ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Iron Ore: Mineralogy, Processing and Environmental Sustainability (Woodhead Publishing Series in Metals and Surface Engineering)

دانلود کتاب سنگ آهن: کانی شناسی، پردازش و پایداری محیطی (مجموعه انتشارات Woodhead در مهندسی فلزات و سطح)

Iron Ore: Mineralogy, Processing and Environmental Sustainability (Woodhead Publishing Series in Metals and Surface Engineering)

مشخصات کتاب

Iron Ore: Mineralogy, Processing and Environmental Sustainability (Woodhead Publishing Series in Metals and Surface Engineering)

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 0128202262, 9780128202265 
ناشر: Woodhead Publishing 
سال نشر: 2021 
تعداد صفحات: 842 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 مگابایت 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Iron Ore: Mineralogy, Processing and Environmental Sustainability (Woodhead Publishing Series in Metals and Surface Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سنگ آهن: کانی شناسی، پردازش و پایداری محیطی (مجموعه انتشارات Woodhead در مهندسی فلزات و سطح) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سنگ آهن: کانی شناسی، پردازش و پایداری محیطی (مجموعه انتشارات Woodhead در مهندسی فلزات و سطح)



سنگ آهن: کانی شناسی، پردازش و پایداری محیطی، ویرایش دوم تمام جنبه های پیرامون دومین کالای مهم پس از نفت را پوشش می دهد. سنگ آهن به عنوان یک نهاده ضروری برای تولید فولاد خام، بزرگترین بازار فلزی جهان با تریلیون دلار در سال را تغذیه می کند و ستون فقرات زیرساخت های جهانی است. این کتاب به بررسی انواع سنگ‌های جدید و توسعه فرآیندها/فناوری‌های کارآمدتر برای به حداقل رساندن ردپای محیطی می‌پردازد. این نسخه جدید شامل تمام مطالعات موردی و فناوری های جدید، به همراه فصل های جدید در مورد تجزیه و تحلیل شیمیایی سنگ آهن، بهره برداری حرارتی و خشک سنگ آهن، و بحث در مورد فن آوری های جایگزین آهن است.

علاوه بر این، اطلاعات در مورد بازیافت ضایعات جامد و سرباره حاوی P تولید شده در کارخانه‌های فولاد، معادن پایدار و فناوری‌های تولید آهن کم انتشار از دیدگاه‌های منطقه‌ای، به ویژه اروپا و ژاپن، گنجانده شده است. این کار منبع ارزشمندی برای هر کسی که در صنعت سنگ آهن دخیل است خواهد بود.


توضیحاتی درمورد کتاب به خارجی

Iron Ore: Mineralogy, Processing and Environmental Sustainability, Second Edition covers all aspects surrounding the second most important commodity behind oil. As an essential input for the production of crude steel, iron ore feeds the world's largest trillion-dollar-a-year metal market and is the backbone of the global infrastructure. The book explores new ore types and the development of more efficient processes/technologies to minimize environmental footprints. This new edition includes all new case studies and technologies, along with new chapters on the chemical analysis of iron ore, thermal and dry beneficiation of iron ore, and discussions of alternative iron making technologies.

In addition, information on recycling solid wastes and P-bearing slag generated in steel mills, sustainable mining, and low emission iron making technologies from regional perspectives, particularly Europe and Japan, are included. This work will be a valuable resource for anyone involved in the iron ore industry.



فهرست مطالب

Front cover
Half title
Full title
Copyright
Contents
Contributors
Preface
Preface to the second edition
Biography
1 - Introduction: Overview of the global iron ore industry
	1.1 Introduction
		1.1.1 World steel and iron ore production
		1.1.2 World iron ore trade
		1.1.3 World iron ore reserves and resources
	1.2 Iron ore mining operations by country
		1.2.1 Australia
		1.2.2 Brazil
		1.2.3 China
		1.2.4 India
		1.2.5 Russia
		1.2.6 South Africa
		1.2.7 Ukraine
		1.2.8 Canada
		1.2.9 USA
		1.2.10 Sweden
	1.3 Innovative technologies adopted by iron ore producers
		1.3.1 Autonomous mining vehicles
		1.3.2 Robotic technology
		1.3.3 Remote operating centers
		1.3.4 Sensing technology/real-time data acquisition
		1.3.5 Digital technology
			1.3.5.1 Spatial data visualization
			1.3.5.2 Geographic information systems
			1.3.5.3 Artificial intelligence and machine learning
	1.4 Challenges facing iron ore industry
		1.4.1 Depleting high-grade iron ore reserves
		1.4.2 GHG emissions and climate change
		1.4.3 Health and safety
		1.4.4 Volatility of commodity prices
		1.4.5 Access to capital
	References
Part One - Characterization and analysis of iron ore
2 - Mineralogical, chemical, and physical metallurgical characteristics of iron ore
	2.1 Introduction
	2.2 Mineralogy
		2.2.1 Common iron ore and gangue minerals
		2.2.2 Iron ore deposits
			2.2.2.1 Deposit types
			2.2.2.2 Iron formation-hosted iron ore deposits
			2.2.2.3 Iron formation and replacement ore mineralogy
			2.2.2.4 Unenriched iron formation ores
			2.2.2.5 Martite–goethite supergene ores
			2.2.2.6 Residual hematite ores
			2.2.2.7 Microplaty hematite ore
			2.2.2.8 Phanerozoic ooidal ironstones including channel iron deposits
			2.2.2.9 Iron sands
			2.2.2.10 Sulfur-rich sources of iron
			2.2.2.11 Iron ore classification
	2.3 Chemical composition
	2.4 Physical properties
		2.4.1 Relative hardness and lump/fine ore ratio
		2.4.2 Lump material-handling properties
		2.4.3 ROM properties for crushing
			2.4.3.1 Uniaxial compressive strength
			2.4.3.2 Impact crushability
		2.4.4 Particle specific gravity
		2.4.5 Material-handling properties
			2.4.5.1 Abrasion properties
			2.4.5.2 Frictional properties
			2.4.5.3 Bulk density
		2.4.6 Product particle size
		2.4.7 Relationship between ore properties and process performance
			2.4.7.1 Prediction of blast furnace lump quality
			2.4.7.2 Lump DI and ore groups
	2.5 Future trends
	References
3 - Quantitative XRD analysis and evaluation of iron ore, sinter, and pellets
	3.1 Introduction
	3.2 XRD mineral quantification
		3.2.1 X-ray diffractometer
		3.2.2 Principles of powder X-ray diffraction
		3.2.3 Rietveld analysis of X-ray diffraction patterns
		3.2.4 Sources of error in quantitative XRD analysis
		3.2.5 Applicability of quantitative XRD analysis
	3.3 Principal minerals of natural and sintered iron ores
	3.4 Quantitative XRD analysis of iron ore
		3.4.1 Quantification of iron ore minerals
		3.4.2 Substitution assessment of impurity elements in hematite and goethite
	3.5 Quantitative XRD analysis of iron ore sinter and pellets
		3.5.1 Fundamental studies of sinter phases
		3.5.2 In situ studies of sintering reactions
	3.6 Summary
	References
4 - Automated optical image analysis of natural and ­sintered iron ore
	4.1 Introduction—overview of optical image analysis technique
	4.2 Mineralogical characteristics of iron ore and sinter
		4.2.1 Iron ores
		4.2.2 Sinter
	4.3 Automated optical image analysis
		4.3.1 Automated identification of particles and opaque minerals
		4.3.2 Automated particle separation
		4.3.3 Automated porosity identification
		4.3.4 Automated identification of unidentified areas
		4.3.5 Automated correction of mineral maps
		4.3.6 Automated image processing
	4.4 Application of automated OIA to natural and sintered iron ore
	References
5 - Quantitative analysis of iron ore using SEM-based technologies
	5.1 Introduction
	5.2 Principles of SEM-based technologies
		5.2.1 Introduction to the principle of scanning electron microscopy
			5.2.1.1 The average atomic number of a mineral or substance
			5.2.1.2 Characteristic X-ray spectra of minerals
		5.2.2 Sample preparation principles
		5.2.3 Various SEM-based technologies
			5.2.3.1 Electron back-scatter diffraction
			5.2.3.2 Electron probe microanalysis
			5.2.3.3 Automated mineralogical (auto-SEM) technologies
			5.2.3.4 Auto-SEMs with specific regard to iron ore analysis
			5.2.3.5 QEMSCAN
			5.2.3.6 MLA
			5.2.3.7 Mineralogic
			5.2.3.8 TIMA
			5.2.3.9 AMICS and INCAMineral
	5.3 Application of automated SEM-based technologies to ore characterization
		5.3.1 Textural analysis
		5.3.2 Mineral abundance
		5.3.3 Magnetite/hematite distinction
		5.3.4 Lithotyping/microlithotyping
		5.3.5 Grain size
		5.3.6 Liberation, locking, and association
	5.4 Characterization of natural and sintered iron ore using QEMSCAN
	5.5 Summary
		5.5.1 Advantages (strengths)
		5.5.2 Disadvantages (weaknesses)
	5.6 Future trends
	References
6 - Characterization of iron ore by visible and infrared reflectance and Raman spectroscopies
	6.1 Introduction
	6.2 Principles, instrumentations, and applications of reflectance spectroscopy
		6.2.1 Reflectance spectroscopy
		6.2.2 Reflectance spectroscopy instrumentations
			6.2.2.1 Field spectroradiometer
			6.2.2.2 Hyperspectral drill core and chips scanning system
			6.2.2.3 Face mapping system
			6.2.2.4 Remote sensing technology
		6.2.3 Reflectance spectroscopy of iron ore minerals
			6.2.3.1 Magnetite and maghemite
			6.2.3.2 Goethite and hematite
			6.2.3.3 Gangue minerals
				6.2.3.3.1 Quartz
				6.2.3.3.2 Clay minerals
				6.2.3.3.3 Chlorite
				6.2.3.3.4 Talc
				6.2.3.3.5 Amphiboles
				6.2.3.3.6 Carbonates
		6.2.4 Application of reflectance spectroscopy to iron ore characterization
	6.3 Principles, instrumentations, and applications of Raman spectroscopy
		6.3.1 Raman spectroscopy
		6.3.2 Raman spectroscopy instrumentations
			6.3.2.1 Portable Raman spectroscope
			6.3.2.2 Raman microscope
		6.3.3 Raman spectroscopy of iron ore minerals
	6.4 Future trends
	References
Part Two - Extraction, comminution, classification, and beneficiation of iron ore
7 - Iron ore extraction techniques
	7.1 Introduction
	7.2 Iron ore mining—an historical UK context
		7.2.1 Underground mining techniques in the Cleveland ironstone mines
		7.2.2 Underground mining techniques in the North Lincolnshire mines
	7.3 Underground iron ore mining: Kiruna, Sweden
		7.3.1 Introduction: the worldwide iron ore market
		7.3.2 Location and geology
		7.3.3 Mining method: sublevel caving
		7.3.4 The 1365 m level
	7.4 Modern-day surface mining: the Pilbara deposit
	7.5 Modern day surface mining: iron ore in Minas Gerais Province, Brazil
	7.6 Conclusions
	References
8 - Comminution and classification technologies of iron ore
	8.1 Introduction
	8.2 Iron ore crushing and screening
		8.2.1 Crushers
			8.2.1.1 Jaw crushers
			8.2.1.2 Gyratory and cone crushers
		8.2.2 Screens
		8.2.3 Typical crushing and screening flowsheets
			8.2.3.1 Rio Tinto iron ore processing plants
			8.2.3.2 BHP Newman iron ore handling hub
			8.2.3.3 Roy Hill operation
			8.2.3.4 Vale S11D project
			8.2.3.5 Mobile crushing and screening plant applications for small to medium sized iron ore projects
	8.3 Iron ore grinding and classification
		8.3.1 Examples of iron ore grinding and classification flowsheets
		8.3.2 Grinding equipment
			8.3.2.1 Tumbling mills
				8.3.2.1.1 Autogenous and semiautogenous mills
				8.3.2.1.2 Ball mills
		8.3.3 Classification equipment
			8.3.3.1 Hydrocyclone separators
			8.3.3.2 Air classifiers
	8.4 Future trends in iron ore comminution and classification
		8.4.1 Fine grinding technologies—stirred milling
			8.4.1.1 Tower mill, Vertimill, and Velix vertical helix stirred mill
			8.4.1.2 IsaMill
			8.4.1.3 Outotec HIGmill
		8.4.1 Fine screening technologies
		8.4.2 High pressure grinding rolls
		8.4.3 CAPEX and OPEX considerations
	References
9 - Physical separation of iron ore: magnetic separation
	9.1 Introduction
	9.2 Principle of magnetic separation
		9.2.1 Magnetic force on particles
		9.2.2 Magnetic susceptibilities of minerals in iron ore
			9.2.2.1 Iron minerals
			9.2.2.2 Gangue minerals in iron ores
	9.3 Magnetic separators
		9.3.1 Low-intensity magnetic separators
		9.3.2 High intensity and high gradient magnetic separators
	9.4 Typical flow sheets for upgrading low-grade iron ores
		9.4.1 Major principles for selection of separation methods
		9.4.2 Typical flow sheets for upgrading magnetite ores
		9.4.3 Typical flow sheets for upgrading oxidized iron ores
	9.5 Challenges and recent advances in upgrading low-grade iron ores using magnetic separation
		9.5.1 Development of large magnetic separator units
		9.5.2 Utilization of subeconomic iron ores and wastes
		9.5.3 Development of dry magnetic separators
	9.6 Summary
	References
10 - Non-magnetic physical separation of hematitic/goethitic iron ore
	10.1 Physical processing for enhancing chemical properties
		10.1.1 Scrubbing and washing
		10.1.2 Hydrocycloning
	10.2 Dense medium separation
		10.2.1 Principle
		10.2.2 DMS equipment
		10.2.3 DMS in current iron ore utilization
			10.2.3.1 Sishen DMS plant
			10.2.3.2 Mount Tom Price DMS plant
		10.2.4 DMS performance measurement
		10.2.5 DMS compared to other gravitational separation processes
			10.2.5.1 Particle size limit
		10.2.6 Medium considerations
			10.2.6.1 Ferrosilicon grades
			10.2.6.2 Medium recovery
	10.3 Jigging
		10.3.1 Principle of jigging
		10.3.2 Control of the jigging process
		10.3.3 Developments
			10.3.3.1 Product extraction
			10.3.3.2 Ragging deck
			10.3.3.3 Kelsey jig
		10.3.4 Application of jigging
		10.3.5 Jigging versus DMS
	10.4 Upflow classification
		10.4.1 Elutriation—the driving force of upflow classification
		10.4.2 Developments in upflow classification
			10.4.2.1 Multiple stage
		10.4.3 Application of upflow classifiers
			10.4.3.1 Use with WHIMS
		10.4.4 Assessment of upflow classification
	10.5 Spiraling
		10.5.1 Historical gravity separation and the advent of the modern-day spiral
		10.5.2 Principle of spiraling separation
		10.5.3 Spiral design
		10.5.4 Operating criteria
		10.5.5 Testwork and assessment of spiral performance
		10.5.6 Spiraling applications in iron ore processing
		10.5.7 Spiraling—pros and cons
		10.5.8 Recent advancements in spiral technology
		10.5.9 Future directions
	10.6 Dry physical separation technologies aimed at enhancing chemical properties
	References
11 - Physiochemical separation of iron ore
	11.1 Introduction
	11.2 Mineral properties
		11.2.1 Mineralogy and occurrence
		11.2.2 Liberation
		11.2.3 Surface and electrokinetic properties
	11.3 Iron ore flotation
		11.3.1 Separation of silica from iron ore by flotation
		11.3.2 Removal of impurities other than silica
			11.3.2.1 Aluminum removal
			11.3.2.2 Phosphorus removal
			11.3.2.3 Sulfur removal
		11.3.3 Flotation equipment
		11.3.4 Commercial flotation schemes
	11.4 Key challenges and future directions
	References
12 - Chemical separation of iron ore
	12.1 Introduction
		12.1.1 Phosphorus in iron ore
		12.1.2 Phosphorus chemistry during ironmaking and steelmaking
		12.1.3 Effect of phosphorus on the mechanical properties of steel
	12.2 Phosphorus removal from iron ores
		12.2.1 Removal from magnetite ores
		12.2.2 Removal from oolitic hematite ores
		12.2.3 Removal from oolitic limonite ores
		12.2.4 Removal from goethite–hematite ores
	12.3 Removal of silicon, aluminum, and sulfur minerals
	12.4 Summary and future trends
	References
13 - Thermal beneficiation of refractory iron ore
	13.1 Introduction
	13.2 Magnetizing roasting and magnetic separation process
		13.2.1 Fundamentals
			13.2.1.1 Hematite and goethite
			13.2.1.2 Siderite
			13.2.1.3 Pyrite
			13.2.1.4 Summary
		13.2.2 Laboratory research
			13.2.2.1 Hematite and goethite
				13.2.2.1.1 Magnetizing roasting by using gaseous reducing agent
				13.2.2.1.2 Magnetizing roasting by using solid reducing agents
			13.2.2.2 Siderite
			13.2.2.3 Other iron-bearing materials
		13.2.3 Industrial applications
			13.2.3.1 Shaft furnace roasting process
			13.2.3.2 Rotary kiln roasting process
			13.2.3.3 Fluidized bed roasting process
				13.2.3.3.1 Multistage circulating fluidized bed magnetizing roasting process
				13.2.3.3.2 Flash magnetizing roasting process
				13.2.3.3.3 Suspension magnetizing roasting process
			13.2.3.4 Summary
	13.3 Deep reduction and magnetic separation process
		13.3.1 Fundamentals
			13.3.1.1 Reduction of iron-bearing minerals
			13.3.1.2 Nucleation and growth of metallic iron particles
			13.3.1.3 Liberation of metallic iron particles
		13.3.2 Laboratory research
		13.3.3 Future development
			13.3.3.1 Rotary kiln process
			13.3.3.2 Tunnel kiln process
			13.3.3.3 Rotary hearth furnace process
			13.3.3.4 Paired straight hearth furnace process
			13.3.3.5 Flash ironmaking process
	13.4 Summary
	References
14 - Application of biotechnology in iron ore beneficiation
	14.1 Introduction
	14.2 Microbial adhesion to mineral surfaces
		14.2.1 Adhesion mechanisms
			14.2.1.1 Microbe–mineral interactions depend on cell surface properties
			14.2.1.2 Attachment, biofilm formation, and production of EPS and other metabolites
			14.2.1.3 Analytical techniques to determine cell and mineral surface properties
		14.2.2 Cell surface changes due to growth conditions
		14.2.3 Mineral surface effects on microbial adhesion
		14.2.4 Increasing mineral selectively by microbial adaptation
	14.3 Bioleaching for phosphorus removal from iron ores
		14.3.1 Phosphorus bioleaching fungi
		14.3.2 Commercial bioleaching acidophilic bacteria
		14.3.3 Soil bacteria
		14.3.4 Combination phosphorus removal
	14.4 Biobeneficiation of sulfide ores
		14.4.1 Commercial bioleaching acidophilic bacteria
		14.4.2 Soil bacteria
			14.4.2.1 Paenibacillus polymyxa
			14.4.2.2 Other soil bacteria
			14.4.2.3 Halophilic bacteria
	14.5 Biobeneficiation of iron ore
		14.5.1 Commercial bioleaching acidophilic bacteria
		14.5.2 Soil bacteria
			14.5.2.1 Mycobacterium
			14.5.2.2 Shewanella
			14.5.2.3 Dissimilatory iron-reducing bacteria
			14.5.2.4 Rhodococcus
			14.5.2.5 Paenibacillus
			14.5.2.6 Bacillus
		14.5.3 Combining conventional and biobeneficiation for economic and environmental impact
	14.6 Future trends
	Acknowledgments
	References
Part Three - Iron ore agglomeration and ironmaking technologies
15 - Iron ore sintering
	15.1 Introduction
		15.1.1 Sintering process for iron ore fines
		15.1.2 Application of iron ore sinter
	15.2 Effect of iron ore characteristics on sintering
		15.2.1 Influence of ore characteristics on granulation
			15.2.1.1 Physical characteristics of iron ore
			15.2.1.2 Mineralogical characteristics of iron ore
			15.2.1.3 Chemical characteristics of iron ore
		15.2.2 Effect of ore characteristics on thermal densification
			15.2.2.1 Chemical characteristics of iron ore
			15.2.2.2 Physical characteristics of iron ore
			15.2.2.3 Mineralogical characteristics of iron ore
		15.2.3 Summary
	15.3 Evaluation of iron ore for the sintering process
		15.3.1 Pilot-scale evaluation of iron ore—sinter pot tests
		15.3.2 Laboratory-scale evaluation of iron ore
			15.3.2.1 Fundamental granulation characteristics of iron ore
				15.3.2.1.1 Water absorption capacity of iron ore
				15.3.2.1.2 Intra- and interparticles water migration kinetics of iron ore
				15.3.2.1.3 Cohesive strength of fine ore
			15.3.2.2 Fundamental sintering characteristics of iron ore
				15.3.2.2.1 Thermal cracks in coarse ore particles
				15.3.2.2.2 Melt penetration of fine ore particles
				15.3.2.2.3 Assimilation behavior of coarse ore particles
	15.4 Recent developments in iron ore sintering
		15.4.1 Background
		15.4.2 Selective granulation to address rising ore alumina content
		15.4.3 Limestone and coke breeze coating for better ­combustion and melting
		15.4.4 Improved charging method for better permeability and segregation
		15.4.5 HPS/MEBIOS processes to address increasing finer materials
			15.4.5.1 HPS process
			15.4.5.2 MEBIOS process
		15.4.6 Microparticles as a new binder for intensifying granulation
			15.4.6.1 Advanced granulation for innovation of sinter ore process
			15.4.6.2 Semi-pellet expansion II process
			15.4.6.3 Enhanced granulation with ground microparticles from iron ore in the absence of APD
		15.4.7 Support stand for improved permeability in the lower part of the sinter bed
		15.4.8 Super-SINTER for energy and CO2 reduction
		15.4.9 Lime coating coke for reduction of NOx emission
	15.5 Conclusions
	Acknowledgments
	References
16 - Iron ore pelletization
	16.1 Introduction
	16.2 Specification requirements of pellet feed
	16.3 Green ball formation and properties
		16.3.1 Green ball formation
		16.3.2 Pretreatment of pellet feed
			16.3.2.1 Damp milling
			16.3.2.2 HPGR
			16.3.2.3 Ball milling
		16.3.3 Blending hematite and pyrite cinder with magnetite
		16.3.4 New binders
			16.3.4.1 Organic binders
			16.3.4.2 Organic/bentonite composite binders
			16.3.4.3 Substitution of hydrated lime for bentonite in fluxed pellets
	16.4 Induration of green pellets
		16.4.1 Typical microstructures and bonding mechanisms of fired pellets
		16.4.2 Effect of blending magnetite concentrates and HPGR pretreatment
		16.4.3 Boron containing additives
		16.4.4 Optimizing MgO and basicity
	16.5 Quality requirements for fired pellets
	16.6 Conclusions
	References
17 - Blast furnace ironmaking and its ferrous burden quality requirements
	17.1 Introduction to ironmaking technologies
	17.2 Blast furnace ironmaking fundamentals—zones and reactions in the blast furnace
		17.2.1 Raceway
		17.2.2 Lumpy zone
		17.2.3 Cohesive zone
		17.2.4 Active coke zone
		17.2.5 Hearth and stagnant coke zone
	17.3 Quality requirements
	17.4 Physical testing of blast furnace Fe-bearing materials
		17.4.1 Standardized tests
			17.4.1.1 Tumble and abrasion indices
			17.4.1.2 Shatter index
			17.4.1.3 Cold crushing strength
			17.4.1.4 Decrepitation index
			17.4.1.5 Low temperature reduction disintegration index
			17.4.1.6 Reducibility index
			17.4.1.7 Free swelling index
		17.4.2 Nonstandardized tests
	17.5 Summary
	References
18 - Alternative ironmaking processes and their ferrous burden quality requirements
	18.1 Introduction
	18.2 Direct reduction
		18.2.1 Background
		18.2.2 Key DR processes
			18.2.2.1 MIDREX process
			18.2.2.2 ENERGIRON process
		18.2.3 Raw material quality requirements
		18.2.4 Metallurgical testing of DR pellets and lump ore
			18.2.4.1 Low temperature disintegration test
			18.2.4.2 Hot load test
			18.2.4.3 Reducibility test
			18.2.4.4 Swelling test
	18.3 Smelting reduction
		18.3.1 Background
		18.3.2 Key SR processes
			18.3.2.1 COREX process
				18.3.2.1.1 Process description
				18.3.2.1.2 Raw material quality requirements
				18.3.2.1.3 Metallurgical testing
					18.3.2.1.3.1 COREX Linder test
					18.3.2.1.3.2 Baosteel static load reduction test
			18.3.2.2 Finex processs
				18.3.2.2.1 Process description
				18.3.2.2.2 Raw material quality requirements
			18.3.2.3 HIsmelt process
				18.3.2.3.1 Process description
				18.3.2.3.2 Raw material quality requirements
	18.4 Summary
	References
Part Four - Environmental sustainability and low emission technologies
19 - Sintering emissions and mitigation technologies
	19.1 Introduction
		19.1.1 Key emissions from sinter plants
		19.1.2 Secondary measures for sintering emission mitigation
	19.2 COX emissions and their mitigation
		19.2.1 Characteristics of COX emissions
		19.2.2 Mitigation technologies for CO2 emissions
			19.2.2.1 Deep bed sintering
			19.2.2.2 Super SINTER
			19.2.2.3 Improved charging segregation
			19.2.2.4 Substitution of metallic iron bearing resources and waste fuels for coke breeze
			19.2.2.5 Other CO2 mitigation measures
				19.2.2.5.1 Sinter plant heat recovery
				19.2.2.5.2 Improved efficiency of ignition furnace
				19.2.2.5.3 Reduction of air leakage
	19.3 SOX emissions and their mitigation
		19.3.1 Formation mechanisms and characteristics of SOX emissions
		19.3.2 Mitigation of SOX emissions
	19.4 NOX emissions and their mitigation
		19.4.1 Formation mechanisms and characteristics of NOX emissions
		19.4.2 Mitigation of NOX emissions
	19.5 Dioxin emissions and their mitigation
		19.5.1 Background
		19.5.2 De novo formation mechanism and characteristics of dioxins
		19.5.3 Mitigation of dioxin emissions
			19.5.3.1 Process variables
			19.5.3.2 Raw materials
			19.5.3.3 Additives
	19.6 Dust emissions and their reduction
		19.6.1 Background
		19.6.2 Characteristics of dust and PM emissions
		19.6.3 Factors influencing dust and PM emissions from iron ore sintering
	19.7 Utilization of biomass materials in iron ore sintering
		19.7.1 Background
		19.7.2 Effect of substitution of biomass on COX emissions
		19.7.3 Effect of substitution of biomass on toxic emissions
		19.7.4 Effect of substitution of biomass on sintering performance
		19.7.5 Challenges in utilization of biomass in sintering
	19.8 Conclusions
	References
20 - Utilization of biomass as an alternative fuel in iron and steel making
	20.1 Introduction
	20.2 Potentials of biomass utilization in iron and steel industry
		20.2.1 Biomass in blast furnace top charged burden
			20.2.1.1 Bio-coke
			20.2.1.2 Bio-sinter
			20.2.1.3 Bio-briquettes
		20.2.2 Biomass injection into blast furnace
		20.2.3 Potentials of biomass in ironmaking
	20.3 Biomass in steelmaking
	20.4 Conclusions
	Acknowledgment
	References
21 - Life cycle assessment of iron ore mining and processing
	21.1 Introduction
		21.1.1 Principles of LCA
		21.1.2 Current status of LCA application in mining and mineral processing
	21.2 Iron ore mining and processing
		21.2.1 Drilling
		21.2.2 Blasting
	21.3 Loading and haulage
		21.3.1 Crushing
		21.3.2 Screening and separations
		21.3.3 Stacking and stockpiling
		21.3.4 Reclaiming and loading on container/vessel
		21.3.5 Transport
		21.3.6 Auxiliary equipment
	21.4 Application of LCA to iron ore mining and processing
		21.4.1 Goal and scope
		21.4.2 Inventory data
		21.4.3 Calculation procedure
		21.4.4 Impact assessment of iron ore mining and processing stages
		21.4.5 Scenario assessment
	21.5 Using LCA to reduce energy and greenhouse gas impacts
	21.6 Conclusions
	21.7 Sources of further information and advice
	References
22 - Iron ore in Australia and the world: Resources, production, sustainability, and future prospects
	22.1 Introduction
	22.2 Perspectives on global and Australian iron ore resources
		22.2.1 Classifying and reporting resources
		22.2.2 Australia’s global position
		22.2.3 Australia’s known iron ore mines and mineral deposits
			22.2.3.1 Reporting by company and deposit
			22.2.3.2 Reporting by deposit type
		22.2.4 Declining ore grades
	22.3 Trends in iron ore and steel production
		22.3.1 Historical perspective
		22.3.2 Australia’s potential to meet future demand
	22.4 Environmental and socioeconomic benefits, threats, and opportunities
		22.4.1 Australia’s iron ore industry and environmental sustainability
	22.5 Future technological drivers and their implication to world iron ore trade
		22.5.1 Impurity-rich iron ore––beneficiation options
			22.5.1.1 Evaluation of iron ore beneficiation technology
	22.6 Iron ore and steel substance flows and sustainability issues
	22.7 Conclusions
	Acknowledgment
	References
23 - Low carbon ironmaking technologies: Japan’s approach
	23.1 Introduction
	23.2 Cokemaking
		23.2.1 Cokemaking process
		23.2.2 Coal pretreatment technologies
			23.2.2.1 CMC (Coal moisture control)
			23.2.2.2 DAPS (dry-cleaned and agglomerated precompaction system)
			23.2.2.3 SCOPE21 (super coke oven for productivity and environment enhancement toward 21st century) project
		23.2.3 Waste plastic recycling in coke oven
		23.2.4 Coke dry quenching
	23.3 Blast furnace
		23.3.1 Improvement of heat balance
		23.3.2 Improvement of shaft efficiency
		23.3.3 Control of W-point (wustite-iron equilibrium)
			23.3.3.1 Reactive coke agglomerate
			23.3.3.2 Ferro-coke
			23.3.3.3 Highly reactive coke
		23.3.4 Stable BF operation
		23.3.5 Hydrogen reduction
			23.3.5.1 Natural gas injection
			23.3.5.2 COURSE50 project
		23.3.6 Waste plastic injection
	23.4 Conclusions
	References
24 - Low carbon ironmaking technologies: an European approach
	24.1 Introduction
	24.2 Blast furnace ironmaking
		24.2.1 Blast furnace design and principles of operation
			24.2.1.1 Blast furnace profile
			24.2.1.2 Principles of blast furnace operation
		24.2.2 Streaming conditions and heat exchange
			24.2.2.1 Motion of materials and gases
			24.2.2.2 Heat exchange
		24.2.3 Reduction processes
			24.2.3.1 Reduction of iron oxides
			24.2.3.2 Reduction of accompanying elements
		24.2.4 Oxidation processes
		24.2.5 Formation of metal and slag
	24.3 Alternative ironmaking technologies
		24.3.1 Principles and classification of direct and smelting reduction processes
		24.3.2 Raw materials and products
		24.3.3 Selected direct reduction processes
		24.3.4 Selected smelting reduction processes
	24.4 Towards carbon-free ironmaking
		24.4.1 Environmental challenges and EU frame conditions
		24.4.2 Ways to low carbon and carbon-free iron and steel production
		24.4.3 Reserves and options for the blast furnace and related processes
		24.4.4 Innovations and trends in DR developments
		24.4.5 Innovations and trends in SR developments
		24.4.6 Further European projects on carbon-free steel production
		24.4.7 Hydrogen challenges and final remarks
	References
Index
Back cover




نظرات کاربران