ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Layered 2D Materials And Their Allied Application

دانلود کتاب مواد دو لایه و کاربرد متقابل آنها

Layered 2D Materials And Their Allied Application

مشخصات کتاب

Layered 2D Materials And Their Allied Application

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781119655206, 111965520X 
ناشر: John Wiley 
سال نشر: 2020 
تعداد صفحات: 394 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Layered 2D Materials And Their Allied Application به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد دو لایه و کاربرد متقابل آنها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface xv 1 2D Metal-Organic Frameworks 1Fengxian Cao, Jian Chen, Qixun Xia and Xinglai Zhang 1.1 Introduction 1 1.2 Synthesis Approaches 2 1.2.1 Selection of Synthetic Raw Materials 3 1.2.2 Solvent Volatility Method 4 1.2.3 Diffusion Method 4 1.2.3.1 Gas Phase Diffusion 4 1.2.3.2 Liquid Phase Diffusion 4 1.2.4 Sol-Gel Method 5 1.2.5 Hydrothermal/Solvothermal Synthesis Method 6 1.2.6 Stripping Method 6 1.2.7 Microwave Synthesis Method 8 1.2.8 Self-Assembly 9 1.2.9 Special Interface Synthesis Method 9 1.2.10 Surfactant-Assisted Synthesis Method 10 1.2.11 Ultrasonic Synthesis 10 1.3 Structures, Properties, and Applications 11 1.3.1 Structure and Properties of MOFs 11 1.3.2 Application in Biomedicine 12 1.3.3 Application in Gas Storage 12 1.3.4 Application in Sensors 13 1.3.5 Application in Chemical Separation 13 1.3.6 Application in Catalysis 14 1.3.7 Application in Gas Adsorption 14 1.4 Summary and Outlook 15 Acknowledgements 16 References 16 2 2D Black Phosphorus 21Chenguang Duan, Hui Qiao, Zongyut Huang and Xiang Qi 2.1 Introduction 22 2.2 The Research on Black Phosphorus 23 2.2.1 The Structure and Properties 23 2.2.1.1 The Structure of Black Phosphorus 25 2.2.1.2 The Properties of Black Phosphorus 25 2.2.2 Preparation Methods 26 2.2.2.1 Mechanical Exfoliation 28 2.2.2.2 Liquid-Phase Exfoliation 28 2.2.3 Antioxidant 30 2.2.3.1 Degradation Mechanism 30 2.2.3.2 Adding Protective Layer 31 2.2.3.3 Chemical Modification 31 2.2.3.4 Doping 33 2.3 Applications of Black Phosphorus 33 2.3.1 Electronic and Optoelectronic 34 2.3.1.1 Field-Effect Transistors 34 2.3.1.2 Photodetector 35 2.3.2 Energy Storage and Conversion 36 2.3.2.1 Catalysis 36 2.3.2.2 Batteries 37 2.3.2.3 Supercapacitor 38 2.3.3 Biomedical 39 2.4 Conclusion and Outlook 40 Acknowledgements 41 References 41 3 2D Metal Carbides 47Peiran Hou, Xinxin Fu, Qixun Xia and Zhengpeng Yang 3.1 Introduction 47 3.2 Synthesis Approaches 48 3.2.1 Ti3C2 Synthesis 48 3.2.2 V2C Synthesis 50 3.2.3 Ti2C Synthesis 50 3.2.4 Mo2C Synthesis 51 3.3 Structures, Properties, and Applications 52 3.3.1 Structures and Properties of 2D Metal Carbides 52 3.3.1.1 Structures and Properties of Ti3C2 52 3.3.1.2 Structural Properties of Ti2C 53 3.3.1.3 Structural Properties of Mo2C 53 3.3.1.4 Structural Properties of V2C 54 3.3.2 Carbide Materials in Energy Storage Applications 55 3.3.2.1 Ti3C2 56 3.3.2.2 Ti2C 57 3.3.2.3 V2C 58 3.3.2.4 Mo2C 58 3.3.3 Metal Carbide Materials in Catalysis Applications 60 3.3.3.1 Ti3C2 60 3.3.3.2 V2C 61 3.3.3.3 Mo2C 62 3.3.4 Metal Carbide Materials in Environmental Management Applications 63 3.3.4.1 Ti3C2 in Environmental Management Applications 63 3.3.4.2 Ti2C in Environmental Management Applications 64 3.3.4.3 V2C in Environmental Management Applications 64 3.3.4.4 Mo2C in Environmental Management Applications 65 3.3.5 Carbide Materials in Biomedicine Applications 66 3.3.5.1 Ti3C2 in Biomedicine Applications 66 3.3.5.2 Ti2C in Biomedicine Applications 66 3.3.5.3 V2C in Biomedicine Applications 68 3.3.5.4 Mo2C in Biomedicine Applications 68 3.3.6 Carbide Materials in Gas Sensing Applications 69 3.3.6.1 Ti3C2 in Gas Sensing Applications 69 3.3.6.2 Ti2C in Gas Sensing Applications 69 3.3.6.3 V2C in Gas Sensing Applications 70 3.3.6.4 Mo2C in Gas Sensing Applications 71 3.4 Summary and Outlook 72 Acknowledgements 72 References 73 4 2D Carbon Materials as Photocatalysts 79Amel Boudjemaa 4.1 Introduction 79 4.2 Carbon Nanostructured-Based Materials 80 4.2.1 Forms of Carbon 80 4.2.2 Synthesis of Carbon Nanostructured-Based Materials 80 4.3 Photo-Degradation of Organic Pollutants 81 4.3.1 Graphene, Graphene Oxide, Graphene Nitride (g-C3N4) 81 4.3.1.1 Graphene-Based Materials 82 4.3.1.2 Graphene Nitride (g-C3N4) 84 4.3.2 Carbon Dots (CDs) 87 4.3.3 Carbon Spheres (CSs) 87 4.4 Carbon-Based Materials for Hydrogen Production 88 4.5 Carbon-Based Materials for CO2 Reduction 90 References 90 5 Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS2 and MXene 103Sarika Pal, Narendra Pal, Y.K. Prajapati and J.P. Saini 5.1 Introduction 104 5.2 Proposed SPR Sensor, Design Considerations, and Modeling 107 5.2.1 SPR Sensor and Its Sensing Principle 107 5.2.2 Design Consideration 108 5.2.2.1 Layer 1: Prism for Light Coupling 108 5.2.2.2 Layer 2: Metal Layer 109 5.2.2.3 Layer 3: BlueP/MoS2 Layer 110 5.2.2.4 Layer 4: MXene (Ti3C2Tx) Layer as BRE for Biosensing 110 5.2.2.5 Layer 5: Sensing Medium (RI-1.33-1.335) 110 5.2.3 Proposed Sensor Modeling 110 5.3 Results Discussion 112 5.3.1 Role of Monolayer BlueP/MoS2 and MXene (Ti3C2Tx) and Its Comparison With Conventional SPR 112 5.3.2 Influence of Varying Heterostructure Layers for Proposed Design 114 5.3.3 Effect of Changing Prism Material and Metal on Performance of Proposed Design 115 5.4 Conclusion 125 References 125 6 2D Perovskite Materials and Their Device Applications 131B. Venkata Shiva Reddy, K. Srinivas, N. Suresh Kumar, S. Ramesh, K. Chandra Babu Naidu, Prasun Banerjee, Ramyakrishna Pothu and Rajender Boddula 6.1 Introduction 131 6.2 Structure 134 6.2.1 Crystal Structure 134 6.2.2 Electronic Structure of 2D Perovskites 134 6.2.3 Structure of Photovoltaic Cell 135 6.3 Discussion and Applications 136 6.4 Conclusion 139 References 139 7 Introduction and Significant Parameters for Layered Materials 141Umbreen Rasheed, Fayyaz Hussain, Muhammad Imran, R.M. Arif Khalil and Sungjun Kim 7.1 Graphene 143 7.2 Phosphorene 147 7.3 Silicene 148 7.4 ZnO 150 7.5 Transition Metal Dichalcogenides (TMDCs) 151 7.6 Germanene and Stanene 152 7.7 Heterostructures 153 References 156 8 Increment in Photocatalytic Activity of g-C3N4 Coupled Sulphides and Oxides for Environmental Remediation 159Pankaj Raizada, Abhinadan Kumar and Pardeep Singh 8.1 Introduction 160 8.2 GCN Coupled Metal Sulphide Heterojunctions for Environment Remediation 163 8.2.1 GCN and MoS2-Based Photocatalysts 163 8.2.2 GCN and CdS-Based Heterojunctions 168 8.2.3 Some Other GCN Coupled Metal Sulphide Photocatalysts 171 8.3 GCN Coupled Metal Oxide Heterojunctions for Environment Remediation 173 8.3.1 GCN and MoO3-Based Heterojunctions 177 8.3.2 GCN and Fe2O3-Based Heterojunctions 179 8.3.3 Some Other GCN Coupled Metal Oxide Photocatalysts 180 8.4 Conclusions and Outlook 181 References 181 9 2D Zeolites 193Moumita Sardar, Manisha Maharana, Madhumita Manna and Sujit Sen 9.1 Introduction 193 9.1.1 What is 2D Zeolite? 195 9.1.2 Advancement in Zeolites to 2D Zeolite 196 9.2 Synthetic Method 197 9.2.1 Bottom-Up Method 197 9.2.2 Top-Down Method 198 9.2.3 Support-Assisted Method 199 9.2.4 Post-Synthesis Modification of 2D Zeolites 200 9.3 Properties 200 9.4 Applications 203 9.4.1 Petro-Chemistry 203 9.4.2 Biomass Conversion 203 9.4.2.1 Pyrolysis of Solid Biomass 203 9.4.2.2 Condensation Reactions 204 9.4.2.3 Isomerization 204 9.4.2.4 Dehydration Reactions 204 9.4.3 Oxidation Reactions 205 9.4.4 Fine Chemical Synthesis 206 9.4.5 Organometallics 206 9.5 Conclusion 206 References 207 10 2D Hollow Nanomaterials 211S.S. Athira, V. Akhil, X. Joseph , J. Ashtami and P.V. Mohanan 10.1 Introduction 212 10.2 Structural Aspects of HNMs 213 10.3 Synthetic Approaches 214 10.3.1 Template-Based Strategies 215 10.3.1.1 Hard Templating 215 10.3.1.2 Soft Templating 217 10.3.2 Self-Templating Strategies 218 10.3.2.1 Surface Protected Etching 219 10.3.2.2 Ostwald Ripening 219 10.3.2.3 Kirkendall Effect 219 10.3.2.4 Galvanic Replacement 220 10.4 Medical Applications of HNMs 220 10.4.1 Imaging and Diagnosis Applications 221 10.4.2 Applications of Nanotube Arrays 222 10.4.2.1 Pharmacy and Medicine 224 10.4.2.2 Cancer Therapy 224 10.4.2.3 Immuno and Hyperthermia Therapy 226 10.4.2.4 Infection Therapy and Gene Therapy 226 10.4.3 Hollow Nanomaterials in Diagnostics and Therapeutics 227 10.4.4 Applications in Regenerative Medicine 227 10.4.5 Anti-Neurodegenerative Applications 228 10.4.6 Photothermal Therapy 229 10.4.7 Biosensors 230 10.5 Non-Medical Applications of HNMs 231 10.5.1 Catalytic Micro or Nanoreactors 231 10.5.2 Energy Storage 232 10.5.2.1 Lithium Ion Battery 232 10.5.2.2 Supercapacitor 232 10.5.3 Nanosensors 233 10.5.4 Wastewater Treatment 234 10.6 Toxicity of 2D HNMs 234 10.7 Future Challenges 237 10.8 Conclusion 239 Acknowledgement 240 References 240 11 2D Layered Double Hydroxides 249J. Ashtami, X. Joseph, V. Akhil , S.S. Athira and P.V. Mohanan 11.1 Introduction 250 11.2 Structural Aspects 251 11.3 Synthesis of LDHs 252 11.3.1 Co-Precipitation Method 253 11.3.2 Urea Hydrolysis 254 11.3.3 Ion-Exchange Method 254 11.3.4 Reconstruction Method 254 11.3.5 Hydrothermal Method 255 11.3.6 Sol-Gel Method 255 11.4 Nonmedical Applications of LDH 255 11.4.1 Adsorbent 255 11.4.2 Catalyst 257 11.4.3 Sensors 260 11.4.4 Electrode 261 11.4.5 Polymer Additive 261 11.4.6 Anion Scavenger 262 11.4.7 Flame Retardant 263 11.5 Biomedical Applications 263 11.5.1 Biosensors 263 11.5.2 Scaffolds 265 11.5.3 Anti-Microbial Agents 266 11.5.4 Drug Delivery 267 11.5.5 Imaging 269 11.5.6 Protein Purification 269 11.5.7 Gene Delivery 270 11.6 Toxicity 272 11.7 Conclusion 273 Acknowledgement 274 References 274 12 Experimental Techniques for Layered Materials 283Tariq Munir, Arslan Mahmood, Muhammad Imran, Muhammad Kashif, Amjad Sohail, Zeeshan Yaqoob, Aleena Manzoor and Fahad Shafiq 12.1 Introduction 284 12.2 Methods for Synthesis of Graphene Layered Materials 285 12.3 Selection of a Suitable Metallic Substrate 287 12.4 Graphene Synthesis by HFTCVD 287 12.5 Graphene Transfer 289 12.6 Characterization Techniques 291 12.6.1 X-Ray Diffraction Technique 291 12.6.2 Field Emission Scanning Electron Microscopy (FESEM) 292 12.6.3 Transmission Electron Microscopy (TEM) 293 12.6.4 Fourier Transform Infrared Radiation (FTIR) 294 12.6.5 UV-Visible Spectroscopy 295 12.6.6 Raman Spectroscopy 295 12.6.7 Low Energy Electron Microscopy (LEEM) 296 12.7 Potential Applications of Graphene and Derived Materials 297 12.8 Conclusion 298 Acknowledgement 298 References 299 13 Two-Dimensional Hexagonal Boron Nitride and Borophenes 303Atif Suhail and Indranil Lahiri 13.1 Two-Dimensional Hexagonal Boron Nitride (2D h-BN): An Introduction 304 13.2 Properties of 2D h-BN 305 13.2.1 Structural Properties 305 13.2.2 Electronic and Dielectric Properties 306 13.2.3 Optical Properties 307 13.3 Synthesis Methods of 2D h-BN 308 13.3.1 Mechanical Exfoliation 309 13.3.2 Liquid Exfoliation 310 13.3.3 Chemical Vapor Deposition (CVD) 310 13.3.3.1 Synthesis Parameters 312 13.3.3.2 Growth Mechanism 313 13.3.3.3 Transfer of 2D h-BN Onto Other Substrates 314 13.3.4 Physical Vapor Deposition Method (PVD) 315 13.3.5 Surface Segregation Method 316 13.4 Application of 2D h-BN 317 13.4.1 2D h-BN in Electronic Manufacturing 318 13.4.2 2D h-BN as a Filler in Polymer Composites 319 13.4.3 2D h-BN as a Protective Barrier 320 13.4.4 2D h-BN in Optoelectronics 321 13.5 Borophene 323 13.5.1 Theoretical Investigation and Experimental Synthesis 324 13.5.2 Properties and Application of Borophene 326 13.5.2.1 Electronic Properties of Borophene 326 13.5.2.2 Chemical Properties 326 13.5.3 Potential Applications of Borophene 328 References 328 14 Transition-Metal Dichalcogenides for Photoelectrochemical Hydrogen Evolution Reaction 337Rozan Mohamad Yunus, Mohd Nur Ikhmal Salehmin and Nurul Nabila Rosman 14.1 Introduction 337 14.2 TMDC-Based Photoactive Materials for HER 339 14.2.1 MoS2 339 14.2.2 MoSe2 341 14.2.3 WS2 341 14.2.4 CoSe2 342 14.2.5 FeS2 343 14.2.6 NiSe2 344 14.3 TMDCs Fabrication Methods 345 14.3.1 Hydrothermal 345 14.3.2 Chemical Vapor Deposition/Vapor Phase Growth Process 346 14.3.3 Metal-Organic Chemical Vapor Deposition (MOCVD) 347 14.3.4 Atomic Layer Deposition (ALD) 348 14.4 Current Photocatalytic Activity Performance 350 14.5 Summary and Perspective 351 References 352 15 State-of-the-Art and Perspective of Layered Materials 363Tariq Munir, Muhammad Kashif, Aamir Shahzad, Nadeem Nasir, Muhammad Imran, Nabeel Anjum and Arslan Mahmood 15.1 Introduction 363 15.2 State-of-the-Art and Future Perspective 364 15.2.1 Electronic Devices 365 15.2.2 Optoelectronic Devices 369 15.2.3 Energy Storage Devices 372 15.3 Conclusion 374 References 374 Index 379




نظرات کاربران