Dispersion solvents
	Techniques for Breaking the Dispersion
		Centrifugation
		Addition of solvent (solvent demulsification)
		Salting out
	Derivatives and Complexes
	DLLME Combined With Other Extraction Techniques
	DLLME Automation
	Green Analytical Chemistry (GAC)
	Employing an Appropriate DLLME Mode
	Conclusions
	References
Extraction With Ionic Liquids-Organic Compounds
	Introduction
	Ionic Liquids in Liquid-Phase Extraction Methods
		Microwave-assisted extraction
		Ultrasound-assisted extraction
		Aqueous biphasic systems
	Ionic Liquids in Liquid-Phase Microextraction Methods
		Dispersive liquid-liquid microextraction
			Conventional IL-DLLME
			In-Situ IL-DLLME
			Magnetic-Assisted IL-DLLME
			MIL-DLLME
		Single-drop microextraction
		Hollow-fiber liquid-phase microextraction
	Concluding Remarks
	References
Metal Ion Extraction With Ionic Liquids
	Introduction
	Solvent Properties of ILs
		Viscosity and density
		Polarity
		Solubility and solvation
	ILs as Diluents
		Cation exchange and ion-pair extraction
		Anion exchange
		Consideration of extractant solubility
	ILs as Extractants
		Liquid anion exchangers
		Task-specific ILs
	Conclusions
	References
Preanalytical Treatments: Extraction With Deep Eutectic Solvents
	Introduction
	Compatibility
	High Reproducible Yields
	Sensitivity
	Stability of Extracts
	Green Solvent
	Conclusions
	References
Environmental Applications
	Introduction
	Inorganic Contaminants
	LPME approaches
		Single-Drop Microextraction
		Hollow-Fiber LPME
		Dispersive Liquid-Liquid Microextraction
		Combination of LPME Techniques With Other Techniques
		Automation for LPME Techniques
	Cloud-point extraction
	Organic Contaminants
	Air
	Solid samples
	Water
		LLE Techniques
		Single-Drop Microextraction
		Membrane-Assisted Microextraction Approaches
		Dispersive Liquid-Liquid Microextraction
		Other Microextraction Techniques
		Combination of LPME Techniques With Other (Micro)extraction Techniques
	Acknowledgments
	References
Application in Food Analysis
	Introduction
	Nutrients
		Macronutrients
		Micronutrients
	Chemical Hazards
		Pesticides
		Mycotoxins
		Brominated flame retardants
		Bisphenol A
		PAHs
	Acknowledgments
	References
Extraction of Plant Materials
	Introduction
		Importance of plant analysis
			Medicinal Value
			Nutritional Value
			Economic Value
			Environmental Value
		Types of analytes
			Phytochemicals
			Environmental Pollutants
		Varieties of liquid-phase extraction methods
		Challenges and opportunities of phytochemical analysis
	LPE Methods for the Analysis of Pollutants
	LPE Methods for Extracting Phytochemicals
		Pressurized liquid extraction
		Pressurized hot water extraction
		Supercritical fluid extraction
		Ultrasound-assisted extraction
		Enzyme-assisted extraction
		Hybrid extraction methods
		Ionic liquid or natural deep eutectic solvent-assisted extraction
		Liquid-phase microextraction
	Conclusion, Research Gap, and Future Prospects
	References
Biomedical Applications
	Introduction
		Pressurized-liquid extraction (PLE)
		QuEChERS (Quick, easy, cheap, effective, rugged and safe) extraction
		Single-drop microextraction (SDME)
		Dispersive liquid-liquid microextraction (DLLME)
	Biomedical Applications
		PLE applications
		QuEChERS extraction applications
			QuEChERS Extraction for Whole Blood Samples
			QuEChERS Extraction for Plasma Samples
			QuEChERS Extraction for Urine Samples
			QuEChERS Extraction for Hair Samples
		SDME applications
			DI-SDME and HS-SDME
			Three-Phase SDME
		DLLME applications
			Conventional DLLME and LDS-DLLME
			DLLME-SFOD
			IL-DLLME
			UA-DLLME
	Discussion
		PLE
		QuEChERS extraction
		SDME
		DLLME
	Conclusions
	References
Solvent Extraction for Nuclear Power
	Introduction
	Spent Nuclear Fuel (SNF)
	Classical and Advanced PUREX Processes
	Americium(III) Recycling-Advanced Fuel Cycles
	Separation of Americium(III) From Curium(III)
	Specific Problems of SNF Reprocessing by Solvent Extraction
		High-intensity ionizing radiation
		Radiolysis of solvent extraction systems
		Prevention of criticality
	Summary
	Funding
	Acknowledgment
	References
Continuous-Flow Extraction
	Introduction
	Segmented Flow Analysis (SFA)
	Flow Injection Analysis (FIA)
		Liquid-liquid extraction in FIA
	Sequential Injection Analysis (SIA)
		Liquid-liquid extraction in SIA
	Multicommuted Flow Analysis (MCFIA)
		Liquid-liquid extraction in MCFIA
	Multisyringe Flow Injection Analysis (MSFIA)
		Liquid-liquid extraction in MSFIA
	Multipumping Flow Systems (MPFS)
	Lab-in-Syringe: Dispersive Liquid-Liquid Microextraction
	Lab-in-Syringe: Magnetically Assisted Dispersive Liquid-Liquid Microextraction
	Software
		Configuring the connected hardware
		Designing the analytic method to be used with the connected hardware
		Executing method to realize expected commands and data capture
		Data processing
	Conclusions
	References
	Further Reading
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




نظرات کاربران