دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Eskin G.
سری: GSM123
ISBN (شابک) : 9780821852842
ناشر: AMS
سال نشر: 2011
تعداد صفحات: 432
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Lectures on linear partial differential equations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سخنرانی در مورد معادلات دیفرانسیل جزئی خطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover S Title Lectures on Linear Partial Differential Equations, GSM 123 Copyright © 2011 by the American Mathematical Society ISBN 978-0-8218-5284-2 QA372.E78 2011 515\'.3533-dc22 LCCN 2010048243 Dedicated to Michael Eskin Contents Preface Acknowledgments Chapter I Theory of Distributions Introduction to Chapters I, II, III 1. Spaces of infinitely differentiable functions 1.1. Properties of the convolution 1.2. Approximation by Col-functions. 1.3. Proof of Proposition 1.1. 1.4. Proof of property b) of the convolution 2. Definition of a distribution 2.1. Examples of distributions 2.2. Regular functionals. 2.3. Distributions in a domain 3. Operations with distributions 3.1. Derivative of a distribution 3.2. Multiplication of a distribution by a C°°-function 3.3. Change of variables for distributions. 4. Convergence of distributions 4.1. Delta-like sequences 5. Regularizations of nonintegrable functions 5.1. Regularization in R^1. 5.2. Regularization in R^n. 6. Supports of distributions 6.1. General form of a distribution with support at 0. 6.2. Distributions with compact supports 7. The convolution of distributions 7.1. Convolution of f in D\' and $\\phi$ in Co 7.2. Convolution of f in D\' and g in E\'. 7.3. Direct product of distributions 7.4. Partial hypoellipticity 8. Problems Chapter II Fourier Transforms 9. Tempered distributions 9.1. General form of a tempered distribution. 10. Fourier transforms of tempered distributions 10.1. Fourier transforms of functions in S. 10.2. Fourier transform of tempered distributi 10.3. Generalization of Liouville\'s theorem 11. Fourier transforms of distributions with compact supports 12. Fourier transforms of convolutions 13. Sobolev spaces 13.1. Density of Co (R^n) in Hs (R^n). 13.2. Multiplication by a(x) in S. 13.3. Sobolev\'s embedding theorem 13.4. An equivalent norm for noninteger 13.5. Restrictions to hyperplanes (traces) 13.6. Duality of Sobolev spaces. 13.7. Invariance of Hs(R^n) under changes of variables 14. Singular supports and wave front sets of distributions 14.1. Products of distributions 14.2. Restrictions of distributions to a surface 15. Problems Chapter III Applications of Distributions to Partial Differential Equations 16. Partial differential equations with constant coefficients 16.1. The heat equation 16.2. The Schrodinger equation 16.3. The wave equation 16.4. Fundamental solutions for the wave equations 16.5. The Laplace equation 16.6. The reduced wave equation 16.7. Faddeev\'s fundamental solutions for (-\\Delta - k^2). 17. Existence of a fundamental solution 18. Hypoelliptic equations 18.1. Characterization of hypoelliptic polynomials 18.2. Examples of hypoelliptic operators 19. The radiation conditions 19.1. The Helmholtz equation in R^3. 19.2. Radiation conditions 19.3. The stationary phase lemma 19.4. Radiation conditions for n > 2. 19.5. The limiting amplitude principle 20. Single and double layer potentials 20.1. Limiting values of double layers potentials 20.2. Limiting values of normal derivatives of single layer potentials 21. Problems Chapter IV Second Order Elliptic Equations in Bounded Domains Introduction to Chapter IV 22. Sobolev spaces in domains with smooth boundaries 22.1. The spaces Hs(\\Omega) and Hs(\\Omega). 22.2. Equivalent norm in Hm(\\Omega) . 22.3. The density of Co in Hs(\\Omega). 22.4. Restrictions to $\\partial$\\Omega 22.5. Duality of Sobolev spaces in \\Omega 23. Dirichlet problem for second order elliptic PDEs 23.1. The main inequality 23.2. Uniqueness and existence theorem in H1(\\Omega). 23.3. Nonhomogeneous Dirichlet problem 24. Regularity of solutions for elliptic equations 24.1. Interior regularity 24.2. Boundary regularity 25. Variational approach. The Neumann problem 25.1. Weak solution of the Neumann problem 25.2. Regularity of weak solution of the Neumann problem 26. Boundary value problems with distribution boundary data 26.1. Partial hypoellipticity property of elliptic equations 26.2. Applications to nonhomogeneous Dirichlet and Neumann problems 27. Variational inequalities 27.1. Minimization of a quadratic functional on a convex set 27.2. Characterization of the minimum point 28. Problems Chapter V Scattering Theory Introduction to Chapter V 29. Agmon\'s estimates 30. Nonhomogeneous Schrodinger equation 30.1. The case of q(x) 30.2. Asymptotic behavior of outgoing solutions (the case of q(x) 30.3. The case of q(x) 31. The uniqueness of outgoing solutions 31.1. Absence of discrete spectrum for k^2 > 0. 31.2. Existence of outgoing fundamental solution (the case of q(x) 32. The limiting absorption principle 33. The scattering problem 33.1. The scattering problem (the case of q(x) = 33.2. Inverse scattering problem (the case of q(x) = 33.3. The scattering problem (the case of q(x) 33.4. Generalized distorted plane waves. 33.5. Generalized scattering amplitude 34. Inverse boundary value problem 34.1. Electrical impedance tomography 35. Equivalence of inverse BVP and inverse scattering 36. Scattering by obstacles 36.1. The case of the Neumann conditions. 36.2. Inverse obstacle problem 37. Inverse scattering at a fixed energy 37.1. Relation between the scattering amplitude and the Faddeev\'s scattering amplitudes 37.2. Analytic continuation of Tr 37.3. The limiting values of T, and Faddeev\'s scattering amplitude. 37.4. Final step: The recovery of q(x). 38. Inverse backscattering 38.1. The case of real-valued potentials 39. Problems Chapter VI Pseudo differential Operators Introduction to Chapter VI 40. Boundedness and composition of $\\psi$do\'s 40.1. The boundedness theorem 40.2. Composition of $\\psi$do\'s 41. Elliptic operators and parametrices 41.1. Parametrix for a strongly elliptic operator. 41.2. The existence and uniqueness theorem. 41.3. Elliptic regularity. 42. Compactness and the Fredholm property 42.1. Compact operators 42.2. Fredholm operators 42.3. Fredholm elliptic operators in R^n 43. The adjoint of a pseudo differential operator 43.1. A general form of $\\psi$do\'s 43.2. The adjoint operator 43.3. Weyl\'s $\\psi$do\'s 44. Pseudolocal property and microlocal regularity 44.1. The Schwartz kernel 44.2. Pseudolocal property of $\\psi$do\'s. 44.3. Microlocal regularity 45. Change-of-variables formula for $\\psi$do\'s 46. The Cauchy problem for parabolic equations 46.1. Parabolic $\\psi$do\'s. 46.2. The Cauchy problem with zero initial conditions 46.3. The Cauchy problem with nonzero initial conditions 47. The heat kernel 47.1. Solving the Cauchy problem by Fourier-Laplace transform 47.2. Asymptotics of the heat kernel as t--> +0. 48. The Cauchy problem for strictly hyperbolic equations 48.1. The main estimate. 48.2. Uniqueness and parabolic regularization 48.3. The Cauchy problem on a finite time interval 48.4. Strictly hyperbolic equations of second order. 49. Domain of dependence 50. Propagation of singularities 50.1. The null-bicharacteristics 50.2. Operators of real principal type 50.3. Propagation of singularities for operators of real principal type. 50.4. Propagation of singularities in the case of a hyperbolic Cauchy problem 51. Problems Chapter VII Elliptic Boundary Value Problems and Parametrices Introduction to Chapter VII 52. Pseudo differential operators on a manifold 52.1. Manifolds and vector bundles 52.2. Definition of a pseudo differential operator on a manifold 53. Boundary value problems in the half-space 53.1. Factorization of an elliptic symbol 53.2. Explicit solution of the boundary value problem 54. Elliptic boundary value problems in a bounded domain 54.1. The method of \"freezing\" coefficients 54.2. The Fredholm property 54.3. Invariant form of the ellipticity of boundary conditions 54.4. Boundary value problems for elliptic systems of differential equations 55. Parametrices for elliptic boundary value problems 55.1. Plus-operators and minus-operators 55.2. Construction of the parametrix in the half-space 55.3. Parametrix in a bounded domain 56. The heat trace asymptotics 56.1. The existence and the estimates of the resolvent 56.2. The parametrix construction 56.3. The heat trace for the Dirichlet Laplacian 56.4. The heat trace for the Neumann Laplacian 56.5. The heat trace for the elliptic operator of an arbitrary order 57. Parametrix for the Dirichlet-to-Neumann operator 57.1. Construction of the parametrix 57.2. Determination of the metric on the boundary 58. Spectral theory of elliptic operators 58.1. The nonselfadjoint case. 58.2. Trace class operators 58.3. The selfadjoint case 58.4. The case of a compact manifold. 59. The index of elliptic operators in R^n 59.1. Properties of Fredholm operators. 59.2. Index of an elliptic $\\psi$do. 59.3. Fredholm elliptic $\\psi$do\'s in R^n 59.4. Elements of K-theory. 59.5. Proof of the index theorem. 60. Problems Chapter VIII Fourier Integral Operators Introduction to Chapter VIII 61. Boundedness of Fourier integral operators (FIO\'s) 61.1. The definition of a FIO. 61.2. The boundedness of FIO\'s. 61.3. Canonical transformations 62. Operations with Fourier integral operators 62.1. The stationary phase lemma 62.2. Composition of a Odo and a FIO. 62.3. Elliptic FIO\'s 62.4. Egorov\'s theorem 63. The wave front set of Fourier integral operators 64. Parametrix for the hyperbolic Cauchy problem 64.1. Asymptotic expansion 64.2. Solution of the eikonal equation 64.3. Solution of the transport equation 64.4. Propagation of singularities 65. Global Fourier integral operators 65.1. Lagrangian manifolds 65.2. FIO\'s with nondegenerate phase functions 65.3. Local coordinates for a graph of a canonical transformation 65.4. Definition of a global FIO. 65.5. Construction of a global FIO given a global canonical transformation 65.6. Composition of global FIO\'s 65.7. Conjugation by a global FIO and the boundedness theorem 66. Geometric optics at large 66.1. Generating functions and the Legendre transforms 66.2. Asymptotic solutions 66.3. The Maslov index. 67. Oblique derivative problem 67.1. Reduction to the boundary 67.2. Formulation of the oblique derivative problem 67.3. Model problem 67.4. First order differential equations with symbols depending on x\'. 67.5. The boundary value problem on $\\partial$\\Omega 68. Problems Bibliography Index Back Cover