دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Second completly revised and enlarged edition. نویسندگان: Guy B. Marin, Gregory S. Yablonsky, Denis Constales سری: ISBN (شابک) : 9783527342952, 3527808361 ناشر: Wiley-VCH سال نشر: 2019 تعداد صفحات: 465 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Kinetics of chemical reactions : decoding complexity به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سینتیک واکنش های شیمیایی: پیچیدگی رمزگشایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Preface to First Edition Preface to Second Edition Contents Chapter 1 Introduction 1.1 Overview 1.2 Decoding Complexity in Chemical Kinetics 1.3 Three Types of Chemical Kinetics 1.3.1 Applied Kinetics 1.3.2 Detailed Kinetics 1.3.3 Mathematical Kinetics 1.4 Challenges and Goals. How to Kill Chemical Complexity 1.4.1 "Gray-Box" Approach 1.4.2 Analysis of Kinetic Fingerprints 1.4.3 Non-steady-state Kinetic Screening 1.5 What Our Book is Not About. Our Book Among Other Books on Chemical Kinetics 1.6 The Logic in the Reasoning of This Book 1.7 How Chemical Kinetics and Mathematics are Interwoven in This Book 1.8 History of Chemical Kinetics References Chapter 2 Chemical Reactions and Complexity 2.1 Introduction 2.2 Elementary Reactions and the Mass-Action Law 2.2.1 Homogeneous Reactions 2.2.2 Heterogeneous Reactions 2.2.3 Rate Expressions 2.3 The Reaction Rate and Net Rate of Production of a Component – A Big Difference 2.4 Dimensions of the Kinetic Parameters and Their Orders of Magnitude 2.5 Conclusions Nomenclature References Chapter 3 Kinetic Experiments: Concepts and Realizations 3.1 Introduction 3.2 Experimental Requirements 3.3 Material Balances 3.4 Classification of Reactors for Kinetic Experiments 3.4.1 Steady-state and Non-steady-state Reactors 3.4.2 Transport in Reactors 3.4.3 Ideal Reactors 3.4.3.1 Batch Reactor 3.4.3.2 Continuous Stirred-tank Reactor 3.4.3.3 Plug-flow Reactor 3.4.4 Ideal Reactors with Solid Catalyst 3.4.4.1 Batch Reactor 3.4.4.2 Continuous Stirred-tank Reactor 3.4.4.3 Plug-flow Reactor 3.4.4.4 Pulse Reactor 3.4.5 Determination of the Net Rate of Production 3.5 Formal Analysis of Typical Ideal Reactors 3.5.1 Batch Reactor 3.5.1.1 Irreversible Reaction 3.5.1.2 Reversible Reaction 3.5.1.3 How to Distinguish Parallel Reactions from Consecutive Reactions 3.5.2 Steady-state Plug-flow Reactor 3.5.3 Non-steady-state Continuous Stirred-tank Reactor 3.5.3.1 Irreversible Reaction 3.5.3.2 Reversible Reaction 3.5.4 Thin-zone TAP Reactor 3.6 Kinetic-model-free Analysis 3.6.1 Steady State 3.6.2 Non-steady State 3.6.2.1 Continuous Stirred-tank Reactor 3.6.2.2 Plug-flow Reactor 3.7 Diagnostics of Kinetic Experiments in Heterogeneous Catalysis 3.7.1 Gradients at Reactor and Catalyst-pellet Scale 3.7.2 Experimental Diagnostics and Guidelines 3.7.2.1 Test for External Mass-transfer Effect 3.7.2.2 Test for Internal Mass-transport Effect 3.7.2.3 Guidelines 3.7.3 Theoretical Diagnostics 3.7.3.1 External Mass Transfer 3.7.3.2 External Heat Transfer 3.7.3.3 Internal Mass Transport 3.7.3.4 Internal Heat Transport 3.7.3.5 Non-steady-state Operation Nomenclature References Chapter 4 Chemical Book-keeping: Linear Algebra in Chemical Kinetics 4.1 Basic Elements of Linear Algebra 4.2 Linear Algebra and Complexity of Chemical Reactions 4.2.1 Atomic Composition of Chemical Components: Molecules "Consist of" Atoms 4.2.1.1 Molecular Matrix 4.2.1.2 Linear Algebra and Laws of Mass Conservation 4.2.1.3 Key Components and Their Number 4.2.2 Stoichiometry of Chemical Reactions: Reactions "Consist of" Chemical Components 4.2.2.1 Stoichiometric Matrix 4.2.2.2 Difference and Similarity Between the Conservation Law for Chemical Elements and the Kinetic Mass-Conservation Law 4.2.2.3 Similarity and Difference Between the Number of Key Components and the Number of Key Reactions 4.2.3 Detailed Mechanism of Complex Reactions: Complex Reactions "Consist of" Elementary Reactions 4.2.3.1 Mechanisms and Horiuti Numbers 4.2.3.2 Matrices and Independent Routes of Complex Reactions 4.3 Concluding Remarks 4.A Book-Keeping Support in Python/SymPy 4.A.1 Skeleton Code Generation 4.A.2 Matrix Augmentation and Reduction Nomenclature References Chapter 5 Steady-State Chemical Kinetics: A Primer 5.1 Introduction to Graph Theory 5.2 Representation of Complex Mechanisms as Graphs 5.2.1 Single-route Mechanisms 5.2.2 Single-route Mechanism with a Buffer Step 5.2.3 Two-route Mechanisms 5.2.4 Number of Independent Reaction Routes and Horiuti's Rule 5.3 How to Derive the Reaction Rate for a Complex Reaction 5.3.1 Introduction 5.3.2 Kinetic Cramer's Rule and Trees of the Chemical Graph 5.3.3 Forward and Reverse Reaction Rates 5.3.4 Single-route Linear Mechanism – General Case 5.3.5 How to Find the Kinetic Equation for the Reverse Reaction: The Horiuti–Boreskov Problem 5.3.6 What About the Overall Reaction – A Provocative Opinion 5.4 Derivation of Steady-State Kinetic Equations for a Single-Route Mechanism – Examples 5.4.1 Two-step Mechanisms 5.4.1.1 Michaelis–Menten Mechanism 5.4.1.2 Water–Gas Shift Reaction 5.4.1.3 Liquid-phase Hydrogenation 5.4.2 Three-step Mechanisms 5.4.2.1 Oxidation of Sulfur Dioxide 5.4.2.2 Coupling Reaction 5.4.3 Four-step Mechanisms 5.4.4 Five-step Mechanisms 5.4.5 Single-route Linear Mechanisms with a Buffer Step 5.5 Derivation of Steady-State Kinetic Equations for Multi Route Mechanisms: Kinetic Coupling 5.5.1 Cycles Having a Common Intermediate 5.5.2 Cycles Having a Common Step 5.5.3 Cycles Having Two Common Steps 5.5.4 Different Types of Coupling Between Cycles Nomenclature References Chapter 6 Steady-state Chemical Kinetics: Machinery 6.1 Analysis of Rate Equations 6.1.1 Dependence of Parameters on Temperature and Number of Identifiable Parameters 6.1.2 Simplifying Assumptions 6.1.2.1 Fast Step 6.1.2.2 Rate-limiting Step 6.1.2.3 Quasi-equilibrated Step(s) 6.1.2.4 Irreversible Step(s) 6.1.2.5 Dependence of the Reaction Rate on Concentrations 6.2 Apparent Kinetic Parameters: Reaction Order and Activation Energy 6.2.1 Definitions 6.2.2 Two-step Mechanism of an Irreversible Reaction 6.2.2.1 Apparent Partial Reaction Order 6.2.2.2 Apparent Activation Energy 6.2.3 More Examples 6.2.3.1 Apparent Partial Reaction Order 6.2.3.2 Apparent Activation Energy 6.2.4 Some Further Comments 6.3 How to Reveal Mechanisms Based on Steady-state Kinetic Data 6.3.1 Assumptions 6.3.2 Direct and Inverse Problems of Kinetic Modeling 6.3.3 Minimal and Non-minimal Mechanisms 6.3.3.1 Two-step Catalytic Mechanisms 6.3.3.2 Three-step Catalytic Mechanisms 6.3.3.3 Four-step Catalytic Mechanisms 6.3.3.4 Five-step Catalytic Mechanisms 6.3.3.5 Summary 6.3.4 What Kind of Kinetic Model Do We Need to Describe Steady-state Kinetic Data and to Decode Mechanisms? 6.3.4.1 Kinetic Resistance 6.3.4.2 Analysis of the Kinetic Resistance in Identifying and Decoding Mechanisms and Models 6.3.4.3 Concentration Terms of the Kinetic Resistance and Structure of the Detailed Mechanism 6.3.4.4 Principle of Component Segregation 6.4 Concluding Remarks Nomenclature References Chapter 7 Linear and Nonlinear Relaxation: Stability 7.1 Introduction 7.1.1 Linear Relaxation 7.1.2 Relaxation Times and Steady-state Reaction Rate 7.1.2.1 Relaxation Times and Kinetic Resistance 7.1.2.2 Temkin's Rule. Is it Valid? 7.1.3 Further Comments 7.2 Relaxation in a Closed System − Principle of Detailed Equilibrium 7.3 Stability – General Concept 7.3.1 Elements of the Qualitative Theory of Differential Equations 7.3.2 Local Stability – Rigorous Definition 7.3.3 Local Stability – System with two Variables 7.3.3.1 Real Roots 7.3.3.2 Imaginary Roots 7.3.4 Self-sustained Oscillations and Global Dynamics 7.4 Simplifications of Non-steady-state Models 7.4.1 Abundance and Linearization 7.4.2 Fast Step − Equilibrium Approximation 7.4.3 Rate-limiting Step Approximation 7.4.4 Quasi-steady-state Approximation Nomenclature References Chapter 8 Nonlinear Mechanisms: Steady State and Dynamics 8.1 Critical Phenomena 8.2 Isothermal Critical Effects in Heterogeneous Catalysis: Experimental Facts 8.2.1 Multiplicity of Steady States 8.2.2 Self-sustained Oscillations of the Reaction Rate in Heterogeneous Catalytic Reactions 8.2.3 Diversity of Critical Phenomena and Their Causes 8.3 Ideal Simple Models: Steady State 8.3.1 Parallel and Consecutive Adsorption Mechanisms 8.3.2 Impact Mechanisms 8.3.3 Simplest Mechanism for the Interpretation of Multiplicity of Steady States 8.3.4 Hysteresis: Influence of Reaction Reversibility 8.3.5 Competition of Intermediates 8.4 Ideal Simple Models: Dynamics 8.4.1 Relaxation Characteristics of the Parallel Adsorption Mechanism 8.4.2 Catalytic Oscillators 8.4.2.1 Simplest Catalytic Oscillator 8.4.2.2 Relaxation of Self-sustained Oscillation: Model 8.4.2.3 Other Catalytic Oscillators 8.4.3 Fine Structure of Kinetic Dependences 8.5 Structure of Detailed Mechanism and Critical Phenomena: Relationships 8.5.1 Mechanisms Without Interaction Between Intermediates 8.5.2 Horn–Jackson–Feinberg Mechanism 8.6 Nonideal Factors 8.7 Conclusions Nomenclature References Chapter 9 Kinetic Polynomials 9.1 Linear Introduction to the Nonlinear Problem: Recap 9.2 Nonlinear Introduction 9.3 Principles of the Approach: Quasi-Steady-State Approximation. Mathematical Basis 9.3.1 Introduction 9.3.2 Examples 9.4 Kinetic Polynomials: Derivation and Properties 9.4.1 Resultant Reaction Rate: A Necessary Mathematical Basis 9.4.2 Properties of the Kinetic Polynomial 9.4.3 Examples of Kinetic Polynomials 9.4.3.1 Impact Mechanism 9.4.3.2 Adsorption Mechanism 9.5 Kinetic Polynomial: Classical Approximations and Simplifications 9.5.1 Rate-limiting Step 9.5.2 Vicinity of Thermodynamic Equilibrium 9.5.3 Thermodynamic Branch 9.6 Application of Results of the Kinetic-Polynomial Theory: Cycles Across an Equilibrium 9.7 Critical Simplification 9.7.1 Critical Simplification: A Simple Example 9.7.2 Critical Simplification and Limitation 9.7.3 Principle of Critical Simplification: General Understanding and Application 9.8 Concluding Remarks 9.A Appendix Nomenclature References Chapter 10 Temporal Analysis of Products: Principles, Applications, and Theory 10.1 Introduction 10.2 Characteristics of TAP 10.2.1 The TAP Experiment 10.2.2 Description and Operation of a TAP Reactor System 10.2.3 Basic Principles of TAP 10.3 Position of TAP Among Other Kinetic Methods 10.3.1 Uniformity of the Active Zone 10.3.1.1 Continuous Stirred-tank Reactor 10.3.1.2 Plug-flow Reactor 10.3.1.3 TAP Reactor 10.3.2 Domain of Conditions 10.3.3 Possibility of Obtaining Relevant Kinetic Information 10.3.4 Relationship Between Observed Kinetic Characteristics and Catalyst Properties 10.3.5 Model-Free Kinetic Interpretation of Data 10.3.6 Summary of the Comparison 10.3.7 Applications of TAP 10.4 Qualitative Analysis of TAP Data: Examples 10.4.1 Single-pulse TAP Experiments 10.4.2 Pump-probe TAP Experiments 10.4.3 Multipulse TAP Experiments 10.5 Quantitative TAP Data Description. Theoretical Analysis 10.5.1 One-Zone Reactor 10.5.1.1 Diffusion Only 10.5.1.2 Irreversible Adsorption 10.5.1.3 Reversible Adsorption 10.5.2 Two- and Three-Zone Reactors 10.5.3 Thin-Zone TAP Reactor Configuration 10.5.4 Moment-Based Quantitative Description of TAP Experiments 10.5.4.1 Moments and Reactivities 10.5.4.2 From Moments to Reactivities 10.5.4.3 Experimental Procedure 10.5.4.4 Summary 10.6 Kinetic Monitoring: Strategy of Interrogative Kinetics 10.6.1 State-by-state Kinetic Monitoring. Example: Oxidation of Furan 10.6.2 Strategy of Interrogative Kinetics 10.7 Theoretical Frontiers 10.7.1 Global Transfer Matrix Equation 10.7.2 Y Procedure 10.7.2.1 Principles of the Solution 10.7.2.2 Exact Mathematical Solution 10.7.2.3 How to Reconstruct the Active Zone Concentration and Net Rate of Production in Practice 10.7.2.4 Numerical Experiments 10.7.2.5 Summary of the Y Procedure 10.7.3 Probabilistic Theory of Single-particle TAP Experiments 10.8 Conclusions: What Next? Nomenclature References Chapter 11 Joint Kinetics 11.1 Events and Invariances 11.2 Single Reaction 11.2.1 Batch Reactor 11.2.1.1 Basics 11.2.1.2 Point of Intersection 11.2.1.3 Swapping the Equilibrium 11.2.2 Continuous Stirred-tank Reactor 11.2.2.1 Basis 11.2.2.2 Point of Intersection 11.2.3 Invariances 11.3 Multiple Reactions 11.3.1 Events: Intersections and Coincidences 11.3.2 Mathematical Solutions of Kinetic Models 11.3.2.1 Batch Reactor 11.3.2.2 Continuous Stirred-tank Reactor 11.3.3 First Stage: Occurrence of Single Kinetic Events 11.3.4 Second Stage: Coincidences: Ordering Events by Pairs 11.3.5 End Products Intersection: Intersection of B and C 11.3.6 Invariances Nomenclature References Chapter 12 Decoding the Past 12.1 Chemical Time and Intermediates. Early History 12.2 Discovery of Catalysis and Chemical Kinetics 12.3 Guldberg and Waage's Breakthrough 12.4 Van't Hoff's Revolution: Achievements and Contradictions 12.4.1 Undisputable Achievements 12.4.2 Contradictions 12.5 Post-Van't Hoff Period: Reaction is Not a Single-act Drama 12.6 All-in-all Confusion. Attempts at Understanding 12.7 Out of Confusion: Physicochemical Understanding 12.8 Towards Mathematical Chemical Kinetics Nomenclature References Chapter 13 Decoding the Future 13.1 A Great Achievement, a Great Illusion 13.2 A New Paradigm for Decoding Chemical Complexity 13.2.1 Advanced Experimental Kinetic Tools 13.2.2 New Mathematical Tools. Chemical Kinetics and Mathematics References Index EULA