ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Life: the science of biology

دانلود کتاب زندگی: علم زیست شناسی

Life: the science of biology

مشخصات کتاب

Life: the science of biology

ویرایش: 10ed. 
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781429298643 
ناشر: Freeman 
سال نشر: 2012 
تعداد صفحات: 1442 
زبان: English 
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 52 مگابایت 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Life: the science of biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب زندگی: علم زیست شناسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب زندگی: علم زیست شناسی



از اولین نسخه، Life استانداردی را برای متون زیست شناسی مقدماتی مبتنی بر آزمایش تعیین کرده است. هیچ کتاب درسی قوی‌تری وجود ندارد که به دانش‌آموزان کمک کند نه تنها آنچه را که می‌دانیم (واقعیت‌های علمی)، بلکه چگونه آن‌ها را می‌دانیم (فرآیند آزمایشی که منجر به کشف آنها می‌شود).

ویرایش جدید Life بر اساس این سنت، آموزش مفاهیم اساسی و نمایش تحقیقات قابل توجه در حین پاسخ به تغییرات در آموزش زیست شناسی...

• از نظر آموزشی، با ویژگی هایی که با روش یادگیری امروز دانش آموزان مطابقت دارد، از جمله داستان های آغاز فصل، هنری با شرح بالون، و اهداف آموزشی جدید

• از نظر علمی، با انبوهی از تحقیقات جدید مهم (برای موارد برجسته به فهرست مطالب مراجعه کنید)

• به تکنولوژیک، با دسترسی فوری کدهای QR چاپ شده در متن، ویژگی‌های تعاملی جدید (کلیپ‌های رسانه‌ای، خلاصه‌های فصل، برنامه فلش کارت)، و BioPortal به طرز چشمگیری بهبود یافته، با سیستم آزمون تطبیقی، LearningCurve

• به‌طور کمی، با منابع ارزیابی کاملاً اصلاح‌شده و روش‌های جدید اندازه‌گیری گل میخ پیشرفت ents

همچنین در دسترس است، حجم تقسیم می شود: - جلد کاغذی تمام رنگی!
جلد 1: سلول و وراثت (فصل 1-20)
< I>جلد 2: تکامل، تنوع، و بوم شناسی (فصل 1، 21-33، 54-59)
جلد 3: گیاهان و حیوانات (فصل 1، 34-53) )


توضیحاتی درمورد کتاب به خارجی

From its first edition, Life has set the standard for experiment-based introductory biology texts. There is no stronger textbook for helping students understand not just what we know (scientific facts), but how we know it (the experimental process that leads to their discovery).

The new edition of Life builds upon this tradition, teaching fundamental concepts and showcasing significant research while responding to changes in biology education...

• PEDAGOGICALLY, with features that match the way students learn today, including chapter opening stories, art with balloon captions, and new Learning Objectives

• SCIENTIFICALLY, with a wealth of important new research throughout (see Table of Contents for highlights)

• TECHNOLOGICALLY, with instant access QR codes printed in the text, new interactive features (media clips, chapter summaries, a flashcard app), and a dramatically enhanced BioPortal, with the adaptive quizzing system, LearningCurve

• QUANTIFIABLY, with completely revised assessment resources and new ways of measuring students' progress

Also avalable, Volume Splits:—paperbound in full color!
Volume 1: The Cell and Heredity (Chapters 1-20)
Volume 2: Evolution, Diversity, and Ecology (Chapters 1, 21-33, 54-59)
Volume 3: Plants and Animals (Chapters 1, 34-53)



فهرست مطالب

Cover......Page 1
Front Endpapers......Page 2
Investigating Life......Page 5
Working with Data......Page 6
Research Tools......Page 7
Front Matter......Page 8
Copyright Page......Page 10
Dedication......Page 11
The Authors......Page 12
Contents in Brief......Page 13
Preface......Page 14
Reviewers for the Tenth Edition......Page 18
LIFE\'s Media and Supplements......Page 21
Contents......Page 25
Chapter 1 Studying Life......Page 51
1.1 What Is Biology?......Page 52
Cellular structure evolved in the common ancestor of life......Page 53
Photosynthesis allows some organisms to capture energy from the sun......Page 54
Biological information is contained in a genetic language common to all organisms......Page 55
Biologists can trace the evolutionary tree of life......Page 56
Living organisms interact with one another......Page 59
Nutrients supply energy and are the basis of biosynthesis......Page 60
Observing and quantifying are important skills......Page 61
Good experiments have the potential to falsify hypotheses......Page 62
Statistical methods are essential scientific tools......Page 63
Not all forms of inquiry are scientific......Page 64
Biology is the basis of medical practice......Page 65
Biology can inform public policy......Page 66
Biology helps us understand and appreciate biodiversity......Page 67
Chapter Review......Page 69
Chapter 2 Small Molecules and the Chemistry of Life......Page 71
Each element has a unique number of protons......Page 72
The behavior of electrons determines chemical bonding and geometry......Page 74
Covalent bonds consist of shared pairs of electrons......Page 76
Ionic attractions form by electrical attraction......Page 78
Hydrophobic interactions bring together nonpolar molecules......Page 80
2.3 How Do Atoms Change Partners in Chemical Reactions?......Page 81
Water has a unique structure and special properties......Page 82
The reactions of life take place in aqueous solutions......Page 83
Aqueous solutions may be acidic or basic......Page 84
An Overview and a Preview......Page 86
Chapter Summary......Page 87
Chapter Review......Page 88
Chapter 3 Proteins, Carbohydrates, and Lipids......Page 89
Functional groups give specific properties to biological molecules......Page 90
Isomers have different arrangements of the same atoms......Page 91
Most macromolecules are formed by condensation and broken down by hydrolysis......Page 92
Peptide linkages form the backbone of a protein......Page 93
The secondary structure of a protein requires hydrogen bonding......Page 95
The tertiary structure of a protein is formed by bending and folding......Page 96
Shape and surface chemistry contribute to protein function......Page 98
Environmental conditions affect protein structure......Page 100
3.3 What Are the Chemical Structures and Functions of Carbohydrates?......Page 101
Monosaccharides are simple sugars......Page 102
Glycosidic linkages bond monosaccharides......Page 103
Chemically modified carbohydrates contain additional functional groups......Page 105
Fats and oils are triglycerides......Page 106
Some lipids have roles in energy conversion, regulation, and protection......Page 107
Chapter Summary......Page 109
Chapter Review......Page 110
Chapter 4 Nucleic Acids and the Origin of Life......Page 112
Base pairing occurs in both DNA and RNA......Page 113
DNA carries information and is expressed through RNA......Page 115
The DNA base sequence reveals evolutionary relationships......Page 116
Experiments disproved the spontaneous generation of life......Page 117
Life began in water......Page 118
Prebiotic synthesis experiments model early Earth......Page 119
RNA may have been the first biological catalyst......Page 121
Experiments explore the origin of cells......Page 123
Some ancient cells left a fossil imprint......Page 124
Chapter Summary......Page 125
Chapter Review......Page 126
Chapter 5 Cells: The Working Units of Life......Page 127
Cell size is limited by the surface area-to-volume ratio......Page 128
Microscopes reveal the features of cells......Page 129
Cells are classified as either prokaryotic or eukaryotic......Page 131
5.2 What Features Characterize Prokaryotic Cells?......Page 132
Specialized features are found in some prokaryotes......Page 133
Ribosomes are factories for protein synthesis......Page 134
The nucleus contains most of the genetic information......Page 135
The endomembrane system is a group of interrelated organelles......Page 138
Some organelles transform energy......Page 141
There are several other membrane-enclosed organelles......Page 143
The cytoskeleton is important in cell structure and movement......Page 144
Biologists can manipulate living systems to establish cause and effect......Page 148
The plant cell wall is an extracellular structure......Page 149
The extracellular matrix supports tissue functions in animals......Page 150
5.5 How Did Eukaryotic Cells Originate?......Page 151
Some organelles arose by endosymbiosis......Page 152
Chapter Summary......Page 153
Chapter Review......Page 154
Chapter 6 Cell Membranes......Page 155
Lipids form the hydrophobic core of the membrane......Page 156
Membrane proteins are asymmetrically distributed......Page 157
Plasma membrane carbohydrates are recognition sites......Page 159
6.2 How Is the Plasma Membrane Involved in Cell Adhesion and Recognition?......Page 160
Cell membranes adhere to the extracellular matrix......Page 161
Diffusion is the process of random movement toward a state of equilibrium......Page 163
Simple diffusion takes place through the phospholipid bilayer......Page 164
Diffusion may be aided by channel proteins......Page 165
Carrier proteins aid diffusion by binding substances......Page 167
Active transport is directional......Page 168
Macromolecules and particles enter the cell by endocytosis......Page 170
Receptor-mediated endocytosis is highly specific......Page 171
Chapter Summary......Page 172
Chapter Review......Page 173
Chapter 7 Cell Communication and Multicellularity......Page 175
A signal transduction pathway involves a signal, a receptor, and responses......Page 176
Receptors that recognize chemical signals have specific binding sites......Page 177
Receptors can be classified by location and function......Page 178
Intracellular receptors are located in the cytoplasm or the nucleus......Page 180
A protein kinase cascade amplifies a response to ligand binding......Page 181
Second messengers can amplify signals between receptors and target molecules......Page 182
Signal transduction is highly regulated......Page 186
Ion channels open in response to signals......Page 187
Enzyme activities change in response to signals......Page 188
Animal cells communicate through gap junctions......Page 189
Plant cells communicate through plasmodesmata......Page 190
Chapter Summary......Page 191
Chapter Review......Page 192
Chapter 8 Energy, Enzymes, and Metabolism......Page 194
There are two basic types of metabolism......Page 195
The first law of thermodynamics: Energy is neither created nor destroyed......Page 196
Chemical reactions release or consume energy......Page 197
Chemical equilibrium and free energy are related......Page 198
ATP hydrolysis releases energy......Page 199
ATP couples exergonic and endergonic reactions......Page 200
To speed up a reaction, an energy barrier must be overcome......Page 201
Enzymes bind specific reactants at their active sites......Page 202
Enzymes lower the energy barrier but do not affect equilibrium......Page 203
Enzymes can orient substrates......Page 204
Some enzymes require other molecules in order to function......Page 205
8.5 How Are Enzyme Activities Regulated?......Page 206
Enzymes can be regulated by inhibitors......Page 207
Allosteric enzymes are controlled via changes in shape......Page 209
Allosteric effects regulate many metabolic pathways......Page 210
Enzymes are affected by their environment......Page 211
Chapter Summary......Page 212
Chapter Review......Page 213
Chapter 9 Pathways That Harvest Chemical Energy......Page 215
Cells trap free energy while metabolizing glucose......Page 216
The coenzyme NAD+ is a key electron carrier in redox reactions......Page 217
An overview: Harvesting energy from glucose......Page 218
In glycolysis, glucose is partially oxidized and some energy is released......Page 219
Pyruvate oxidation links glycolysis and the citric acid cycle......Page 220
Pyruvate oxidation and the citric acid cycle are regulated by the concentrations of starting materials......Page 221
The respiratory chain transfers electrons and protons, and releases energy......Page 222
Proton diffusion is coupled to ATP synthesis......Page 223
Some microorganisms use non-O2 electron acceptors......Page 226
9.4 How Is Energy Harvested from Glucose in the Absence of Oxygen?......Page 227
The yield of ATP is reduced by the impermeability of mitochondria to NADH......Page 228
Catabolism and anabolism are linked......Page 229
Catabolism and anabolism are integrated......Page 230
Metabolic pathways are regulated systems......Page 231
Chapter Summary......Page 232
Chapter Review......Page 233
Chapter 10 Photosynthesis: Energy from Sunlight......Page 235
Experiments with isotopes show that O2 comes from H2O in oxygenic photosynthesis......Page 236
Light energy is absorbed by chlorophyll and other pigments......Page 238
Light absorption results in photochemical change......Page 240
Reduction leads to ATP and NADPH formation......Page 241
Chemiosmosis is the source of the ATP produced in photophosphorylation......Page 242
Radioisotope labeling experiments revealed the steps of the Calvin cycle......Page 243
The Calvin cycle is made up of three processes......Page 244
Light stimulates the Calvin cycle......Page 246
10.4 How Have Plants Adapted Photosynthesis to Environmental Conditions?......Page 247
C3 plants undergo photorespiration but C4 plants do not......Page 248
10.5 How Does Photosynthesis Interact with Other Pathways?......Page 250
Chapter Summary......Page 252
Chapter Review......Page 253
Chapter 11 The Cell Cycle and Cell Division......Page 255
Prokaryotes divide by binary fission......Page 256
Eukaryotic cells divide by mitosis or meiosis followed by cytokinesis......Page 257
Specific internal signals trigger events in the cell cycle......Page 258
Prior to mitosis, eukaryotic DNA is packed into very compact chromosomes......Page 261
The centrosomes determine the plane of cell division......Page 262
The spindle begins to form during prophase......Page 263
Chromosome separation and movement are highly organized......Page 264
Cytokinesis is the division of the cytoplasm......Page 266
Asexual reproduction by mitosis results in genetic constancy......Page 267
Sexual reproduction by meiosis results in genetic diversity......Page 268
11.5 What Happens during Meiosis?......Page 269
During meiosis homologous chromosomes separate by independent assortment......Page 270
Meiotic errors lead to abnormal chromosome structures and numbers......Page 272
The number, shapes, and sizes of the metaphase chromosomes constitute the karyotype......Page 274
11.6 In a Living Organism, How Do Cells Die?......Page 275
Cancer cells differ from normal cells......Page 277
Cancer treatments target the cell cycle......Page 278
Chapter Summary......Page 279
Chapter Review......Page 281
Chapter 12 Inheritance, Genes, and Chromosomes......Page 282
Mendel used the scientific method to test his hypotheses......Page 283
Mendel’s first experiments involved monohybrid crosses......Page 284
Mendel’s first law states that the two copies of a gene segregate......Page 286
Mendel’s second law states that copies of different genes assort independently......Page 287
Probability can be used to predict inheritance......Page 289
Mendel’s laws can be observed in human pedigrees......Page 290
New alleles arise by mutation......Page 291
Dominance is not always complete......Page 292
Some alleles have multiple phenotypic effects......Page 293
Hybrid vigor results from new gene combinations and interactions......Page 294
The environment affects gene action......Page 295
Most complex phenotypes are determined by multiple genes and the environment......Page 296
Genes can be exchanged between chromatids and mapped......Page 297
Linkage is revealed by studies of the sex chromosomes......Page 299
12.5 What Are the Effects of Genes Outside the Nucleus?......Page 302
Bacteria exchange genes by conjugation......Page 303
Bacterial conjugation is controlled by plasmids......Page 304
Chapter Summary......Page 305
Chapter Review......Page 306
Chapter 13 DNA and Its Role in Heredity......Page 309
DNA from one type of bacterium genetically transforms another type......Page 310
Viral infection experiments confirmed that DNA is the genetic material......Page 311
Eukaryotic cells can also be genetically transformed by DNA......Page 313
Watson and Crick used modeling to deduce the structure of DNA......Page 314
Four key features define DNA structure......Page 315
The double-helical structure of DNA is essential to its function......Page 316
13.3 How Is DNA Replicated?......Page 317
An elegant experiment demonstrated that DNA replication is semiconservative......Page 318
DNA polymerases add nucleotides to the growing chain......Page 319
Many other proteins assist with DNA polymerization......Page 322
Telomeres are not fully replicated and are prone to repair......Page 325
13.4 How Are Errors in DNA Repaired?......Page 326
The polymerase chain reaction makes multiple copies of DNA sequences......Page 327
Chapter Summary......Page 329
Chapter Review......Page 330
Chapter 14 From DNA to Protein: Gene Expression......Page 331
Experiments on bread mold established that genes determine enzymes......Page 332
One gene determines one polypeptide......Page 333
14.2 How Does Information Flow from Genes to Proteins?......Page 334
In some cases, RNA determines the sequence of DNA......Page 335
RNA polymerases share common features......Page 336
The information for protein synthesis lies in the genetic code......Page 338
Many eukaryotic genes are interrupted by noncoding sequences......Page 340
Eukaryotic gene transcripts are processed before translation......Page 341
14.5 How Is RNA Translated into Proteins?......Page 343
The ribosome is the workbench for translation......Page 344
Translation takes place in three steps......Page 345
Polysome formation increases the rate of protein synthesis......Page 347
14.6 What Happens to Polypeptides after Translation?......Page 348
Many proteins are modified after translation......Page 350
Chapter Summary......Page 351
Chapter Review......Page 352
Chapter 15 Gene Mutation and Molecular Medicine......Page 354
Mutations have different phenotypic effects......Page 355
Point mutations are changes in single nucleotides......Page 356
Chromosomal mutations are extensive changes in the genetic material......Page 357
Mutations can be spontaneous or induced......Page 358
Some base pairs are more vulnerable than others to mutation......Page 360
15.2 What Kinds of Mutations Lead to Genetic Diseases?......Page 361
Disease-causing mutations may involve any number of base pairs......Page 362
Expanding triplet repeats demonstrate the fragility of some human genes......Page 363
Most diseases are caused by multiple genes and environment......Page 364
Restriction enzymes cleave DNA at specific sequences......Page 365
Gel electrophoresis separates DNA fragments......Page 366
DNA fingerprinting combines PCR with restriction analysis and electrophoresis......Page 367
Reverse genetics can be used to identify mutations that lead to disease......Page 368
The DNA barcode project aims to identify all organisms on Earth......Page 369
Screening for disease phenotypes involves analysis of proteins and other chemicals......Page 370
Allele-specific oligonucleotide hybridization can detect mutations......Page 371
Genetic diseases can be treated by modifying the phenotype......Page 372
Gene therapy offers the hope of specific treatments......Page 373
Chapter Summary......Page 375
Chapter Review......Page 376
Chapter 16 Regulation of Gene Expression......Page 378
Regulating gene transcription conserves energy......Page 379
Operator–repressor interactions control transcription in the lac and trp operons......Page 380
RNA polymerases can be directed to particular classes of promoters......Page 382
General transcription factors act at eukaryotic promoters......Page 383
Specific proteins can recognize and bind to DNA sequences and regulate transcription......Page 385
The expression of transcription factors underlies cell differentiation......Page 386
Many bacteriophages undergo a lytic cycle......Page 389
Some bacteriophages can undergo a lysogenic cycle......Page 390
Eukaryotic viruses can have complex life cycles......Page 391
DNA methylation occurs at promoters and silences transcription......Page 393
DNA methylation can result in genomic imprinting......Page 394
Global chromosome changes involve DNA methylation......Page 395
Different mRNAs can be made from the same gene by alternative splicing......Page 396
Small RNAs are important regulators of gene expression......Page 397
Translation of mRNA can be regulated by proteins and riboswitches......Page 398
Chapter Summary......Page 400
Chapter Review......Page 401
Chapter 17 Genomes......Page 402
New methods have been developed to rapidly sequence DNA......Page 403
Genome sequences yield several kinds of information......Page 405
17.2 What Have We Learned from Sequencing Prokaryotic Genomes?......Page 406
The sequencing of prokaryotic and viral genomes has many potential benefits......Page 407
Some sequences of DNA can move about the genome......Page 408
Will defining the genes required for cellular life lead to artificial life?......Page 409
Model organisms reveal many characteristics of eukaryotic genomes......Page 411
Eukaryotes have gene families......Page 413
Eukaryotic genomes contain many repetitive sequences......Page 414
The human genome sequence held some surprises......Page 416
Human genomics has potential benefits in medicine......Page 417
The proteome is more complex than the genome......Page 419
Metabolomics is the study of chemical phenotype......Page 420
Chapter Review......Page 421
Chapter 18 Recombinant DNA and Biotechnology......Page 423
18.1 What Is Recombinant DNA?......Page 424
18.2 How Are New Genes Inserted into Cells?......Page 425
A variety of methods are used to insert recombinant DNA into host cells......Page 426
Reporter genes help select or identify host cells containing recombinant DNA......Page 427
Libraries provide collections of DNA fragments......Page 429
Genes can be expressed in different biological systems......Page 430
Genes can be inactivated by homologous recombination......Page 431
DNA microarrays reveal RNA expression patterns......Page 432
18.5 What Is Biotechnology?......Page 433
Medically useful proteins can be made using biotechnology......Page 434
DNA manipulation is changing agriculture......Page 436
There is public concern about biotechnology......Page 438
Chapter Summary......Page 440
Chapter Review......Page 441
Chapter 19 Differential Gene Expression in Development......Page 442
Development involves distinct but overlapping processes......Page 443
Cell fates become progressively more restricted during development......Page 444
Inducers passing from one cell to another can determine cell fates......Page 445
19.3 What Is the Role of Gene Expression in Development?......Page 447
Differential gene transcription is a hallmark of cell differentiation......Page 448
Multiple proteins interact to determine developmental programmed cell death......Page 449
Plants have organ identity genes......Page 450
A cascade of transcription factors establishes body segmentation in the fruit fly......Page 451
Plant cells can be totipotent......Page 455
Nuclear transfer allows the cloning of animals......Page 456
Pluripotent stem cells can be obtained in two ways......Page 458
Chapter Summary......Page 460
Chapter Review......Page 461
Chapter 20 Genes, Development, and Evolution......Page 462
Developmental genes in distantly related organisms are similar......Page 463
Genetic switches govern how the genetic toolkit is used......Page 465
Modularity allows for differences in the patterns of gene expression......Page 466
Differences in Hox gene expression patterns result in major differences in body plans......Page 468
Temperature can determine sex......Page 470
A variety of environmental signals influence development......Page 471
Conserved developmental genes can lead to parallel evolution......Page 473
Chapter Review......Page 475
Chapter 21 Mechanisms of Evolution......Page 477
Darwin and Wallace introduced the idea of evolution by natural selection......Page 478
Evolutionary theory has continued to develop over the past century......Page 480
Genetic variation contributes to phenotypic variation......Page 481
Selection acting on genetic variation leads to new phenotypes......Page 482
Gene flow may change allele frequencies......Page 483
Nonrandom mating can change genotype or allele frequencies......Page 484
Evolutionary change can be measured by allele and genotype frequencies......Page 486
Evolution will occur unless certain restrictive conditions exist......Page 487
Natural selection acts directly on phenotypes......Page 488
Natural selection can change or stabilize populations......Page 489
Frequency-dependent selection maintains genetic variation within populations......Page 491
Heterozygote advantage maintains polymorphic loci......Page 492
Genetic variation within species is maintained in geographically distinct populations......Page 493
Developmental processes constrain evolution......Page 494
Trade-offs constrain evolution......Page 495
Chapter Summary......Page 496
Chapter Review......Page 497
Chapter 22 Reconstructing and Using Phylogenies......Page 499
22.1 What Is Phylogeny?......Page 500
Comparisons among species require an evolutionary perspective......Page 501
22.2 How Are Phylogenetic Trees Constructed?......Page 502
Phylogenies are reconstructed from many sources of data......Page 504
Mathematical models expand the power of phylogenetic reconstruction......Page 506
The accuracy of phylogenetic methods can be tested......Page 507
Phylogenetic trees can be used to reconstruct past events......Page 508
Phylogenies can reveal convergent evolution......Page 509
Ancestral states can be reconstructed......Page 510
Molecular clocks help date evolutionary events......Page 511
22.4 How Does Phylogeny Relate to Classification?......Page 512
Several codes of biological nomenclature govern the use of scientific names......Page 513
Chapter Review......Page 515
Chapter 23 Speciation......Page 517
We can recognize many species by their appearance......Page 518
The lineage approach takes a long-term view......Page 519
Reproductive isolation develops with increasing genetic divergence......Page 520
Physical barriers give rise to allopatric speciation......Page 522
Sympatric speciation occurs without physical barriers......Page 523
23.4 What Happens When Newly Formed Species Come into Contact?......Page 525
Prezygotic isolating mechanisms prevent hybridization......Page 526
Hybrid zones may form if reproductive isolation is incomplete......Page 528
Several ecological and behavioral factors influence speciation rates......Page 530
Rapid speciation can lead to adaptive radiation......Page 531
Chapter Review......Page 533
Chapter 24 Evolution of Genes and Genomes......Page 535
Evolution of genomes results in biological diversity......Page 536
Models of sequence evolution are used to calculate evolutionary divergence......Page 537
Experimental studies examine molecular evolution directly......Page 539
24.2 What Do Genomes Reveal about Evolutionary Processes?......Page 541
Much of evolution is neutral......Page 542
Genome size also evolves......Page 544
Most new functions arise following gene duplication......Page 546
Some gene families evolve through concerted evolution......Page 548
Molecular sequence data are used to determine the evolutionary history of genes......Page 549
In vitro evolution is used to produce new molecules......Page 550
Molecular evolution is used to study and combat diseases......Page 551
Chapter Summary......Page 552
Chapter Review......Page 553
Chapter 25 The History of Life on Earth......Page 555
25.1 How Do Scientists Date Ancient Events?......Page 556
Radiometric dating methods have been expanded and refined......Page 557
25.2 How Have Earth’s Continents and Climates Changed over Time?......Page 558
The continents have not always been where they are today......Page 559
Volcanoes have occasionally changed the history of life......Page 560
Oxygen concentrations in Earth’s atmosphere have changed over time......Page 561
Several processes contribute to the paucity of fossils......Page 564
Precambrian life was small and aquatic......Page 565
Life expanded rapidly during the Cambrian period......Page 566
Modern biotas evolved during the Cenozoic era......Page 571
The tree of life is used to reconstruct evolutionary events......Page 572
Chapter Review......Page 573
Chapter 26 Bacteria, Archaea, and Viruses......Page 575
The two prokaryotic domains differ in significant ways......Page 576
The small size of prokaryotes has hindered our study of their evolutionary relationships......Page 577
The nucleotide sequences of prokaryotes reveal their evolutionary relationships......Page 578
Lateral gene transfer can lead to discordant gene trees......Page 579
The low-GC Gram-positives include some of the smallest cellular organisms......Page 580
Cyanobacteria were the first photosynthesizers......Page 582
Chlamydias are extremely small parasites......Page 583
Gene sequencing enabled biologists to differentiate the domain Archaea......Page 584
Euryarchaeotes are found in surprising places......Page 586
26.3 How Do Prokaryotes Affect Their Environments?......Page 587
Prokaryotes play important roles in element cycling......Page 588
Microbiomes are critical to human health......Page 589
A small minority of bacteria are pathogens......Page 591
26.4 How Do Viruses Relate to Life’s Diversity and Ecology?......Page 593
Some DNA viruses may have evolved from reduced cellular organisms......Page 594
Viruses can be used to fight bacterial infections......Page 595
Viruses are found throughout the biosphere......Page 596
Chapter Review......Page 597
Chapter 27 The Origin and Diversifi cation of Eukaryotes......Page 599
The modern eukaryotic cell arose in several steps......Page 600
Chloroplasts have been transferred among eukaryotes several times......Page 601
27.2 What Features Account for Protist Diversity?......Page 602
their plasma membranes......Page 603
have two flagella of unequal length......Page 605
long, thin pseudopods......Page 607
about 1.5 billion years ago......Page 608
Amoebozoans use lobe-shaped pseudopods for locomotion......Page 609
Some protists reproduce without sex and have sex without reproduction......Page 612
Phytoplankton are primary producers......Page 613
Some microbial eukaryotes are endosymbionts......Page 614
We rely on the remains of ancient marine protists......Page 615
Chapter Review......Page 617
Chapter 28 Plants without Seeds: From Water to Land......Page 619
28.1 How Did Photosynthesis Arise in Plants?......Page 620
Several distinct clades of algae were among the first photosynthetic eukaryotes......Page 621
Two groups of green algae are the closest relatives of land plants......Page 622
There are ten major groups of land plants......Page 623
Life cycles of land plants feature alternation of generations......Page 624
Nonvascular land plants live where water is readily available......Page 625
Water and sugar transport mechanisms emerged in the mosses......Page 627
Hornworts have distinctive chloroplasts and stalkless sporophytes......Page 628
Vascular tissues transport water and dissolved materials......Page 629
The closest relatives of vascular plants lacked roots......Page 630
The lycophytes are sister to the other vascular plants......Page 631
The vascular plants branched out......Page 632
Heterospory appeared among the vascular plants......Page 634
Chapter Review......Page 636
Chapter 29 The Evolution of Seed Plants......Page 638
Features of the seed plant life cycle protect gametes and embryos......Page 639
A change in stem anatomy enabled seed plants to grow to great heights......Page 641
There are four major groups of living gymnosperms......Page 642
Conifers have cones and no swimming sperm......Page 643
Angiosperms have many shared derived traits......Page 646
Flower structure has evolved over time......Page 647
Angiosperms have coevolved with animals......Page 648
The angiosperm life cycle produces diploid zygotes nourished by triploid endosperms......Page 650
Recent analyses have revealed the phylogenetic relationships of angiosperms......Page 651
Seed plants have been sources of medicine since ancient times......Page 654
Seed plants are our primary food source......Page 655
Chapter Review......Page 656
Chapter 30 The Evolution and Diversity of Fungi......Page 658
Unicellular yeasts absorb nutrients directly......Page 659
Fungi are in intimate contact with their environment......Page 660
Saprobic fungi are critical to the planetary carbon cycle......Page 661
Mutualistic fungi engage in relationships that benefit both partners......Page 662
Endophytic fungi protect some plants from pathogens, herbivores, and stress......Page 665
Fungi reproduce both sexually and asexually......Page 666
Most chytrids are aquatic......Page 667
Arbuscular mycorrhizal fungi form symbioses with plants......Page 669
The sexual reproductive structure of sac fungi is the ascus......Page 670
The sexual reproductive structure of club fungi is the basidium......Page 672
Fungi are important in producing food and drink......Page 673
Fungi are used as model organisms in laboratory studies......Page 674
Fungi provide important weapons against diseases and pests......Page 676
Chapter Summary......Page 677
Chapter Review......Page 678
Chapter 31 Animal Origins and the Evolution of Body Plans......Page 679
Animal monophyly is supported by gene sequences and morphology......Page 680
A few basic developmental patterns differentiate major animal groups......Page 683
31.2 What Are the Features of Animal Body Plans?......Page 684
The structure of the body cavity influences movement......Page 685
Segmentation improves control of movement......Page 686
Herbivores eat plants......Page 687
Parasites live in or on other organisms......Page 688
Detritivores live on the remains of other organisms......Page 689
Some animals form colonies of genetically identical, physiologically integrated individuals......Page 690
No life cycle can maximize all benefits......Page 691
Sponges are loosely organized animals......Page 693
Ctenophores are radially symmetrical and diploblastic......Page 694
Placozoans are abundant but rarely observed......Page 695
Some small groups of parasitic animals may be the closest relatives of bilaterians......Page 698
Chapter Summary......Page 699
Chapter Review......Page 700
Chapter 32 Protostome Animals......Page 701
Cilia-bearing lophophores and trochophores evolved among the lophotrochozoans......Page 702
Ecdysozoans must shed their cuticles......Page 704
Arrow worms retain some ancestral developmental features......Page 705
Most bryozoans and entoprocts live in colonies......Page 706
Brachiopods and phoronids use lophophores to extract food from the water......Page 708
Annelids have segmented bodies......Page 709
Mollusks have undergone a dramatic evolutionary radiation......Page 712
Several marine ecdysozoan groups have relatively few species......Page 715
Nematodes and their relatives are abundant and diverse......Page 716
32.4 Why Are Arthropods So Diverse?......Page 717
Chelicerates have pointed, nonchewing mouthparts......Page 718
Mandibles and antennae characterize the remaining arthropod groups......Page 719
More than half of all described species are insects......Page 721
An Overview of Protostome Evolution......Page 723
Chapter Summary......Page 725
Chapter Review......Page 726
Chapter 33 Deuterostome Animals......Page 728
Fossils shed light on deuterostome ancestors......Page 729
33.2 What Features Distinguish the Echinoderms, Hemichordates, and Their Relatives?......Page 730
Hemichordates are wormlike marine deuterostomes......Page 732
33.3 What New Features Evolved in the Chordates?......Page 733
A dorsal supporting structure replaces the notochord in vertebrates......Page 734
The phylogenetic relationships of jawless fishes are uncertain......Page 735
Fins and swim bladders improved stability and control over locomotion......Page 736
Jointed limbs enhanced support and locomotion on land......Page 739
Amphibians usually require moist environments......Page 740
Amniotes colonized dry environments......Page 742
Crocodilians and birds share their ancestry with the dinosaurs......Page 743
Feathers allowed birds to fly......Page 745
Mammals radiated after the extinction of non-avian dinosaurs......Page 746
Two major lineages of primates split late in the Cretaceous......Page 751
Bipedal locomotion evolved in human ancestors......Page 752
Human brains became larger as jaws became smaller......Page 754
Humans developed complex language and culture......Page 755
Chapter Summary......Page 756
Chapter Review......Page 757
Chapter 34 The Plant Body......Page 758
Most angiosperms are either monocots or eudicots......Page 759
Plants develop differently than animals......Page 760
Apical–basal polarity and radial symmetry are characteristics of the plant body......Page 761
34.2 What Are the Major Tissues of Plants?......Page 762
Cells of the xylem transport water and dissolved minerals......Page 764
Plants increase in size through primary and secondary growth......Page 765
The products of the root’s primary meristems become root tissues......Page 766
The root system anchors the plant and takes up water and dissolved minerals......Page 768
The products of the stem’s primary meristems become stem tissues......Page 769
Leaves are determinate organs produced by shoot apical meristems......Page 770
Many eudicot stems and roots undergo secondary growth......Page 771
34.4 How Has Domestication Altered Plant Form?......Page 773
Chapter Summary......Page 774
Chapter Review......Page 775
Chapter 35 Transport in Plants......Page 776
Water potential differences govern the direction of water movement......Page 777
Water and ions move across the root cell plasma membrane......Page 778
Water and ions pass to the xylem by way of the apoplast and symplast......Page 779
35.2 How Are Water and Minerals Transported in the Xylem?......Page 780
The transpiration–cohesion–tension mechanism accounts for xylem transport......Page 781
35.3 How Do Stomata Control the Loss of Water and the Uptake of CO2?......Page 782
The guard cells control the size of the stomatal opening......Page 783
Sucrose and other solutes are carried in the phloem......Page 784
The pressure flow model appears to account for translocation in the phloem......Page 785
Chapter Summary......Page 788
Chapter Review......Page 789
Chapter 36 Plant Nutrition......Page 790
All plants require specific macronutrients and micronutrients......Page 791
Hydroponic experiments identified essential elements......Page 792
Plants rely on growth to find nutrients......Page 793
Nutrient uptake and assimilation are regulated......Page 794
Soils form through the weathering of rock......Page 795
Fertilizers can be used to add nutrients to soil......Page 796
Plants send signals for colonization......Page 797
Mycorrhizae expand the root system......Page 798
Nitrogenase catalyzes nitrogen fixation......Page 799
Biological nitrogen fixation does not always meet agricultural needs......Page 800
Carnivorous plants supplement their mineral nutrition......Page 801
Parasitic plants take advantage of other plants......Page 802
Chapter Summary......Page 803
Chapter Review......Page 804
Chapter 37 Regulation of Plant Growth......Page 806
In early development, the seed germinates and forms a growing seedling......Page 807
Several hormones and photoreceptors help regulate plant growth......Page 808
Genetic screens have increased our understanding of plant signal transduction......Page 809
37.2 What Do Gibberellins and Auxin Do?......Page 810
Auxin plays a role in differential plant growth......Page 812
Auxin affects plant growth in several ways......Page 815
At the molecular level, auxin and gibberellins act similarly......Page 817
Cytokinins are active from seed to senescence......Page 818
Ethylene is a gaseous hormone that hastens leaf senescence and fruit ripening......Page 819
Phototropins, cryptochromes, and zeaxanthin are blue-light receptors......Page 821
Phytochromes mediate the effects of red and far-red light......Page 822
Phytochrome stimulates gene transcription......Page 823
Circadian rhythms are entrained by light reception......Page 824
Chapter Summary......Page 825
Chapter Review......Page 826
Chapter 38 Reproduction in Flowering Plants......Page 828
The flower is an angiosperm’s structure for sexual reproduction......Page 829
A pollen tube delivers sperm cells to the embryo sac......Page 830
Many flowering plants control pollination or pollen tube growth to prevent inbreeding......Page 832
Angiosperms perform double fertilization......Page 833
Embryos develop within seeds contained in fruits......Page 834
Shoot apical meristems can become inflorescence meristems......Page 835
A cascade of gene expression leads to flowering......Page 836
Photoperiodic cues can initiate flowering......Page 837
The flowering stimulus originates in a leaf......Page 838
Flowering can be induced by temperature or gibberellin......Page 840
Many forms of asexual reproduction exist......Page 842
Vegetative reproduction has a disadvantage......Page 843
Chapter Summary......Page 844
Chapter Review......Page 845
Chapter 39 Plant Responses to Environmental Challenges......Page 847
Plants can seal off infected parts to limit damage......Page 848
General and specific immunity both involve multiple responses......Page 849
Specific immunity usually leads to the hypersensitive response......Page 850
Mechanical defenses against herbivores are widespread......Page 851
Plants produce constitutive chemical defenses against herbivores......Page 852
Plants respond to herbivory with induced defenses......Page 853
Why don’t plants poison themselves?......Page 855
Some plants have special adaptations to live in very dry conditions......Page 856
Some plants grow in saturated soils......Page 858
Plants can respond to drought stress......Page 859
39.4 How Do Plants Deal with Salt and Heavy Metals?......Page 860
Most halophytes accumulate salt......Page 861
Chapter Summary......Page 862
Chapter Review......Page 863
Chapter 40 Physiology, Homeostasis, and Temperature Regulation......Page 865
Physiological systems are regulated to maintain homeostasis......Page 866
Epithelial tissues are sheets of densely packed, tightly connected cells......Page 867
Connective tissues include bone, blood, and fat......Page 868
Neural tissues include neurons and glial cells......Page 869
40.3 How Does Temperature Affect Living Systems?......Page 870
Animals acclimatize to seasonal temperatures......Page 871
Endotherms produce substantial amounts of metabolic heat......Page 872
Energy budgets reflect adaptations for regulating body temperature......Page 873
Both ectotherms and endotherms control blood flow to the skin......Page 874
Some ectotherms regulate metabolic heat production......Page 875
Basal metabolic rates correlate with body size......Page 876
Endotherms respond to cold by producing heat and adapt to cold by reducing heat loss......Page 877
The mammalian thermostat uses feedback information......Page 879
Fever helps the body fight infections......Page 880
Chapter Review......Page 882
Chapter 41 Animal Hormones......Page 884
Endocrine signaling can act locally or at a distance......Page 885
Hormone action is mediated by receptors on or within their target cells......Page 886
Hormone action depends on the nature of the target cell and its receptors......Page 887
The first hormone discovered was the gut hormone secretin......Page 888
Early experiments on insects illuminated hormonal signaling systems......Page 889
Three hormones regulate molting and maturation in arthropods......Page 890
The pituitary is an interface between the nervous and endocrine systems......Page 892
Negative feedback loops regulate hormone secretion......Page 894
41.4 What Are the Major Endocrine Glands and Hormones?......Page 895
Three hormones regulate blood calcium concentrations......Page 897
Insulin and glucagon regulate blood glucose concentrations......Page 898
The adrenal gland is two glands in one......Page 899
Sex steroids are produced by the gonads......Page 900
Many chemicals may act as hormones......Page 901
Hormones can be detected and measured with immunoassays......Page 902
A hormone can act through many receptors......Page 903
Chapter Summary......Page 904
Chapter Review......Page 905
Chapter 42 Immunology: Animal Defense Systems......Page 906
Blood and lymph tissues play important roles in defense......Page 907
Immune system proteins bind pathogens or signal other cells......Page 908
Barriers and local agents defend the body against invaders......Page 909
Specialized proteins and cells participate in innate immunity......Page 910
Inflammation is a coordinated response to infection or injury......Page 911
Adaptive immunity has four key features......Page 912
Two types of adaptive immune responses interact: an overview......Page 913
Adaptive immunity develops as a result of clonal selection......Page 915
Vaccines are an application of immunological memory......Page 916
Different antibodies share a common structure......Page 917
There are five classes of immunoglobulins......Page 918
The constant region is involved in immunoglobulin class switching......Page 919
T cell receptors bind to antigens on cell surfaces......Page 921
T-helper cells and MHC II proteins contribute to the humoral immune response......Page 922
MHC proteins are important in tissue transplants......Page 924
Allergic reactions result from hypersensitivity......Page 925
AIDS is an immune deficiency disorder......Page 926
Chapter Summary......Page 928
Chapter Review......Page 929
Chapter 43 Animal Reproduction......Page 930
Budding and regeneration produce new individuals by mitosis......Page 931
Gametogenesis produces eggs and sperm......Page 932
Fertilization is the union of sperm and egg......Page 934
Some individuals can function as both male and female......Page 937
The evolution of vertebrate reproductive systems parallels the move to land......Page 938
Male sex organs produce and deliver semen......Page 939
Male sexual function is controlled by hormones......Page 942
The ovarian cycle produces a mature egg......Page 943
Hormones control and coordinate the ovarian and uterine cycles......Page 944
FSH receptors determine which follicle ovulates......Page 945
Childbirth is triggered by hormonal and mechanical stimuli......Page 946
Reproductive technologies help solve problems of infertility......Page 947
Chapter Summary......Page 950
Chapter Review......Page 951
Chapter 44 Animal Development......Page 952
Rearrangements of egg cytoplasm set the stage for determination......Page 953
Cleavage repackages the cytoplasm......Page 954
Early cell divisions in mammals are unique......Page 955
Specific blastomeres generate specific tissues and organs......Page 956
44.3 How Does Gastrulation Generate Multiple Tissue Layers?......Page 958
Gastrulation in the frog begins at the gray crescent......Page 959
The dorsal lip of the blastopore organizes embryo formation......Page 960
Transcription factors and growth factors underlie the organizer’s actions......Page 961
The organizer changes its activity as it migrates from the dorsal lip......Page 962
Reptilian and avian gastrulation is an adaptation to yolky eggs......Page 963
The embryos of placental mammals lack yolk......Page 964
The stage is set by the dorsal lip of the blastopore......Page 965
Hox genes control development along the anterior–posterior axis......Page 966
Extraembryonic membranes form with contributions from all germ layers......Page 968
44.6 What Are the Stages of Human Development?......Page 969
Organ systems grow and mature during the second and third trimesters......Page 970
Chapter Summary......Page 971
Chapter Review......Page 972
Chapter 45 Neurons, Glia, and Nervous Systems......Page 974
The structure of neurons reflects their functions......Page 975
Glia are the “silent partners” of neurons......Page 976
Simple electrical concepts underlie neural function......Page 977
Ion transporters and channels generate membrane potentials......Page 978
Ion channels and their properties can now be studied directly......Page 979
Gated ion channels alter membrane potential......Page 980
Graded changes in membrane potential can integrate information......Page 982
Action potentials are conducted along axons without loss of signal......Page 984
Action potentials jump along myelinated axons......Page 985
The postsynaptic membrane responds to neurotransmitter......Page 986
The postsynaptic cell sums excitatory and inhibitory input......Page 988
The action of a neurotransmitter depends on the receptor to which it binds......Page 989
Nervous systems range in complexity......Page 990
The knee-jerk reflex is controlled by a simple neural network......Page 991
The vertebrate brain is the seat of behavioral complexity......Page 993
Chapter Summary......Page 994
Chapter Review......Page 995
Chapter 46 Sensory Systems......Page 996
Sensory receptor proteins act on ion channels......Page 997
Many receptors adapt to repeated stimulation......Page 998
Olfaction is the sense of smell......Page 999
Some chemoreceptors detect pheromones......Page 1000
Gustation is the sense of taste......Page 1001
Mechanoreceptors are also found in muscles, tendons, and ligaments......Page 1002
Hair cells are mechanoreceptors of the auditory and vestibular systems......Page 1003
Auditory systems use hair cells to sense sound waves......Page 1004
Flexion of the basilar membrane is perceived as sound......Page 1005
Various types of damage can result in hearing loss......Page 1006
46.4 How Do Sensory Systems Detect Light?......Page 1007
Invertebrates have a variety of visual systems......Page 1008
The vertebrate retina receives and processes visual information......Page 1009
Rod and cone cells are the photoreceptors of the vertebrate retina......Page 1010
Information flows through layers of neurons in the retina......Page 1012
Chapter Summary......Page 1014
Chapter Review......Page 1015
Chapter 47 The Mammalian Nervous System: Structure and Higher Functions......Page 1017
Functional organization is based on flow and type of information......Page 1018
The brainstem carries out many autonomic functions......Page 1019
Regions of the telencephalon interact to control behavior and produce consciousness......Page 1020
47.2 How Is Information Processed by Neural Networks?......Page 1023
Pathways of the autonomic nervous system control involuntary physiological functions......Page 1024
The visual system is an example of information integration by the cerebral cortex......Page 1025
Three-dimensional vision results from cortical cells receiving input from both eyes......Page 1027
Sleep and dreaming are reflected in electrical patterns in the cerebral cortex......Page 1028
Language abilities are localized in the left cerebral hemisphere......Page 1030
Some learning and memory can be localized to specific brain areas......Page 1031
Chapter Summary......Page 1033
Chapter Review......Page 1034
Chapter 48 Musculoskeletal Systems......Page 1036
Sliding filaments cause skeletal muscle to contract......Page 1037
Actin–myosin interactions cause filaments to slide......Page 1038
Actin–myosin interactions are controlled by calcium ions......Page 1039
Cardiac muscle is similar to and different from skeletal muscle......Page 1041
Smooth muscle causes slow contractions of many internal organs......Page 1043
48.2 What Determines Skeletal Muscle Performance?......Page 1044
Muscle fiber types determine endurance and strength......Page 1045
Exercise increases muscle strength and endurance......Page 1046
Insect muscle has the greatest rate of cycling......Page 1047
Vertebrate endoskeletons consist of cartilage and bone......Page 1049
Bones that have a common joint can work as a lever......Page 1051
Chapter Summary......Page 1053
Chapter Review......Page 1054
Chapter 49 Gas Exchange......Page 1055
Diffusion of gases is driven by partial pressure differences......Page 1056
O2 availability decreases with altitude......Page 1057
CO2 is lost by diffusion......Page 1058
Fish gills use countercurrent flow to maximize gas exchange......Page 1059
Birds use unidirectional ventilation to maximize gas exchange......Page 1060
Tidal ventilation produces dead space that limits gas exchange efficiency......Page 1062
Respiratory tract secretions aid ventilation......Page 1063
Lungs are ventilated by pressure changes in the thoracic cavity......Page 1065
Hemoglobin combines reversibly with O2......Page 1066
Hemoglobin’s affinity for O2 is variable......Page 1067
CO2 is transported as bicarbonate ions in the blood......Page 1068
Breathing is controlled in the brainstem......Page 1069
Regulating breathing requires feedback......Page 1070
Chapter Summary......Page 1072
Chapter Review......Page 1073
Chapter 50 Circulatory Systems......Page 1075
Circulatory systems can be open or closed......Page 1076
50.2 How Have Vertebrate Circulatory Systems Evolved?......Page 1077
Circulation in fish is a single circuit......Page 1078
Reptiles have exquisite control of pulmonary and systemic circulation......Page 1079
Blood flows from right heart to lungs to left heart to body......Page 1080
The heartbeat originates in the cardiac muscle......Page 1082
A conduction system coordinates the contraction of heart muscle......Page 1084
The ECG records the electrical activity of the heart......Page 1085
50.4 What Are the Properties of Blood and Blood Vessels?......Page 1087
Red blood cells transport respiratory gases......Page 1088
Materials are exchanged in capillary beds by filtration, osmosis, and diffusion......Page 1089
Blood flows back to the heart through veins......Page 1091
Vascular disease is a killer......Page 1092
50.5 How Is the Circulatory System Controlled and Regulated?......Page 1093
Autoregulation matches local blood flow to local need......Page 1094
Chapter Summary......Page 1096
Chapter Review......Page 1097
Chapter 51 Nutrition, Digestion, and Absorption......Page 1098
Energy needs and expenditures can be measured......Page 1099
Sources of energy can be stored in the body......Page 1100
Food provides carbon skeletons for biosynthesis......Page 1101
Animals need mineral elements for a variety of functions......Page 1102
Animals must obtain vitamins from food......Page 1103
The food of herbivores is often low in energy and hard to digest......Page 1104
Carnivores must find, capture, and kill prey......Page 1105
Tubular guts have an opening at each end......Page 1106
Digestive enzymes break down complex food molecules......Page 1107
The vertebrate gut consists of concentric tissue layers......Page 1108
Mechanical activity moves food through the gut and aids digestion......Page 1109
Chemical digestion begins in the mouth and the stomach......Page 1110
Most chemical digestion occurs in the small intestine......Page 1111
Herbivores rely on microorganisms to digest cellulose......Page 1113
51.4 How Is the Flow of Nutrients Controlled and Regulated?......Page 1114
The liver directs the traffic of the molecules that fuel metabolism......Page 1115
The brain plays a major role in regulating food intake......Page 1117
Chapter Summary......Page 1119
Chapter Review......Page 1120
Chapter 52 Salt and Water Balance and Nitrogen Excretion......Page 1121
Excretory systems control extracellular fluid osmolarity and composition......Page 1122
Vertebrates are osmoregulators and ionic regulators......Page 1123
Animals excrete nitrogen in a number of forms......Page 1124
The protonephridia of flatworms excrete water and conserve salts......Page 1125
Malpighian tubules of insects use active transport to excrete wastes......Page 1126
Terrestrial amphibians and reptiles must avoid desiccation......Page 1127
Blood is filtered into Bowman’s capsule......Page 1128
52.5 How Does the Mammalian Kidney Produce Concentrated Urine?......Page 1129
Kidneys produce urine and the bladder stores it......Page 1130
Nephrons have a regular arrangement in the kidney......Page 1131
Most of the glomerular filtrate is reabsorbed by the proximal convoluted tubule......Page 1132
The kidneys help regulate acid–base balance......Page 1134
Kidney failure is treated with dialysis......Page 1135
Regulation of GFR uses feedback information from the distal tubule......Page 1137
Blood osmolarity and blood pressure are regulated by ADH......Page 1138
The heart produces a hormone that helps lower blood pressure......Page 1140
Chapter Summary......Page 1141
Chapter Review......Page 1142
Chapter 53 Animal Behavior......Page 1143
Ethologists focused on the behavior of animals in their natural environment......Page 1144
Ethologists probed the causes of behavior......Page 1145
Breeding experiments can produce behavioral phenotypes......Page 1146
Behaviors are controlled by gene cascades......Page 1147
Hormones can determine behavioral potential and timing......Page 1148
Birdsong learning involves genetics, imprinting, and hormonal timing......Page 1149
The timing and expression of birdsong are under hormonal control......Page 1151
53.4 How Does Behavior Evolve?......Page 1152
Behaviors have costs and benefits......Page 1153
Cost–benefit analysis can be applied to foraging behavior......Page 1154
Biological rhythms coordinate behavior with environmental cycles......Page 1156
Animals must find their way around their environment......Page 1159
Animals use multiple modalities to communicate......Page 1160
53.6 How Does Social Behavior Evolve?......Page 1163
Fitness can include more than your own offspring......Page 1164
Eusociality is the extreme result of kin selection......Page 1165
Can the concepts of sociobiology be applied to humans?......Page 1166
Chapter Summary......Page 1168
Chapter Review......Page 1169
Chapter 54 Ecology and the Distribution of Life......Page 1171
Ecologists study biotic and abiotic components of ecosystems......Page 1172
Solar radiation varies over Earth’s surface......Page 1173
Atmospheric circulation and Earth’s rotation result in prevailing winds......Page 1174
Organisms adapt to climatic challenges......Page 1175
54.3 How Is Life Distributed in Terrestrial Environments?......Page 1176
Tundra is found at high latitudes and high elevations......Page 1178
Evergreen trees dominate boreal and temperate evergreen forests......Page 1179
Temperate deciduous forests change with the seasons......Page 1180
Temperate grasslands are widespread......Page 1181
Hot deserts form around 30° latitude......Page 1182
Cold deserts are high and dry......Page 1183
Chaparral has hot, dry summers and wet, cool winters......Page 1184
Thorn forests and tropical savannas have similar climates......Page 1185
Tropical deciduous forests occur in hot lowlands......Page 1186
Tropical rainforests are rich in species......Page 1187
The marine biome can be divided into several life zones......Page 1189
Freshwater biomes may be rich in species......Page 1190
54.5 What Factors Determine the Boundaries of Biogeographic Regions?......Page 1191
Two scientific advances changed the field of biogeography......Page 1192
Discontinuous distributions may result from vicariant or dispersal events......Page 1193
Humans exert a powerful influence on biogeographic patterns......Page 1195
Chapter Summary......Page 1196
Chapter Review......Page 1197
Chapter 55 Population Ecology......Page 1199
Ecologists use a variety of approaches to count and track individuals......Page 1200
A population’s age structure influences its capacity to grow......Page 1201
A population’s dispersion pattern reflects how individuals are distributed in space......Page 1202
Demographic events determine the size of a population......Page 1203
Life tables track demographic events......Page 1204
Survivorship curves reflect life history strategies......Page 1205
Survivorship and fecundity determine a population’s growth rate......Page 1206
Life history traits are influenced by interspecific interactions......Page 1207
Logistic growth occurs as a population approaches its carrying capacity......Page 1208
Several ecological factors explain species’ characteristic population densities......Page 1209
Some newly introduced species reach high population densities......Page 1210
Many populations live in separated habitat patches......Page 1211
Corridors may allow subpopulations to persist......Page 1212
Management plans must be guided by the principles of population dynamics......Page 1213
Human population growth has been exponential......Page 1214
Chapter Summary......Page 1216
Chapter Review......Page 1217
Chapter 56 Species Interactions and Coevolution......Page 1219
Interactions among species can be grouped into several categories......Page 1220
Interaction types are not always clear-cut......Page 1221
Predator–prey interactions result in a range of adaptations......Page 1222
Herbivory is a widespread interaction......Page 1225
Parasite–host interactions may be pathogenic......Page 1226
56.3 How Do Mutualistic Interactions Evolve?......Page 1227
Some mutualistic partners exchange food or housing for defense......Page 1228
Plants and pollinators exchange food for pollen transport......Page 1230
Plants and frugivores exchange food for seed transport......Page 1231
Competition is widespread because all species share resources......Page 1232
Exploitation competition may lead to coexistence......Page 1233
Competition may determine a species’ niche......Page 1234
Chapter Summary......Page 1235
Chapter Review......Page 1236
Chapter 57 Community Ecology......Page 1238
Energy enters communities through primary producers......Page 1239
Fewer individuals and less biomass can be supported at higher trophic levels......Page 1240
Productivity and species diversity are linked......Page 1242
57.2 How Do Interactions among Species Influence Communities?......Page 1243
Keystone species have disproportionate effects on their communities......Page 1244
Diversity comprises both the number and the relative abundance of species......Page 1245
The theory of island biogeography suggests that immigration and extinction rates determine diversity on islands......Page 1246
Succession is the predictable pattern of change in a community after a disturbance......Page 1249
Both facilitation and inhibition influence succession......Page 1251
Diversity, productivity, and stability differ between natural and managed communities......Page 1252
Chapter Summary......Page 1254
Chapter Review......Page 1255
Chapter 58 Ecosystems and Global Ecology......Page 1257
The geographic distribution of energy flow is uneven......Page 1258
58.2 How Do Materials Move through the Global Ecosystem?......Page 1260
Elements move between biotic and abiotic compartments of ecosystems......Page 1261
Water transports elements among compartments......Page 1263
58.3 How Do Specific Nutrients Cycle through the Global Ecosystem?......Page 1264
Water cycles rapidly through the ecosystem......Page 1265
The carbon cycle has been altered by human activities......Page 1266
The nitrogen cycle depends on both biotic and abiotic processes......Page 1268
The burning of fossil fuels affects the sulfur cycle......Page 1269
The global phosphorus cycle lacks a significant atmospheric component......Page 1270
Biogeochemical cycles interact......Page 1271
58.4 What Goods and Services Do Ecosystems Provide?......Page 1273
58.5 How Can Ecosystems Be Sustainably Managed?......Page 1274
Chapter Summary......Page 1275
Chapter Review......Page 1276
Chapter 59 Biodiversity and Conservation Biology......Page 1278
Conservation biology aims to protect and manage biodiversity......Page 1279
Our knowledge of biodiversity is incomplete......Page 1280
We can predict the effects of human activities on biodiversity......Page 1281
59.3 What Human Activities Threaten Species Persistence?......Page 1282
Habitat losses endanger species......Page 1283
Overexploitation has driven many species to extinction......Page 1284
Invasive predators, competitors, and pathogens threaten many species......Page 1285
Rapid climate change can cause species extinctions......Page 1286
Protected areas preserve habitat and prevent overexploitation......Page 1287
Disturbance patterns sometimes need to be restored......Page 1289
Ending trade is crucial to saving some species......Page 1290
Species invasions must be controlled or prevented......Page 1291
Changes in human-dominated landscapes can help protect biodiversity......Page 1293
Earth is not a ship, a spaceship, or an airplane......Page 1294
Chapter Review......Page 1296
Appendix A The Tree of Life......Page 1298
Step 1: Experimental Design......Page 1305
Step 3: Organize and Visualize the Data......Page 1306
Step 4: Summarize the Data......Page 1308
Step 5: Inferential Statistics......Page 1309
Appendix C Some Measurements Used in Biology......Page 1314
Answers to Chapter Review Questions......Page 1315
Glossary......Page 1333
Illustration Credits......Page 1375
Index......Page 1381
Back Endpapers: Online Resources......Page 1445




نظرات کاربران