ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب IP Routing Protocols: Fundamentals and Distance-Vector Routing Protocols

دانلود کتاب پروتکل های مسیریابی IP: اصول و پروتکل های مسیریابی بردار فاصله

IP Routing Protocols: Fundamentals and Distance-Vector Routing Protocols

مشخصات کتاب

IP Routing Protocols: Fundamentals and Distance-Vector Routing Protocols

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0367709627, 9780367709624 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 444 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 35 مگابایت 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 22


در صورت تبدیل فایل کتاب IP Routing Protocols: Fundamentals and Distance-Vector Routing Protocols به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پروتکل های مسیریابی IP: اصول و پروتکل های مسیریابی بردار فاصله نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پروتکل های مسیریابی IP: اصول و پروتکل های مسیریابی بردار فاصله



این کتاب بر مفاهیم اساسی مسیریابی IP و پروتکل‌های مسیریابی بردار فاصله (RIPv2 و EIGRP) تمرکز دارد. این پروتکل‌های مسیریابی را از دیدگاه یک مهندس شاغل مورد بحث قرار می‌دهد، نظریه و مفاهیم اساسی را به شیوه‌های رایج و مثال‌های روزمره مرتبط می‌کند. این کتاب بیش از 22 سال طراحی و کار با دستگاه‌ها و پروتکل‌های مسیریابی IP (و به طور کلی سیستم‌های مخابراتی) توسط نویسنده سود می‌برد و منعکس‌کننده آن است. تمام جنبه های کتاب برای منعکس کردن بهترین شیوه های فعلی با استفاده از نمونه های دنیای واقعی نوشته شده است. این کتاب روش های مختلفی را که توسط روترها برای یادگیری اطلاعات مسیریابی استفاده می شود، شرح می دهد. نویسنده شامل بحث در مورد ویژگی های پروتکل های مختلف مسیریابی پویا، و چگونگی تفاوت آنها در طراحی و عملکرد است. او مراحل پردازش مربوط به ارسال بسته های IP از طریق یک مسیریاب IP به مقصد را توضیح می دهد و مکانیسم های مختلفی را که روترهای IP برای کنترل مسیریابی در شبکه ها استفاده می کنند، مورد بحث قرار می دهد. این بحث به سبکی ساده ارائه شده است تا برای دانشجویان مقطع کارشناسی و کارشناسی ارشد، مهندسان محقق و عملی، دانشمندان، پرسنل فناوری اطلاعات و مهندسین شبکه قابل درک و جذاب باشد. این برای خوانندگانی است که می‌خواهند مفاهیم و نظریه پروتکل‌های مسیریابی IP را از طریق سیستم‌ها و شبکه‌های نمونه دنیای واقعی درک کنند.

  • بر مفاهیم اساسی تمرکز می‌کند. پروتکل های مسیریابی IP و مسیریابی بردار فاصله (RIPv2 و EIGRP).
  • روش های مختلفی را که توسط روترها برای یادگیری اطلاعات مسیریابی استفاده می شود، شرح می دهد.
  • شامل بحث در مورد ویژگی‌های پروتکل‌های مختلف مسیریابی پویا، و تفاوت آنها در طراحی و عملکرد است.
  • توضیحات مفصلی از رایج ترین پروتکل های مسیریابی بردار فاصله RIPv2 و EIGRP ارائه می دهد.
  • درباره مکانیسم‌های مختلفی که روترهای IP برای کنترل مسیریابی در شبکه‌ها استفاده می‌کنند، بحث می‌کند.

جیمز آویا، دکترا، دانشمند ارشد تحقیقاتی در مرکز نوآوری مخابرات بریتانیا اتصالات (EBTIC)، دانشگاه خلیفه، ابوظبی، امارات. او چهار کتاب از جمله این کتاب را تالیف کرده است و یکی از اعضای ارشد موسسه مهندسین برق و الکترونیک (IEEE) است.


توضیحاتی درمورد کتاب به خارجی

This book focuses on the fundamental concepts of IP routing and distance-vector routing protocols (RIPv2 and EIGRP). It discusses routing protocols from a practicing engineer’s perspective, linking theory and fundamental concepts to common practices and everyday examples. The book benefits and reflects the author’s more than 22 years of designing and working with IP routing devices and protocols (and Telecoms systems, in general). Every aspect of the book is written to reflect current best practices using real-world examples. This book describes the various methods used by routers to learn routing information. The author includes discussion of the characteristics of the different dynamic routing protocols, and how they differ in design and operation. He explains the processing steps involved in forwarding IP packets through an IP router to their destination and discusses the various mechanisms IP routers use for controlling routing in networks. The discussion is presented in a simple style to make it comprehensible and appealing to undergraduate and graduate level students, research and practicing engineers, scientists, IT personnel, and network engineers. It is geared toward readers who want to understand the concepts and theory of IP routing protocols, through real-world example systems and networks.

  • Focuses on the fundamental concepts of IP routing and distance-vector routing protocols (RIPv2 and EIGRP).
  • Describes the various methods used by routers to learn routing information.
  • Includes discussion of the characteristics of the different dynamic routing protocols, and how they differ in design and operation.
  • Provides detailed descriptions of the most common distance-vector routing protocols RIPv2 and EIGRP.
  • Discusses the various mechanisms IP routers use for controlling routing in networks.

James Aweya, PhD, is a chief research scientist at the Etisalat British Telecom Innovation Center (EBTIC), Khalifa University, Abu Dhabi, UAE. He has authored four books including this book and is a senior member of the Institute of Electrical and Electronics Engineers (IEEE).



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Author
Chapter 1: Open Shortest Path Routing (OSPF) Protocol
	1.1 Introduction
	1.2 Overview of OSPF
	1.3 OSPF Concepts
	1.4 OSPF Areas and Hierarchical Routing
		1.4.1 Backbone Area
		1.4.2 Stub Area, Not-So-Stubby Area, and Totally Stubby Area
			1.4.2.1 Stub Area
			1.4.2.2 Totally Stubby Area
			1.4.2.3 Not-So-Stubby Area (NSSA)
			1.4.2.4 Totally NSSA
		1.4.3 Transit Area
	1.5 OSPF Router Types
		1.5.1 Internal Router
		1.5.2 Area Border Router (ABR)
		1.5.3 Backbone Router
		1.5.4 Autonomous System Boundary Router (ASBR)
	1.6 OSPF Message Types
		1.6.1 Well-Known OSPF IPv4 Addresses
		1.6.2 OSPF Hello Packet
			1.6.2.1 Communicating Key Parameters
			1.6.2.2 The Network Mask Field
			1.6.2.3 The Neighbor Field
			1.6.2.4 The Hello Interval and Router Dead Interval Fields
			1.6.2.5 The Options Field
			1.6.2.6 The Router Priority, Designated Router, and Backup Designated Router Fields
			1.6.2.7 Sending Hello Packets on Broadcast and Non-Broadcast Network Segments
		1.6.3 OSPF Database Description Packet
			1.6.3.1 Rationale Behind the Use of Database Description Packets
			1.6.3.2 Database Exchange Process and the Master/Slave Relationship
				1.6.3.2.1 Understanding the Master/Slave Relationship
				1.6.3.2.2 Choosing the Master
				1.6.3.2.3 The I (Initialize), M (More), and MS (Master/Slave) Bits
				1.6.3.2.4 Database Description (DD) Sequence Number Field
				1.6.3.2.5 The M (More) Bit
			1.6.3.3 The Options Field
			1.6.3.4 The Interface MTU Field
		1.6.4 OSPF Link-State Request Packet
		1.6.5 OSPF Link-State Update Packet
		1.6.6 OSPF Link-State Acknowledgment Packet
		1.6.7 LSA Formats
			1.6.7.1 Type 1 LSA: Router-LSA
			1.6.7.2 Type 2 LSA: Network-LSA
			1.6.7.3 Type 3 LSA: Summary-LSA
			1.6.7.4 Type 4 LSA: ASBR-Summary-LSA
			1.6.7.5 Type 5 LSA: AS-External-LSA
			1.6.7.6 Type 7 LSA: Not-So-Stubby Area LSA
			1.6.7.7 Other LSA Types
	1.7 Sending and Receiving LSAs
		1.7.1 Originating OSPF LSAs
		1.7.2 The LSA Flooding Procedure
			1.7.2.1 First Part of the LSA Flooding Process
			1.7.2.2 Second Part of the LSA Flooding Process
		1.7.3 Determining Which LSA Is More Recent
		1.7.4 When a Router Receives LSAs It Has Originated
		1.7.5 Retransmitting LSAs and the Use of Link-State Retransmission Lists
		1.7.6 Installing LSAs in the LSDB
		1.7.7 Aging the LSDB
		1.7.8 Premature Aging of LSAs
	1.8 OSPF Router Identifier
	1.9 OSPF Network Types
		1.9.1 Point-to-Point (P2P)
		1.9.2 Broadcast
		1.9.3 Non-Broadcast Multiple Access (NBMA)
		1.9.4 Point-to-Multipoint (P2MP)
	1.10 OSPF Packet Processing
		1.10.1 Sending OSPF Packets
		1.10.2 Receiving OSPF Packets
	1.11 Neighbor Discovery and Maintenance
		1.11.1 OSPF Neighbor States
		1.11.2 OSPF Neighbor Adjacency Formation
		1.11.3 Formation of OSPF Adjacencies on Broadcast Multiaccess Networks
		1.11.4 Election of the Designated Router (DR) and Backup Designated Router (BDR)
		1.11.5 OSPF Adjacencies on Non-Broadcast Multiple Access (NBMA) Networks
	1.12 OSPF Link-State Database Synchronization
	1.13 LSDB Synchronization on Multiaccess Networks
	1.14 Advertising LSDB Changes and OSPF “Paranoid” Updates
	1.15 OSPF Shortest Path Computations and the IP Routing Table
	1.16 OSPF Routing Metrics
		1.16.1 OSPF Metric Types and Routes
		1.16.2 OSPF Cost Calculation
		1.16.3 Cost of Intra-Area Routes
		1.16.4 Cost of Inter-Area Routes
		1.16.5 Cost of a Default Route in an OSPF Stub Area
	1.17 OSPF Route Summarization
		1.17.1 Benefits of OSPF Route Summarization
		1.17.2 Types of OSPF Route Summarization
	1.18 OSPF Virtual Links
		1.18.1 Connecting a Non-Backbone Area to the Backbone Area through a Virtual Link
		1.18.2 Interconnecting a Split Backbone through a Virtual Link
	1.19 OSPF Authentication
		1.19.1 Null Authentication
			1.19.1.1 Generating Null Authentication Messages
			1.19.1.2 Verifying Null Authentication Messages
		1.19.2 Simple Password Authentication
			1.19.2.1 Generating Simple Password Authentication Messages
			1.19.2.2 Verifying Simple Password Authentication Messages
		1.19.3 Cryptographic Authentication
			1.19.3.1 Generating Cryptographic Authentication Messages
			1.19.3.2 Verifying Cryptographic Authentication Messages
	1.20 OSPF Protocol Data Structures and Parameters
		1.20.1 Global Parameters
		1.20.2 Area Data Structure and Parameters
		1.20.3 Interface Data Structure and Parameters
		1.20.4 Neighbor Data Structure and Parameters
		1.20.5 List of External Routes
		1.20.6 Virtual Link Parameters
		1.20.7 NBMA Network Parameters
		1.20.8 Point-to-Multipoint (P2MP) Network Parameters
		1.20.9 Host Route Parameters
		1.20.10 The Routing Table Structure
	1.21 High-Level OSPF Router Architecture, Processes, and Databases
		1.21.1 The OSPF Process
		1.21.2 The Routing Table Manager Process
		1.21.3 Understanding the Link-State Routing Process
			1.21.3.1 Link and Link-State
			1.21.3.2 Exchange of Hello Packets and Neighbor Discovery
			1.21.3.3 Building the Link-State Advertisements
			1.21.3.4 Flooding the LSAs
			1.21.3.5 Building the Link-State Database
			1.21.3.6 Building the Shortest Path Tree (SPT)
			1.21.3.7 Adding OSPF Best Routes to the Routing Table
		1.21.4 The CSPF Calculator Process
			1.21.4.1 Traffic Engineering Protocols
			1.21.4.2 Traffic Engineering Database (TED)
			1.21.4.3 Constrained Shortest Path First (CSPF)
	1.22 Summary of OSPF Features
	Review Questions
	References
Chapter 2: Intermediate System- to-Intermediate System (IS-IS) Protocol
	2.1 Introduction
	2.2 Overview of IS-IS
	2.3 Basic OSI Terminology and OSI Network Layer Protocols
	2.4 OSI Routing Hierarchies
		2.4.1 OSI Routing Levels
			2.4.1.1 Level 0 Routing
			2.4.1.2 Level 1 Routing
			2.4.1.3 Level 2 Routing
			2.4.1.4 Level 3 Routing
		2.4.2 OSI Intradomain Routing
	2.5 IS-IS Hierarchical Routing
		2.5.1 What Is Integrated IS-IS?
		2.5.2 IS-IS Areas
		2.5.3 Level 1 Router
		2.5.4 Level 2 Router
		2.5.5 Level 1/Level 2 (or Level 1-2) Router
		2.5.6 Characteristics of IS-IS Areas
		2.5.7 OSPF Areas Versus IS-IS Areas
	2.6 NSAP Addresses
		2.6.1 NSAP Addressing Format
		2.6.2 Initial Domain Part (IDP) and Domain Specific Part (DSP)
		2.6.3 NSEL Field in NSAP Addressing
		2.6.4 System Identification in IS-IS
	2.7 IS-IS Routing Metrics
		2.7.1 Original IS-IS Metrics
		2.7.2 Extended or Wide Metrics
		2.7.3 Maintaining Per-Metric LSDBs in an IS-IS Router
	2.8 IS-IS Message Types
		2.8.1 IS-IS Hello PDUs
			2.8.1.1 IS-IS Router Manual Area Addresses
			2.8.1.2 Variable-Length Fields in IS-IS Hello PDUs
			2.8.1.3 IS-IS Hello Messages and Adjacency Formations
			2.8.1.4 OSI End System and Intermediate System Hello Messages
			2.8.1.5 IS-IS Hello PDUs Related Timers and Parameters
		2.8.2 IS-IS Link-State PDUs
			2.8.2.1 The Remaining Lifetime Field
			2.8.2.2 The LSP ID Field
			2.8.2.3 The Sequence Number Field
			2.8.2.4 The LSP Checksum Field
			2.8.2.5 The LSP Database Overload (LSPDBOL) Bit
			2.8.2.6 Variable-Length Fields in IS-IS Link-State PDUs
				2.8.2.6.1 Level 1 LAN LSP TLVs
				2.8.2.6.2 Level 2 LAN LSP TLVs
				2.8.2.6.3 Level 1 Area Partition Repair
				2.8.2.6.4 Level 2 Pseudonode and Non-Pseudonode LSPs
			2.8.2.7 LSP Related Timers and Parameters
		2.8.3 IS-IS Complete Sequence Numbers PDUs
			2.8.3.1 Variable-Length Fields in IS-IS Sequence Numbers PDUs
			2.8.3.2 CSNP Related Timers and Parameters
		2.8.4 IS-IS Partial Sequence Numbers PDUs
			2.8.4.1 PSNP-Related Timers and Parameters
	2.9 Network Types and Adjacencies
		2.9.1 IS-IS Adjacency Formation
		2.9.2 Three-Way Handshake for Forming IS-IS LAN Adjacencies
		2.9.3 Three-Way Handshake for Forming IS-IS Point-to-Point Adjacencies
			2.9.3.1 Original IS-IS Point-to-Point Adjacency Formation Process
			2.9.3.2 Extensions for Reliable IS-IS Point-to-Point Adjacency Formation
		2.9.4 ES-IS Adjacencies
	2.10 Designated Intermediate System (DIS) and Pseudonodes
		2.10.1 IS-IS Pseudonode Concept
		2.10.2 Functions of the DIS
		2.10.3 Election of the DIS
			2.10.3.1 IS-IS DIS Election
				2.10.3.1.1 No Requirement for Backup DIS
				2.10.3.1.2 Determinism in DIS Election
				2.10.3.1.3 DIS Preemption
				2.10.3.1.4 DIS Resignation
			2.10.3.2 OSPF Designated Router (DR) and Backup DR (BDR) Election
	2.11 Handling IP Routing with Integrated IS-IS
		2.11.1 Routing Characteristics of Integrated IS-IS
			2.11.1.1 Router Types
			2.11.1.2 Routing Domain Types
			2.11.1.3 Area Types in a Dual Routing Domain
		2.11.2 Area and Domain Requirements and Restrictions
		2.11.3 Level 1 and Level 2 IP Routing
		2.11.4 Integrated IS-IS TLV Extensions
			2.11.4.1 IP-Specific TLVs in LAN and Point-to-Point IS-IS Hello PDUs
			2.11.4.2 IP-Specific TLVs in ISO 9542 IS Hello PDUs
			2.11.4.3 IP-Specific TLVs in LSPs
				2.11.4.3.1 IP-Specific TLVs in Level 1 LSPs
				2.11.4.3.2 IP-Specific TLVs in Level 2 LSPs
			2.11.4.4 IP-Specific TLVs in Sequence Number PDUs
		2.11.5 Addressing Routers in IS-IS PDUs
		2.11.6 Routing Based on IS-IS Routing Metric Type
		2.11.7 Route Preference Order and the SPF Algorithm Computation
			2.11.7.1 Level 1 Routing Order of Route Preference
			2.11.7.2 Level 2 Routing Order of Route Preference
		2.11.8 Multiaccess Broadcast LANs, Designated Intermediate System, and Pseudonode
		2.11.9 Maintaining Router Adjacencies in Integrated IS-IS
		2.11.10 Route Summarization in Integrated IS-IS
		2.11.11 Route Redistribution in Integrated IS-IS
	2.12 Extensions for Domain-Wide IP Prefix Distribution with Integrated IS-IS
	2.13 Newer IS-IS TLV Extensions
		2.13.1 IS-IS Traffic Engineering and MPLS TLVs
			2.13.1.1 The Extended IS Reachability TLV (Code 22)
			2.13.1.2 The Extended IP Reachability TLV (Code 135)
			2.13.1.3 The Traffic Engineering Router ID TLV (Code 134)
			2.13.1.4 Shared Risk Link Group TLV (Code 138)
		2.13.2 IS-IS Dynamic Hostname TLV
		2.13.3 IPv6-Specific IS-IS TLVs
			2.13.3.1 IPv6 Reachability TLV (Code 236)
			2.13.3.2 IPv6 Interface Address TLV (Code 232)
			2.13.3.3 IPv6 Network Layer Protocol ID (NLPID)
		2.13.4 Multi-Topology IS-IS TLVs
			2.13.4.1 Single-Topology IS-IS Support for IPv6
			2.13.4.2 Multi-Topology IS-IS Support for IPv6
			2.13.4.3 TLVs for Multi-Topology IS-IS
				2.13.4.3.1 Multi-Topology TLV (Code 229)
				2.13.4.3.2 MT Intermediate Systems TLV (Code 222)
				2.13.4.3.3 Multi-Topology Reachable IPv4 Prefixes TLV (Code 235)
				2.13.4.3.4 Multi-Topology Reachable IPv6 Prefixes TLV (Code 237)
			2.13.4.4 Multi-Topology Adjacencies
				2.13.4.4.1 Establishing and Maintaining Multi-Topology Adjacencies
				2.13.4.4.2 Forming Adjacencies on Point-to-Point Interfaces
				2.13.4.4.3 Forming Adjacencies on Broadcast Interfaces
			2.13.4.5 Advertising MT Reachable Intermediate Systems in LSPs
			2.13.4.6 Multitopologies and Overload, Partition, and Attached Bits
			2.13.4.7 Multi-Topology SPF Computation
			2.13.4.8 IP Forwarding Considerations in Multi-Topology IS-IS
				2.13.4.8.1 Each MT Belongs to a Distinct Network Address Family
				2.13.4.8.2 A Number of MTs Belong to the Same Network Address Family
				2.13.4.8.3 Some MTs Are Not Used for Packet Forwarding Purposes
			2.13.4.9 Multi-Topology Network Management Considerations
				2.13.4.9.1 Create Dedicated Management MT to Include All the Nodes
				2.13.4.9.2 Extend the Default Topology to All the Nodes
		2.13.5 IS-IS Router Capability TLV
	2.14 IS-IS Link-State Database Synchronization
		2.14.1 IS-IS Reliable Flooding
		2.14.2 LSDB Update Process
			2.14.2.1 LSDB Update Process on Multiaccess Broadcast Network Segments
			2.14.2.2 LSDB Update Process on Point-to-Points Links
		2.14.3 Handling LSPs
			2.14.3.1 Handling Newer LSPs
			2.14.3.2 Handling Older LSPs
			2.14.3.3 Handling Duplicate LSPs
	2.15 Shortest-Path First and the Link-State Database
		2.15.1 SPF Algorithm Highlights
	2.16 OSI Routing and Suboptimal Inter-Area Routing
		2.16.1 IS-IS Suboptimal Inter-Area Routing
		2.16.2 Avoiding Suboptimal Routing Using IS-IS Route Leaking
		2.16.3 Configuring Default Routes Using the “default information originate” Command
		2.16.4 Other Drivers for IS-IS Route Leaking
		2.16.5 Some Pitfalls of IS-IS Route Leaking
	2.17 IS-IS Authentication
		2.17.1 IS-IS Simple Password Authentication
			2.17.1.1 Interface Password
			2.17.1.2 LSP Authentication (Area- or Domain-Wide)
			2.17.1.3 Limitations of Simple Password Authentication
		2.17.2 IS-IS HMAC-MD5 Cryptographic Authentication
		2.17.3 IS-IS Generic Authentication
			2.17.3.1 Authentication TLV and IS-IS Security Association
			2.17.3.2 Authentication Process
	2.18 Subnetwork Independent Functions of an IS-IS Router and Data Flow
		2.18.1 Receive Process
		2.18.2 Update Process
		2.18.3 Decision Process
		2.18.4 Forwarding Process
	2.19 High-Level IS-IS Router Architecture, Processes, and Databases
		2.19.1 IS-IS Protocol Process
		2.19.2 IS-IS Subnetwork Dependent Process
		2.19.3 IS-IS Router Databases
		2.19.4 Routing Table Manager
		2.19.5 The IP Routing Table
		2.19.6 IS-IS Traffic Engineering
			2.19.6.1 Path Computation and Selection
			2.19.6.2 CSPF Calculator Process
			2.19.6.3 Signaling and Distributing MPLS Labels
	2.20 Summary of IS-IS Features
	Review Questions
	References
Chapter 3: Border Gateway Protocol (BGP)
	3.1 Introduction
	3.2 Interior Versus Exterior Routing
	3.3 Using BGP
		3.3.1 Stub Autonomous System
		3.3.2 Multihomed Autonomous System
		3.3.3 Using BGP to Provide Transit Connectivity within an Autonomous System
	3.4 BGP Peering
		3.4.1 Internal and External Peering
		3.4.2 Interaction between IGPs and BGP
		3.4.3 BGP Peering over Physical Versus Logical Connections and Multihop eBGP
		3.4.4 BGP Peering Using IP Loopback Addresses
		3.4.5 BGP Transport
	3.5 BGP Message Types
		3.5.1 BGP OPEN Message
		3.5.2 BGP UPDATE Message
			3.5.2.1 Using the BGP UPDATE Message
			3.5.2.2 Withdrawn Route Field and Handling BGP Route Withdrawals
			3.5.2.3 UPDATE Message Path Attribute Field
				3.5.2.3.1 Attribute Flags
				3.5.2.3.2 Attribute Type Code
			3.5.2.4 Network Layer Reachability Information (NLRI) Field
			3.5.2.5 Frequency of UPDATE Messages
				3.5.2.5.1 Frequency of Route Advertisement
				3.5.2.5.2 Frequency of Route Origination
		3.5.3 BGP NOTIFICATION Message
			3.5.3.1 Handling Message Header Error
			3.5.3.2 Handling OPEN Message Error
			3.5.3.3 Handling UPDATE Message Error
			3.5.3.4 Handling NOTIFICATION Message Error
			3.5.3.5 Handling Hold Timer Expired Error
			3.5.3.6 Handling BGP Finite State Machine Error
			3.5.3.7 Sending the Error Code Cease
			3.5.3.8 BGP Connection Collision Detection
		3.5.4 BGP KEEPALIVE Message
		3.5.5 BGP ROUTE-REFRESH Message
	3.6 BGP Session States and Finite State Machine
		3.6.1 Idle State
		3.6.2 Connect State
		3.6.3 Active State
		3.6.4 OpenSent State
		3.6.5 OpenConfirm State
		3.6.6 Established State
	3.7 BGP Version Negotiation
	3.8 BGP Path Attributes
		3.8.1 Categories of BGP Path Attributes
			3.8.1.1 Handling Unrecognized Optional BGP Path Attributes
		3.8.2 Origin Attribute (ORIGIN)
		3.8.3 AS-Path Attribute (AS_PATH)
			3.8.3.1 Using the AS-Path Attribute
			3.8.3.2 Originating a BGP Route
			3.8.3.3 Propagating a BGP Route
		3.8.4 Next-Hop Attribute (NEXT_HOP)
			3.8.4.1 Advertising a Route to an Internal BGP Peer
			3.8.4.2 Advertising a Route to an External BGP Peer One Hop Away
			3.8.4.3 Advertising a Route to an External BGP Peer Multiple Hops Away
			3.8.4.4 Other Rules Governing the Advertisement of a Route
		3.8.5 Multi-Exit Discriminator (MED) Attribute (MULTI_EXIT_DISC)
		3.8.6 Local Preference Attribute (LOCAL_PREF)
		3.8.7 Communities Attribute (COMMUNITIES)
			3.8.7.1 BGP Communities Attribute
			3.8.7.2 BGP Extended Communities Attribute
				3.8.7.2.1 Use of the BGP Extended Communities Attribute
		3.8.8 Atomic Aggregate Attribute (ATOMIC_AGGREGATE)
		3.8.9 Aggregator Attribute (AGGREGATOR)
		3.8.10 Weight Attribute (WEIGHT)
	3.9 Understanding the iBGP Full Mesh Requirement
	3.10 Autonomous System Numbers (ASNs)
		3.10.1 Original 16-bit ASN Space
		3.10.2 Newer 32-Bit ASN Space
			3.10.2.1 Extensions for Carrying 32-bit ASNs in BGP
	3.11 BGP Path Attributes and Route Aggregation
		3.11.1 Route Aggregation Rules
		3.11.2 AS_PATH Attribute and Route Aggregation
	3.12 Considering IGP Cost when Deciding the Best Exit Point of an Autonomous System
	3.13 Understanding the Role of the BGP Routing Table and IP Routing Table in BGP
	3.14 Alternatives to the iBGP Full Mesh Requirement
	3.15 BGP Confederations
		3.15.1 Rationale Behind BGP Confederations
		3.15.2 BGP Confederation Parameters
		3.15.3 Operation
		3.15.4 AS_PATH Modification Rules
			3.15.4.1 Originating a BGP Route
			3.15.4.2 Propagating a BGP Route
	3.16 BGP Route Reflection
		3.16.1 Concept of Route Reflection
		3.16.2 Route Reflection with Redundancy
		3.16.3 Preventing Routing Information Loops During Route Reflection
		3.16.4 Route Reflection with Multiple Clusters
	3.17 BGP Route Server
		3.17.1 BGP Route Server Behaviors
			3.17.1.1 BGP Attribute Transparency
			3.17.1.2 NEXT_HOP Attribute
			3.17.1.3 AS_PATH Attribute
			3.17.1.4 MED (MULTI_EXIT_DISC) Attribute
			3.17.1.5 BGP Communities Attributes
	3.18 BGP Best Path Selection Process
		3.18.1 Phase 1: Calculating the Degree of Route Preference
		3.18.2 Phase 2: Best Path Selection
			3.18.2.1 BGP Route Resolvability Condition
			3.18.2.2 A Note on BGP Recursive Route Lookup
			3.18.2.3 Deep Dive into BGP Recursive Lookup
				3.18.2.3.1 Traditional non-BGP Recursive Route Lookup
			3.18.2.4 BGP Best Path Selection Algorithm (with Tie Breakers)
		3.18.3 Phase 3: BGP Route Dissemination
			3.18.3.1 BGP Update-Send Process
			3.18.3.2 Originating BGP Routes
	3.19 BGP Session Security
		3.19.1 TCP MD5 Signature Option
		3.19.2 TCP Authentication Option (TCP-AO)
			3.19.2.1 Format of the TCP Authentication Option
			3.19.2.2 TCP-AO Keys and Their Properties
				3.19.2.2.1 Master Key Tuple (MKT)
				3.19.2.2.2 Traffic Keys
			3.19.2.3 Per-Connection TCP-AO Parameters
			3.19.2.4 Cryptographic Algorithms
				3.19.2.4.1 MAC Algorithms
				3.19.2.4.2 Traffic Key Derivation Functions (KDFs)
			3.19.2.5 Sending TCP Segments with TCP-AO
			3.19.2.6 Receiving TCP Segments with TCP-AO
	3.20 Factors Affecting BGP Device and Network Convergence
		3.20.1 Number of BGP Peers
		3.20.2 Number of Routes per BGP Peer
		3.20.3 Routing Policy Processing/Reconfiguration
		3.20.4 Interactions with Other Routing Protocols
		3.20.5 BGP Route Flap Damping
		3.20.6 Handling BGP Control Plane Traffic
		3.20.7 Handling BGP Data Plane Traffic
		3.20.8 BGP Timers
		3.20.9 BGP Authentication
	3.21 High-Level BGP Router Architecture, Processes, and Databases
		3.21.1 BGP RIB Manager Process
		3.21.2 Neighbor Manager Process
		3.21.3 Policy Manager Process
			3.21.3.1 Input Policy Engine
			3.21.3.2 Output Policy Engine
		3.21.4 Routing Table Manager Process
		3.21.5 BGP Sessions and Operational Events
		3.21.6 Processing of BGP UPDATE Messages: Sending and Receiving
	3.22 BGP Link-State Distribution
		3.22.1 Need for Link-State Distribution and Traffic Engineering Across Internetworks
		3.22.2 Example Deployment Scenario of BGP-LS
		3.22.3 Example Link-State Distribution Architecture
	3.23 Summary of BGP Features
	Review Questions
	References
Index
	A
	B
	C
	I
	L
	O
	P
	R
	T
	V




نظرات کاربران