دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Colin F. Poole (editor)
سری: Handbooks in Separation Science
ISBN (شابک) : 0128169117, 9780128169117
ناشر: Elsevier Science Ltd
سال نشر: 2019
تعداد صفحات: 796
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 مگابایت
در صورت تبدیل فایل کتاب Liquid-phase Extraction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استخراج فاز مایع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
استخراج فاز مایع به طور کامل تکنیک های موجود و جدید را در استخراج فاز مایع ارائه می دهد. این نه تنها تمام اطلاعات مورد نیاز دانشمندان آزمایشگاهی را برای انتخاب و استفاده از روشهای آمادهسازی نمونه مناسب برای هر نوع نمونه فراهم میکند، بلکه کاربردهای معاصر تکنیکهای آمادهسازی نمونه را در مهمترین محیطهای پروژه صنعتی و دانشگاهی، از جمله کروماتوگرافی جریان مخالف، مایع تحت فشار، به نمایش میگذارد. استخراج، میکرواستخراج تک قطره و موارد دیگر. نوشته شده توسط متخصصان شناخته شده در زمینه های مربوطه، به عنوان یک مرجع یک مرحله ای برای کسانی که نیاز دارند بدانند کدام تکنیک را برای استخراج فاز مایع انتخاب کنند، عمل می کند.
که همراه با نسخه مشابه، استخراج فاز جامد استفاده میشود، به کاربران اجازه میدهد تا بر این جنبه حیاتی آمادهسازی نمونه مسلط شوند.
Liquid Phase Extraction thoroughly presents both existing and new techniques in liquid phase extraction. It not only provides all information laboratory scientists need for choosing and utilizing suitable sample preparation procedures for any kind of sample, but also showcases the contemporary uses of sample preparation techniques in the most important industrial and academic project environments, including countercurrent chromatography, pressurized-liquid extraction, single-drop Microextraction, and more. Written by recognized experts in their respective fields, it serves as a one-stop reference for those who need to know which technique to choose for liquid phase extraction.
Used in conjunction with a similar release, Solid Phase Extraction, it allows users to master this crucial aspect of sample preparation.
Front Matter Copyright Contributors Milestones in the Development of Liquid-Phase Extraction Techniques Introduction Techniques of Solvent Extraction Liquid-liquid extraction Continuous Liquid-Liquid Extraction Multistage Countercurrent Distribution Liquid-Liquid Chromatography Steam Distillation-Solvent Extraction Solvent Sublation Salting-Out Assisted Liquid-Liquid Extraction Aqueous Two-Phase Extraction Micelle-Mediated Extraction Liquid-Membrane Extraction Liquid-Phase Microextraction Segmented Continuous Flow Extraction Gas-liquid extraction Solid-liquid extraction Shake Flask Extraction Soxhlet Extraction Ultrasound-Assisted Extraction Microwave-Assisted Extraction Pressurized Liquid Extraction Solvent Reduction Methods Applications of Classical Liquid-Liquid Extraction Bioassay-directed screening techniques Extraction of drugs from biological fluids Extraction of lipids from animal tissue Extraction of pesticides from agricultural commodities Conclusions References Solvent Selection for Liquid-Phase Extraction Introduction Physical Properties of Common Solvents Impurities Solvents forming biphasic systems with water Solvent Classification Methods Hildebrand's solubility parameter Solvent selectivity triangle Solvatochromic parameters Abraham's solvation parameter model Conductor-like screening model for real solvents Distribution Model for Water-Organic Solvent Two-Phase Systems Green Solvents Bio-derived solvents Surfactant-based solvents Ionic liquids Deep eutectic solvents Conclusions References Aqueous-Organic Biphasic Systems: Extraction of Organic Compounds Introduction Fundamentals Partition constant and distribution constants Brief description of molecular interactions Dispersive Interactions Dipole-Dipole Interactions (Keesom Forces) Inductive Interactions Hydrogen-Bond Interactions Charge Transfer Interactions Predictive models of the distribution constants Extraction Efficiency Fraction extracted Selectivity and enrichment factor Secondary Chemical Equilibria. Distribution Ratio Dissociation in aqueous phase. Influence of pH on LLE Association in the organic phase Reactive extractions Methods of Extraction Batch extractions Continuous LLEs Countercurrent extractions Microextractions Supported liquid membrane extractions Automation Optimization of the extraction process Selection of Solvent Phase Ratio Salting-Out Effects Extraction Time and Shaking Conclusions References Fundamentals of Solvent Extraction of Metal Ions Introduction Thermodynamic Considerations Partition and distribution Separation factor Metal-Containing Solutes in Solvent Extraction Systems Metal ions Simple inert molecules (neutral metal compounds) Metal complexes with lipophilic ligands Solvated Salts Neutral Metal Chelates Cationic Metal Chelates Synergic effects in solvent extraction Solute-Solvent Interactions in the Aqueous Phase Hydrophobic effect Inner-sphere hydration of metal complexes Outer-sphere hydration of metal complexes Salting out in solvent extraction systems Solute-Solvent Interactions in the Organic Phase Inert solvents. Regular solutions Reactive solvents Kinetics of Solvent Extraction Processes Diffusional and kinetic regimes. Mechanisms of metals extraction Accelerated solvent extraction of metal ions Summary Funding References Aqueous Two-Phase Systems Introduction Thermodynamic Fundamentals and Properties Phase diagrams and tie-lines Physicochemical properties of the phases and kinetics of separation Types of Aqueous Two-Phase Systems Polymer/polymer ATPS Polymer/salt ATPS Salt/salt ATPS Other types of ATPS Effect of temperature and pH Applications of Aqueous Two-Phase Systems Partition of molecules and particulates Extraction and purification of products Analytical applications Emerging and non-conventional applications Scaling-Up and Continuous Processing Final Remarks and Future Perspectives Acknowledgments References Octanol-Water Partition Constant Introduction Methods Used to Determine the Octanol-Water Partition Constant Shake-flask method Potentiometric method Liquid chromatographic methods Comparision between experimental methods Lipophilicity and Biological Activity References Surfactant-Based Extraction Systems Types and Properties of Surfactants Surfactant Aggregation Surfactant Coacervation as Extraction Solvent Cloud-point extraction CPE of Metal Ions CPE Coupled to Chromatography New Trends in CPE Mixed micelle mediated extraction Supramolecular solvents (SUPRASs) Reverse Micelle of Carboxylic Acid as Extraction Phase Alkyl Carboxylic Acid Based-Reverse Micelles Coupled to Chromatography Reversed Micelles of Alkyl Carboxylic Acids for Metal Ion Extraction Vesicle of Carboxylic Acid as Extraction Phase Alkanol Aggregates as Extraction Phase Gemini Surfactant Aggregates as Extraction Phase Emulsification of Organic Solvent by Surfactants Dispersive liquid-liquid microextraction (DLLME) Ultrasound-based LPME Vortex-assisted microextraction (VALLME) Surfactant as Ion Pairing Agent for Liquid Membrane Extraction Biphasic solvent extraction Triphasic solvent extraction Conclusions References Microextraction With Supported Liquid Membranes Introduction Extraction Principles Mass Transfer Method Optimization Selected Applications Outlook References Further Reading Totally Organic Biphasic Systems Introduction Totally Organic Distribution Systems and Their Properties Mutual solubility and stability Solvation properties Binay Biphasic Systems Containing n-Alkane Solvents Binary Biphasic Systems Containing Isopentyl Ether Binary Biphasic Systems Containing 1,2-Dichloroethane and Octan-1-ol Binary Biphasic Systems Containing Triethylamine Classification of Totally Organic Biphasic Systems Applications n-Alkane-acetonitrile n-Alkane-dimethyl sulfoxide Further biphasic systems Estimation of physicochemical properties Conclusions References Countercurrent Chromatography-When Liquid-Liquid Extraction Meets Chromatography Principle, Instrumentation, Basic Parameters and Terms History and principle of CCC The CCC centrifuge and operation modes Stationary phase retention (Sf value) and prediction of elution times (volumes) from P values Calculation of Elution Volumes From P Values and Sf Values Solvent Systems Taking Advantage of the Liquid Nature of the Stationary Phase Methods suited to elute compounds with P values outside the sweet spot range Elution Extrusion and Back Extrusion Modes Dual Mode Co-Current Mode Gradient Elution in CCC Triphasic Solvent Systems Modes that improve the separation of compounds with similar P values Recycling Mode Multiple Dual Mode (MDM) Two-Dimensional Heart-Cut CCC pH-Zone Refining CCC Concluding Remarks and Recommended Reading References Soxhlet Extraction Introduction Performance of the Soxhlet Extractor: Positive and Negative Features Description of SE Positive and negative aspects of SE Minor Improvements to the Soxhlet Extractor Major Improvements to the Soxhlet Extractor Ultrasound-assisted soxhlet extractors Microwave-assisted soxhlet extractors Commercial Extractors Based on the Soxhlet Principles Commercial soxhlet extractors with electrical heating Commercial soxhlet extractors with microwave heating Applications of SE Comparison of Soxhlet With Other Extraction Methods Comparison of Conventional Methods Comparison of methods assisted by high-energy sources versus SE MAE Versus the SE Method USAE Versus the SE Method High-Pressure/High-Temperature Extraction as Compared with SE Comparison of Several Extraction Methods and SE Acknowledgments References Ultrasound and Microwave as Green Tools for Solid-Liquid Extraction Introduction Ultrasound Principle and theory General Definitions Acoustic Cavitation Phenomenon Factors Influencing Ultrasound Assisted Extraction Protocols and applications Laboratory and industrial scale ultrasonic devices Microwave Principle and theory General Definitions MW Mechanism Parameters Influencing the Propagation of Microwaves Protocols and theory Microwave devices for laboratory and industrial scale extraction Conclusion and Perspectives References Pressurized Liquid Extraction Introduction Principles of PLE-Parameters Affecting Performance Temperature Pressure Flow rate and extraction time Other parameters (matrix, dispersants, solvent/sample ratio) Instrumentation Applications Contaminants, toxins and residues Organic Contaminants Pesticides Toxins Metals Antibiotics and Other Pharmaceuticals Matrix components Polyphenols Terpenoids Lipids Essential Oils Conclusions Acknowledgments References Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Extraction Introduction The Original Method First Modifications Recent Developments New sorbents Extraction/partitioning modifications Variations in the SPE format and automation Applications Conclusions and Trends References Single-Drop Microextraction Introduction Modes of SDME Attributes of Different Modes of Single-Drop Microextraction and New Strategies Direct immersion single-drop microextraction Drop-to-drop single-drop microextraction Headspace single-drop microextraction Liquid-liquid-liquid microextraction Solvent Drop Protection Solvents for Single-Drop Microextraction Automation Recent Applications Conclusions Acknowledgment References Dispersive Liquid-Liquid Microextraction Introduction Nomenclature Dispersion Methods Solvent assisted dispersive liquid-liquid microextraction (DLLME) Vortex assisted-DLLME (VA-DLLME) Ultrasound assisted-DLLME (UA-DLLME) Gas assisted-DLLME (GA-DLLME) and effervescence assisted DLLLME (EA-DLLME) Air-assisted-DLLME (AA-DLLME) In situ-DLLME In Situ-Ionic Liquid-DLLME (In-Situ-IL-DLLME) In Situ-Deep Eutectic Solvent-DLLME (In Situ-DES-DLLME) Extraction and Dispersion Solvents Traditional extraction solvents Ionic liquid extraction solvents Deep eutectic extraction solvents Magnetic extraction solvents Dispersion solvents Techniques for Breaking the Dispersion Centrifugation Addition of solvent (solvent demulsification) Salting out Derivatives and Complexes DLLME Combined With Other Extraction Techniques DLLME Automation Green Analytical Chemistry (GAC) Employing an Appropriate DLLME Mode Conclusions References Extraction With Ionic Liquids-Organic Compounds Introduction Ionic Liquids in Liquid-Phase Extraction Methods Microwave-assisted extraction Ultrasound-assisted extraction Aqueous biphasic systems Ionic Liquids in Liquid-Phase Microextraction Methods Dispersive liquid-liquid microextraction Conventional IL-DLLME In-Situ IL-DLLME Magnetic-Assisted IL-DLLME MIL-DLLME Single-drop microextraction Hollow-fiber liquid-phase microextraction Concluding Remarks References Metal Ion Extraction With Ionic Liquids Introduction Solvent Properties of ILs Viscosity and density Polarity Solubility and solvation ILs as Diluents Cation exchange and ion-pair extraction Anion exchange Consideration of extractant solubility ILs as Extractants Liquid anion exchangers Task-specific ILs Conclusions References Preanalytical Treatments: Extraction With Deep Eutectic Solvents Introduction Compatibility High Reproducible Yields Sensitivity Stability of Extracts Green Solvent Conclusions References Environmental Applications Introduction Inorganic Contaminants LPME approaches Single-Drop Microextraction Hollow-Fiber LPME Dispersive Liquid-Liquid Microextraction Combination of LPME Techniques With Other Techniques Automation for LPME Techniques Cloud-point extraction Organic Contaminants Air Solid samples Water LLE Techniques Single-Drop Microextraction Membrane-Assisted Microextraction Approaches Dispersive Liquid-Liquid Microextraction Other Microextraction Techniques Combination of LPME Techniques With Other (Micro)extraction Techniques Acknowledgments References Application in Food Analysis Introduction Nutrients Macronutrients Micronutrients Chemical Hazards Pesticides Mycotoxins Brominated flame retardants Bisphenol A PAHs Acknowledgments References Extraction of Plant Materials Introduction Importance of plant analysis Medicinal Value Nutritional Value Economic Value Environmental Value Types of analytes Phytochemicals Environmental Pollutants Varieties of liquid-phase extraction methods Challenges and opportunities of phytochemical analysis LPE Methods for the Analysis of Pollutants LPE Methods for Extracting Phytochemicals Pressurized liquid extraction Pressurized hot water extraction Supercritical fluid extraction Ultrasound-assisted extraction Enzyme-assisted extraction Hybrid extraction methods Ionic liquid or natural deep eutectic solvent-assisted extraction Liquid-phase microextraction Conclusion, Research Gap, and Future Prospects References Biomedical Applications Introduction Pressurized-liquid extraction (PLE) QuEChERS (Quick, easy, cheap, effective, rugged and safe) extraction Single-drop microextraction (SDME) Dispersive liquid-liquid microextraction (DLLME) Biomedical Applications PLE applications QuEChERS extraction applications QuEChERS Extraction for Whole Blood Samples QuEChERS Extraction for Plasma Samples QuEChERS Extraction for Urine Samples QuEChERS Extraction for Hair Samples SDME applications DI-SDME and HS-SDME Three-Phase SDME DLLME applications Conventional DLLME and LDS-DLLME DLLME-SFOD IL-DLLME UA-DLLME Discussion PLE QuEChERS extraction SDME DLLME Conclusions References Solvent Extraction for Nuclear Power Introduction Spent Nuclear Fuel (SNF) Classical and Advanced PUREX Processes Americium(III) Recycling-Advanced Fuel Cycles Separation of Americium(III) From Curium(III) Specific Problems of SNF Reprocessing by Solvent Extraction High-intensity ionizing radiation Radiolysis of solvent extraction systems Prevention of criticality Summary Funding Acknowledgment References Continuous-Flow Extraction Introduction Segmented Flow Analysis (SFA) Flow Injection Analysis (FIA) Liquid-liquid extraction in FIA Sequential Injection Analysis (SIA) Liquid-liquid extraction in SIA Multicommuted Flow Analysis (MCFIA) Liquid-liquid extraction in MCFIA Multisyringe Flow Injection Analysis (MSFIA) Liquid-liquid extraction in MSFIA Multipumping Flow Systems (MPFS) Lab-in-Syringe: Dispersive Liquid-Liquid Microextraction Lab-in-Syringe: Magnetically Assisted Dispersive Liquid-Liquid Microextraction Software Configuring the connected hardware Designing the analytic method to be used with the connected hardware Executing method to realize expected commands and data capture Data processing Conclusions References Further Reading Index A B C D E F G H I K L M N O P Q R S T U V W