ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Laboratory Methods in Dynamic Electroanalysis

دانلود کتاب روشهای آزمایشگاهی در الکتروآنالیز دینامیکی

Laboratory Methods in Dynamic Electroanalysis

مشخصات کتاب

Laboratory Methods in Dynamic Electroanalysis

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0128159324, 9780128159323 
ناشر: Elsevier 
سال نشر: 2019 
تعداد صفحات: 368 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 مگابایت 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Laboratory Methods in Dynamic Electroanalysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روشهای آزمایشگاهی در الکتروآنالیز دینامیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب روشهای آزمایشگاهی در الکتروآنالیز دینامیکی



روشهای آزمایشگاهی در الکتروآنالیز دینامیکی راهنمای مفیدی برای معرفی شیمیدانان تحلیلی به دنیای الکتروآنالیز با استفاده از روشهای ساده و کم هزینه است. از آنجایی که دستگاه های الکتروتحلیلی از سلول های الکتروشیمیایی معمولی (10-20 میلی لیتر) به سلول های فعلی (1-5 متر لیتر) با مواد مختلف مانند کاغذ منتقل شده اند، استراتژی های جالبی مانند نانوساختار الکترودها، سلول های میکروسیال و سنجش زیستی پدیدار شده اند. این کتاب روش‌های دقیق و به‌روز برای الکتروآنالیز ارائه می‌کند و روندهای اصلی در سلول‌ها و الکترودهای الکتروشیمیایی، از جمله الکترودهای میکروسیال، دستگاه‌های الکتروشیمیایی مبتنی بر کاغذ، الکتروفورز ریزتراشه با تشخیص الکتروشیمیایی یکپارچه، نانوساختار الکترودها و نانوذرات به عنوان برچسب در سنجش‌های زیستی را پوشش می‌دهد. و بیوسنینگ الکتروشیمیایی. تکنیک‌ها و استراتژی‌ها به روشی آسان برای درک، آموزشی، مبتنی بر تمرین ارائه می‌شوند و کتاب‌شناسی منابع اطلاعاتی بیشتری را در اختیار خوانندگان قرار می‌دهد.


توضیحاتی درمورد کتاب به خارجی

Laboratory Methods in Dynamic Electroanalysis is a useful guide to introduce analytical chemists to the world of electroanalysis using simple, low-cost methods. As electroanalytical devices have moved from conventional electrochemical cells (10-20 mL) to current cells (1-5 m L) with different materials such as paper, interesting strategies have emerged, such as nanostructuration of electrodes, microfluidic cells, and biosensing. This book provides detailed, up-to-date procedures for electroanalysis and covers the main trends in electrochemical cells and electrodes, including microfluidic electrodes, paper-based electrochemical devices, microchip electrophoresis with integrated electrochemical detection, nanostructuration of electrodes and nanoparticles as labels in bioassays, and electrochemical biosensing. Techniques and strategies are presented in an easy-to-understand, didactic, practice-based way, and a bibliography provides readers with additional sources of information.



فهرست مطالب

Cover
Laboratory Methods in Dynamic Electroanalysis
Copyright
Dedication
Contributors
Preface
Acknowledgments
1 -
Dynamic electroanalysis: an overview
	1.1 Dynamic electroanalysis
	1.2 Additional notes
	References
Part I:  Dynamic electroanalytical techniques
2 -
Determination of ascorbic acid in dietary supplements by cyclic voltammetry
	2.1 Background
	2.2 Electrochemical cell
	2.3 Chemicals and supplies
	2.4 Hazards
	2.5 Experimental procedure
		2.5.1 Preparation of solutions
		2.5.2 Characterization of the redox processes
			2.5.2.1 Redox process of ascorbic acid
			2.5.2.2 Scan rate study
			2.5.2.3 pH study
			2.5.2.4 Redox process of gallic acid
		2.5.3 Calibration curve of ascorbic acid
		2.5.4 Determination of ascorbic acid in a dietary supplement
	2.6 Lab report
	2.7 Additional notes
	2.8 Assessment and discussion questions
	References
3 -
Electrochemical behavior of the redox probe hexaammineruthenium(III) ([Ru(NH3)6]3+) using voltammetric techniques
	3.1 Background
	3.2 Electrochemical cell
	3.3 Chemicals and supplies
	3.4 Hazards
	3.5 Experimental procedure
		3.5.1 Preparation of solutions
		3.5.2 Analytical signal and calibration curve obtained by cyclic voltammetry
		3.5.3 Calibration curve obtained by differential pulse voltammetry
		3.5.4 Calibration curve obtained by square wave voltammetry
	3.6 Lab report
	3.7 Additional notes
	3.8 Assessment and discussion questions
	References
4 -
Anodic stripping voltammetric determination of lead and cadmium with stencil-printed transparency electrodes
	4.1 Background
	4.2 Electrochemical cell design
	4.3 Chemicals and supplies
	4.4 Hazards
	4.5 Experimental procedure
		4.5.1 Solutions and sample preparation
		4.5.2 Fabrication of the electrochemical cell
		4.5.3 Electrochemical characterization of the electrodes using hexaammineruthenium(III)
		4.5.4 Quantitation of the amount of lead and cadmium deposited on the electrode surface
		4.5.5 Bismuth effect on lead and cadmium stripping currents
		4.5.6 Analytical features of the sensor
		4.5.7 Selectivity assessment
		4.5.8 Determination of lead and cadmium in water samples
	4.6 Lab report
	4.7 Additional notes
	4.8 Assessment and discussion questions
	References
5 -
Adsorptive stripping voltammetry of indigo blue in a flow system
	5.1 Background
	5.2 Chemicals and supplies
	5.3 Hazards
	5.4 Flow injection analysis electrochemical system
	5.5 Experimental procedures
		5.5.1 Enzyme-linked immunosorbent assay procedure
		5.5.2 Flow procedure and voltammetric detection
		5.5.3 Electrochemical behavior of indigo
		5.5.4 Calibration curve of IL-10
	5.6 Lab report
	5.7 Additional notes
	5.8 Assessment and discussion questions
	References
6 -
Enhancing electrochemical performance by using redox cycling with interdigitated electrodes
	6.1 Background
	6.2 Chemicals and supplies
	6.3 Hazards
	6.4 Electrochemical system setup
	6.5 Experimental procedure
		6.5.1 Electrode precleaning
		6.5.2 Electrochemical measurements
		6.5.3 Electrochemical behavior of redox systems by cyclic voltammetry
		6.5.4 Interdigitated array microelectrodes performance by cyclic voltammetry
	6.6 Lab report
	6.7 Additional notes
	6.8 Assessment and discussion questions
	References
7 -
Amperometric detection of NADH using carbon-based electrodes
	7.1 Background
	7.2 Chemicals and supplies
	7.3 Hazards
	7.4 Experimental procedure
		7.4.1 Preparation of solutions
		7.4.2 Direct unmediated oxidation of NADH on graphite electrodes
		7.4.3 Mediated oxidation of NADH
		7.4.4 Amperometric measurement of NADH
	7.5 Lab report
	7.6 Additional notes
	7.7 Assessment and discussion questions
	References
8 -
Chronoamperometric determination of ascorbic acid on paper-based devices
	8.1 Background
	8.2 Electrochemical cell design
	8.3 Chemicals and supplies
	8.4 Hazards
	8.5 Experimental procedure
		8.5.1 Fabrication of the electrochemical cell
		8.5.2 Choice of the potential step by cyclic voltammetry
		8.5.3 Calibration curve with chronoamperometric readout
		8.5.4 Determination of ascorbic acid in fruit juices
	8.6 Lab report
	8.7 Additional notes
	8.8 Assessment and discussion questions
	References
9 -
Electrochemical detection of melatonin in a flow injection analysis system
	9.1 Background
	9.2 Electrochemical thin-layer cell
	9.3 Flow injection analysis system
	9.4 Chemicals and supplies
	9.5 Hazards
	9.6 Experimental procedure
		9.6.1 Preparation of solutions
		9.6.2 Cyclic voltammetric measurements
			9.6.2.1 Redox processes of melatonin
			9.6.2.2 Scan rate study
		9.6.3 Flow injection analysis with amperometric detection
			9.6.3.1 Hydrodynamic curve
			9.6.3.2 Effect of the flow rate
			9.6.3.3 Precision studies
			9.6.3.4 Calibration curve
			9.6.3.5 Sample preparation and measurement
	9.7 Lab report
	9.8 Additional notes
	9.9 Assessment and discussion questions
	References
10 -
Batch injection analysis for amperometric determination of ascorbic acid at ruthenium dioxide screen-printed electrodes
	10.1 Background
	10.2 Chemicals and supplies
	10.3 Hazards
	10.4 Experimental procedure
		10.4.1 Preparation of the BIA cell
		10.4.2 Preparation of the electronic micropipette
		10.4.3 Optimization of parameters that affect the analytical signal
			10.4.3.1 Optimization of the potential of detection (hydrodynamic curve)
			10.4.3.2 Optimization of speed and volume of injection
			10.4.3.3 Effect of stirrer speed
		10.4.4 Calibration plot of ascorbic acid
		10.4.5 Interference evaluation
		10.4.6 Determination of ascorbic acid in orange juices
	10.5 Lab report
	10.6 Additional notes
	10.7 Assessment and discussion questions
	References
11 -
Impedimetric aptasensor for determination of the antibiotic neomycin B
	11.1 Background
	11.2 Chemicals and supplies
	11.3 Hazards
	11.4 Experimental procedure
		11.4.1 Electrode cleaning and pretreatment
		11.4.2 Sensing phase preparation
			11.4.2.1 Formation of mercaptopropionic acid self-assembled monolayer on the gold surface
			11.4.2.2 Covalent binding of neomycin B to the mercaptopropionic acid self-assembled monolayer
			11.4.2.3 Immobilization of the antineomycin receptor on the antibiotic-modified electrode surface
		11.4.3 Sensing phase evaluation
		11.4.4 Displacement assay
		11.4.5 Data collection and analysis
		11.4.6 Regeneration of the sensing phase
		11.4.7 Selectivity evaluation
	11.5 Lab report
	11.6 Additional notes
	11.7 Assessment and discussion questions
	References
12 -
Electrochemical impedance spectroscopy for characterization of electrode surfaces: carbon nanotubes on gold electrodes
	12.1 Background
	12.2 Electrochemical cell
	12.3 Chemicals and supplies
	12.4 Hazards
	12.5 Electrochemical procedure
		12.5.1 Modification of electrodes
		12.5.2 Cyclic voltammetry and electrochemical impedance spectroscopy measurements
	12.6 Lab report
	12.7 Additional notes
	12.8 Assessment and discussion questions
	References
Part II: Electroanalysis and microfluidics
13 -
Single- and dual-channel hybrid PDMS/glass microchip electrophoresis device with amperometric detection
	13.1 Background
	13.2 Chemicals and supplies
	13.3 Microchip fabrication
	13.4 Microchip designs
	13.5 Electrochemical detector design
	13.6 Hazards
	13.7 Experimental procedure
		13.7.1 Electrophoretic separation in a single-channel microchip
		13.7.2 Electrochemical detection in a dual-channel microchip
	13.8 Lab report
	13.9 Additional notes
	13.10 Assessment and discussion questions
	References
14 -
Analysis of uric acid and related compounds in urine samples by electrophoresis in microfluidic chips
	14.1 Background
	14.2 Electrophoresis system setup
	14.3 Chemicals and supplies
	14.4 Hazards
	14.5 Experimental procedure
		14.5.1 Preparation of solutions
		14.5.2 Sample preparation
		14.5.3 Electrophoretic procedure
			14.5.3.1 Microchip pretreatment
			14.5.3.2 Baseline stabilization
			14.5.3.3 Unpinched injection
			14.5.3.4 Separation and detection
		14.5.4 General electrophoretic behavior
			14.5.4.1 Buffer solution
			14.5.4.2 Electrochemical detection
			14.5.4.3 Separation and injection performance
		14.5.5 Analytical parameters
		14.5.6 Real sample analysis
	14.6 Lab report
	14.7 Additional notes
	14.8 Assessment and discussion questions
	References
15 -
Microchannel modifications in microchip reverse electrophoresis for ferrocene carboxylic acid determination
	15.1 Background
	15.2 Electrophoresis microchip
	15.3 Chemicals and supplies
	15.4 Hazards
	15.5 Experimental procedure
		15.5.1 Solutions and sample preparation
		15.5.2 Dynamic coating of microchannels
		15.5.3 Electrophoresis and electrochemical detection
		15.5.4 Evaluation of the detection potential
		15.5.5 Calibration curve
	15.6 Lab report
	15.7 Additional notes
	15.8 Assessment and discussion questions
	References
16 -
Integrated microfluidic electrochemical sensors to enhance automated flow analysis systems
	16.1 Background
	16.2 Flow injection analysis system setup
	16.3 Chemicals and supplies
	16.4 Hazards
	16.5 Experimental procedure
		16.5.1 Electrochemical procedures
			16.5.1.1 Electrode precleaning
			16.5.1.2 Amperometric measurements
		16.5.2 Influence of the electrode material, carrier solution, and detection potential
		16.5.3 Analytical parameters
		16.5.4 Comparison of flow injection analysis systems: wall-jet versus microfluidic thin-layer flow cells
		16.5.5 Paracetamol determination
			16.5.5.1 Sample preparation
			16.5.5.2 Sample measurement
	16.6 Lab report
	16.7 Additional notes
	16.8 Assessment and discussion questions
	References
17 -
Bienzymatic amperometric glucose biosensor
	17.1 Background
	17.2 Electrochemical setup
	17.3 Chemicals and supplies
	17.4 Hazards
	17.5 Experimental procedure
		17.5.1 Electrochemical study of ferrocene behavior
		17.5.2 Construction of the amperometric glucose sensor. Evaluation of its analytical performance
		17.5.3 Determination of glucose in real food samples
	17.6 Lab report
	17.7 Additional notes
	17.8 Assessment and discussion questions
	References
Part
III: Bioelectroanalysis
18 -
Determination of ethyl alcohol in beverages using an electrochemical enzymatic sensor
	18.1 Background
	18.2 Electrochemical setup
	18.3 Chemicals and supplies
	18.4 Hazards
	18.5 Experimental procedure
		18.5.1 Electrocatalytic detection of NADH on carbon paste electrodes modified with 2,8-dioxoadenosine
		18.5.2 Construction of an amperometric ethanol sensor. Evaluation of its analytical performance
		18.5.3 Determination of ethanol content in beer
	18.6 Lab report
	18.7 Additional notes
	18.8 Assessment and discussion questions
	References
19 -
Enzymatic determination of ethanol on screen-printed cobalt phthalocyanine/carbon electrodes
	19.1 Background
	19.2 Electrochemical cell
	19.3 Chemical and supplies
	19.4 Hazards
	19.5 Experimental procedure
		19.5.1 Solutions and sample preparation
		19.5.2 Construction of the sensor
		19.5.3 Electrochemical measurements
		19.5.4 Optimization of the biosensor
		19.5.5 Calibration and determination of ethanol in alcoholic beverages
	19.6 Lab report
	19.7 Additional notes
	19.8 Assessment and discussion questions
	References
20 -
Immunoelectroanalytical assay based on the electrocatalytic effect of gold labels on silver electrodeposition
	20.1 Background
	20.2 Electrochemical cells
	20.3 Chemicals and supplies
		20.2.1 Chemicals:
	20.4 Hazards
	20.5 Experimental procedures
		20.5.1 Labeling of anti-HSA with sodium aurothiomalate
		20.5.2 Electrode pretreatment
		20.5.3 Recording of the analytical signal
		20.5.4 Immunoassays
		20.5.4.1 Noncompetitive immunoassay
		20.5.4.2 Competitive immunoassay
	20.6 Lab report
	20.7 Additional notes
	20.8 Assessment and discussion questions
	References
21 -
Genosensor on gold films with enzymatic electrochemical detection of a SARS virus sequence
	21.1 Background
	21.2 Electrochemical cell
	21.3 Chemicals and supplies
	21.4 Hazards
	21.5 Experimental procedures
		21.5.1 Construction of the electrochemical cell
		21.5.2 Gold sputtering
		21.5.3 Hybridization assay
		21.5.4 Electrochemical measurement
		21.5.5 Effect of evaporation
		21.5.6 Surface blocking
		21.5.7 Analytical characteristics
	21.6 Lab report
	21.7 Additional notes
	21.8 Assessment and discussion questions
	References
22 -
Aptamer-based magnetoassay for gluten determination
	22.1 Background
	22.2 Chemical and supplies
	22.3 Hazards
	22.4 Experimental procedure
		22.4.1 Modification of streptavidin-coated magnetic microbeads with 33-mer peptide
		22.4.2 Competitive binding assay
		22.4.3 Enzymatic reaction and electrochemical detection
		22.4.4 Data collection and analysis
	22.5 Lab report
	22.6 Additional notes
	22.7 Assessment and discussion questions
	References
Part IV: Nanomaterials and electroanalysis
23.-
Determination of lead with electrodes nanostructured with gold nanoparticles
	23.1 Background
	23.2 Electrochemical cell
	23.3 Chemicals and supplies
	23.4 Hazards
	23.5 Experimental procedure
		23.5.1 Solutions and sample preparation
		23.5.2 Nanostructuration of the electrochemical cell
		23.5.3 Electrochemical measurements
		23.5.4 Identification of the underpotential deposition process
		23.5.5 Calibration curve
		23.5.6 Determination of lead in water samples
	23.6 Lab report
	23.7 Additional notes
	23.8 Assessment and discussion questions
	References
24 -
Electrochemical behavior of the dye methylene blue on screen-printed gold electrodes modified with carbon nanotubes
	24.1 Background
	24.2 Screen-printed gold electrodes
	24.3 Chemicals and supplies
	24.4 Hazards
	24.5 Experimental procedure
		24.5.1 Solutions and sample preparation
		24.5.2 Nanostructuration of screen-printed gold electrodes
			24.5.2.1 Dispersion of carbon nanotubes
			24.5.2.2 Nanostructuration of screen-printed gold electrodes
		24.5.3 Electrochemical behavior of methylene blue on AuSPEs and MWCNTs-AuSPEs
		24.5.4 Accumulation of methylene blue on MWCNTs-AuSPEs
		24.5.5 Optimization of the nanostructuration
			24.5.5.1 Ratio of carbon nanotube dispersion/water
			24.5.5.2 Volume of drop of carbon naotube dispersion
			24.5.5.3 Time and temperature of the nanostructuration step
		24.5.6 Calibration curve
	24.6 Lab report
	24.7 Additional notes
	24.8 Assessment and discussion questions
	References
Part V: Low-cost electroanalysis
25 -
Determination of glucose with an enzymatic paper-based sensor
	25.1 Background
	25.2 Electrochemical cell design
	25.3 Chemical and supplies
	25.4 Hazards
	25.5 Experimental procedure
		25.5.1 Solutions and sample preparation
		25.5.2 Fabrication of the electrochemical cell
		25.5.3 Electrochemical measurements
		25.5.4 Study of the electrochemical behavior of ferrocyanide
		25.5.5 Construction of the biosensor and signal readout procedure
		25.5.6 Optimization of the biosensor
		25.5.7 Calibration and determination of glucose in beverages
	25.6 Lab report
	25.7 Additional notes
	25.8 Assessment and discussion questions
	References
26 -
Determination of arsenic (III) in wines with nanostructured paper-based electrodes
	26.1 Background
	26.2 Chemicals and supplies
	26.3 Hazards
	26.4 Experimental procedure
		26.4.1 Fabrication of the electrochemical cell
		26.4.2 Gold nanostructuration of the carbon paper-based electrode
		26.4.3 Electrochemical characterization of As(III) by cyclic voltammetry using nanostructured paper-based devices
		26.4.4 Calibration curve by chronoamperometric stripping and analytical features of the sensor
		26.4.5 As(III) determination in white wines
	26.5 Lab report
	26.6 Additional notes
	26.7 Assessment and discussion questions
	References
27 -
Pin-based electrochemical sensor
	27.1 Background
	27.2 Electrochemical cell design
	27.3 Chemicals and supplies
	27.4 Hazards
	27.5 Experimental procedure
		27.5.1 Solutions and sample preparation
		27.5.2 Fabrication of the electrochemical cell
		27.5.3 Evaluation of the effect of the drying time
		27.5.4 Assessment of the detection potential for glucose analysis
		27.5.5 Construction of the biosensor and calibration curve of glucose
		27.5.6 Study of the precision
		27.5.7 Interference evaluation
		27.5.8 Determination of glucose in real food samples
	27.6 Lab report
	27.7 Additional notes
	27.8 Assessment and discussion questions
	References
28 -
Flow injection electroanalysis with pins
	28.1 Background
	28.2 Flow injection analysis and electrochemical cell design
	28.3 Chemical and supplies
	28.4 Hazards
	28.5 Experimental procedure
		28.5.1 Fabrication of the electrochemical cell
		28.5.2 Solutions and sample preparation
		28.5.3 Hydrodynamic curve
		28.5.4 Evaluation of the pin-based flow injection analysis system
		28.5.5 Calibration curve and glucose determination in real beverage samples
	28.6 Lab report
	28.7 Additional notes
	28.8 Assessment and discussion questions
	References
29 -
Staple-based paper electrochemical platform for quantitative analysis
	29.1 Background
	29.2 Electrochemical setup
	29.3 Chemicals and supplies
	29.4 Hazards
	29.5 Experimental procedure
		29.5.1 Fabrication of the electrochemical platform
			29.5.1.1 Staples pretreatment
			29.5.1.2 Modification of staples with carbon ink
			29.5.1.3 Design of the electrochemical cell (PDMS holder)
			29.5.1.4 Wax-printed paper platform
		29.5.2 Study of the analytical characteristics
			29.5.2.1 Evaluation of the staple modification with carbon ink
			29.5.2.2 Reproducibility
			29.5.2.3 Calibration curve
	29.6 Lab report
	29.7 Additional notes
	29.8 Assessment and discussion questions
	References
Part VI: Multiplexed electroanalysis
30 -
Simultaneous measurements with a multiplexed platform containing eight electrochemical cells
	30.1 Background
	30.2 Electrochemical platform
	30.3 Chemical and supplies
	30.4 Hazards
	30.5 Experimental procedure
		30.5.1 Preparation of solutions
		30.5.2 Electrochemical measurements
		30.5.3 Study of the electrochemical behavior of ferrocyanide and dopamine
		30.5.4 Study of the inter- and intra-array reproducibility
		30.5.5 Simultaneous calibration of ferrocyanide and dopamine
		30.5.6 Simultaneous bioassays
	30.6 Lab report
	30.7 Additional notes
	30.8 Assessment and discussion questions
	References
31 -
Simultaneous detection of bacteria causing community-acquired pneumonia by genosensing
	31.1 Background
	31.2 Electrochemical cell design
	31.3 Chemicals and supplies
	31.4 Hazards
	31.5 Experimental procedure
		31.5.1 Preparation of solutions
		31.5.2 Surface modification of dual screen-printed carbon electrodes
		31.5.3 Hybridization reaction procedure
	31.6 Lab report
	31.7 Additional notes
	31.8 Assessment and discussion questions
	References
Part VII: Spectroelectrochemical techniques
32 -
Electrochemiluminescence of tris (1,10-phenanthroline) ruthenium(II) complex with multipulsed amperometric detection
	32.1 Background
	32.2 Chemicals and supplies
	32.3 Hazards
	32.4 Experimental procedure
		32.4.1 General setup of the equipment
		32.4.2 EC and ECL characterization of [Ru(Phen)3]2+ by CV
		32.4.3 Effect of the buffer composition on the ECL signal obtained by CV
		32.4.4 Optimization of the multipulsed amperometric detection
			32.4.4.1 Optimization of the excitation pulse potential (E2)
			32.4.4.2 Optimization of the excitation pulse width (t2)
			32.4.4.3 Optimization of the relaxation pulse potential (E1 and E3)
			32.4.4.4 Optimization of the relaxation pulse width (t1 and t3)
		32.4.5 Monitoring ECL emission (with multipulsed amperometric detection) with time
	32.5 Lab report
	32.6 Additional notes
	32.7 Assessment and discussion questions
	References
33 -
Detection of hydrogen peroxide by flow injection analysis based on electrochemiluminescence resonance energy transfer donor ...
	33.1 Background
	33.2 Chemicals and supplies
	33.3 Hazards
	33.4 Experimental procedure
		33.4.1 Preparation of the flow system to obtain ECL signals
		33.4.2 Injections of different mixtures of luminol, hydrogen peroxide, and fluorescein
		33.4.3 Optimization of concentrations of luminol and fluorescein
			33.4.3.1 Optimization of fluorescein concentration
			33.4.3.2 Optimization of luminol concentration
		33.4.4 Calibration plot for hydrogen peroxide
	33.5 Lab report
	33.6 Additional notes
	33.7 Assessment and discussion questions
	References
34 -
Determination of tris(bipyridine)ruthenium(II) based on electrochemical surface-enhanced raman scattering
	34.1 Background
		34.2 Spectroelectrochemical setup
	34.3 Chemicals and supplies
	34.4 Hazards
	34.5 Experimental procedure
		34.5.1 Raman spectra of [Ru(bpy)3]2+ on graphite and silver electrodes without electrochemical activation
		34.5.2 Raman spectra of [Ru(bpy)3]2+ on silver electrodes with electrochemical activation
		34.5.3 Calibration plot for [Ru(bpy)3]2+ through EC-SERS effect
	34.6 Lab report
	34.7 Additional notes
	34.8 Assessment and discussion questions
	References
Part VIII: General considerations
35 -
Design of experiments at electroanalysis. Application to the optimization of nanostructured electrodes for sensor development
	35.1 Background
	35.2 Electrochemical cell
	35.3 Chemicals and supplies
		Reagents and solutions
		Materials and instruments
	35.4 Hazards
	35.5 Experimental procedure
		35.5.1 Preparation of the nanostructured electrodes
		35.5.2 Design of experiments for in situ generation of gold nanoparticles
		35.5.3 Optimization of the nanostructured electrodes
		35.5.4 Determination of mercury in tap water
	35.6 Lab report
	35.7 Additional notes
		Glossary of terms
	35.8 Assessment and discussion questions
	References
36 -
Bibliographic resources in electroanalysis
	36.1 Books and monographs
	36.2 Journals
	36.3 Web resources
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
Back Cover




نظرات کاربران