ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Introduction to unmanned aircraft systems

دانلود کتاب مقدمه ای بر سیستم های هواپیمای بدون سرنشین

Introduction to unmanned aircraft systems

مشخصات کتاب

Introduction to unmanned aircraft systems

ویرایش: [3 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9780367366599, 0367366592 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: [525] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 103 Mb 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Introduction to unmanned aircraft systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه ای بر سیستم های هواپیمای بدون سرنشین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقدمه ای بر سیستم های هواپیمای بدون سرنشین

مقدمه‌ای بر سیستم‌های هواپیمای بدون سرنشین، نسخه سوم اصول اولیه سیستم‌های هواپیمای بدون سرنشین (UAS) از سنسورها، کنترل‌ها و اتوماسیون گرفته تا مقررات، رویه‌های ایمنی و عوامل انسانی را بررسی می‌کند. این کتاب پرفروش کاملاً به‌روز شده با ارائه فصل‌هایی توسط کارشناسان برجسته، نیاز به یک کتاب درسی دانشگاهی در دسترس و مؤثر را برطرف می‌کند. با تمرکز بر کاربردهای غیرنظامی UAS، متن با مروری تاریخی از وسایل نقلیه هوایی بدون سرنشین آغاز می‌شود و به بررسی هر زیرسیستم اصلی UAS می‌پردازد. ترکیبی از پوشش فنی قابل درک و اطلاعات به روز در مورد سیاست ها و مقررات، متن را برای برنامه های مهندسی هوافضا و هوانوردی مناسب می کند.


توضیحاتی درمورد کتاب به خارجی

Introduction to Unmanned Aircraft Systems, Third Edition surveys the basics of unmanned aircraft systems (UAS), from sensors, controls, and automation to regulations, safety procedures, and human factors. Featuring chapters by leading experts, this fully updated bestseller fills the need for an accessible and effective university textbook. Focussing on the civilian applications of UAS, the text begins with an historical overview of unmanned aerial vehicles, and proceeds to examine each major UAS subsystem. Its combination of understandable technical coverage and up-to-date information on policy and regulation makes the text appropriate for both Aerospace Engineering and Aviation programs.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of contents
Preface
Acknowledgments
About the Editors
Contributors
1 History
	1.1 The Beginning
	1.2 The Need for Effective Control
	1.3 The Radio and the Autopilot
	1.4 The Aerial Torpedo: The First Modern Unmanned Aircraft (March 6, 1918)
	1.5 The Target Drone
	1.6 WWII U.S. Navy Assault Drone
	1.7 WWII German V-1 Buzz Bomb
	1.8 WWII German Mistletoe
	1.9 Early Unmanned Reconnaissance Aircraft
	1.10 Radar Decoys: 1950s–1970s
	1.11 Long-Range Reconnaissance Unmanned Aircraft Systems: 1960s–1970s
	1.12 First Helicopter Unmanned Aircraft Systems: 1960s–1970s
	1.13 The Hunt for Autonomous Operation
	1.14 The Birth of the Twin Boom Pushers
	1.15 Desert Storm: 1991
	1.16 Overcoming the Manned Pilot Bias
	1.17 Amateur-Built Unmanned Aircraft
	1.18 Will Unmanned Aircraft Systems Replace Manned Aircraft?
	Discussion Questions
	Notes
2 UAS Applications
	2.1 Introduction
	2.2 Basic Technology
		2.2.1 Control Methods
			2.2.1.1 Manual Control
			2.2.1.2 Stabilized Control
			2.2.1.3 Automated Control
	2.3 Payloads
		2.3.1 Remote Sensing
		2.3.2 Passive Electro-Optical Sensors
			2.3.2.1  Electro-Optical Imaging System
			2.3.2.2 Visible RGB Sensors
			2.3.2.3 Full-Motion Video Sensors
			2.3.2.4 IR/NIR/SWIR Sensors
			2.3.2.5 MWIR/LWIR Sensors
		2.3.3 Active Sensors
			2.3.3.1 LiDAR
			2.3.3.2 Radar and Synthetic Aperture Radar
			2.4.1 UAS Fleet Management Software
	2.4 UAS Software for Commercial Applications
		2.4.2 Autopilot Software
		2.4.3 Sensor Data Asset Management
		2.4.4 Analytical Photogrammetry Software
		2.4.5 Change Detection and Machine Learning
		2.4.6 Computer Vision
			2.4.6.1 Autonomous Flight Path Algorithms
	2.5 Commercial Applications
		2.5.1 Building and Roof Inspections
		2.5.2 Aircraft Inspections
		2.5.3 Oil, Gas, Power Lines, and Nuclear Power Plants
		2.5.4 Industrial Inspection
		2.5.5 Civil Infrastructure
		2.5.6 Electric Power Industry
		2.5.7 Wind Turbine Inspection
		2.5.8 Tower/Antenna Inspection
		2.5.9 Oil and Gas Inspection
		2.5.10 Photogrammetric Applications
		2.5.11 Aerial Mapping
		2.5.12 Aerial Surveying
		2.5.13 Volumetrics
		2.5.14 Precision Agriculture
		2.5.15 Natural Resource Management
		2.5.16 Aerial Filming and Photography
		2.5.17 Filmmaking
		2.5.18 Real Estate
		2.5.19 Marketing
		2.5.20 News Reporting
		2.5.21 Intelligence, Surveillance, Reconnaissance, and Emergency Response
		2.5.22 Law Enforcement
		2.5.23 Search and Rescue
		2.5.24 Signals Intelligence
		2.5.25 Communications Relay
		2.5.26 Atmospheric Information Collection
		2.5.27 Meteorology
		2.5.28 Hazardous Material Detection
		2.5.29 Radioactive Material Detection
		2.5.30 Applications Requiring Physical Interaction with Substances, Materials, or Objects
		2.5.31 Aerial Chemical Application
		2.5.32 Water Sampling
		2.5.33 Small Unmanned Cargo Aircraft Delivery
		2.5.34 Large Unmanned Cargo Delivery
	2.6 Additional Considerations
		2.6.1 Mission Planning
		2.6.2 Data Processing and Analysis
	2.7 Conclusion
	Discussion Questions
	Note
	References
3 The “System” in UAS
	3.1 Introduction
		3.1.1 What Makes Up an Unmanned Aircraft System
	3.2 UAS/RPA
		3.2.1 Fixed Wing
		3.2.2 Vertical Takeoff and Landing
		3.2.3 Hybrid Platforms
	3.3 Command and Control Element
		3.3.1 Autopilot
		3.3.2 Ground Control Station
	3.4 Communication Data Link
		3.4.1 Radio Line-of-Sight
		3.4.2 Beyond Radio Line-of-Sight
	3.5 Payload
		3.5.1 Electro-Optical
		3.5.2 Thermal Infrared
		3.5.3 Spectral
		3.5.4 Laser
	3.6 Launch and Recovery
	3.7 Human Element
	Discussion Questions
4 UAS Sensing – Theory and Practice
	4.1 Why We Fly
	4.2 Introduction to Sensing
		4.2.1 In Situ Sensing
		4.2.2 Remote Sensing
		4.2.3 Platform Considerations
	4.3 Remote Sensing
		4.3.1 Overview
		4.3.2 Sensor Types
			4.3.2.1 Spot Sensors
			4.3.2.2 Imaging Sensors
		4.3.3 Common Sensors
			4.3.3.1 Visible Spectrum Cameras and Near-Infrared Cameras
			4.3.3.2 Long-Wave Infrared Cameras
			4.3.3.3 Hyperspectral Imagers
			4.3.3.4 LiDAR
			4.3.3.5 Synthetic Aperture Radar
	4.4 Geospatial Data Types
		4.4.1 Raster Data
		4.4.2 Vector Data
	4.5 Image Processing Concepts
		4.5.1 Structure from Motion
			4.5.1.1 Point Clouds
	4.6 Data Management
		4.6.1 Data Security (Cloud Security)
		4.6.2 Long-Term Data Storage
	4.7 Applications
		4.7.1 Motion Imagery
		4.7.2 Emergency Response
		4.7.3 Map (Background) Imagery
		4.7.4 Infrastructure Inspection
		4.7.5 Vegetation Health Measurements
			4.7.5.1 Vegetation Index: An Overview
			4.7.5.2 UAS in Agriculture-Vegetation Indices
			4.7.5.3 Thermal Mapping
			4.7.5.4 Broader Vegetation Management
			4.7.5.5 Airframes for Vegetation Applications
	4.8 Conclusions
	Discussion Questions
	Bibliography
5 UAS Regulations, Standards, and Guidance
	5.1 Introduction
	5.2 U.S. Aviation Regulatory System
		5.2.1 History of U.S. Aviation Regulations
		5.2.2 Federal Aviation Administration
		5.2.3 Enforcement and Sanctions
	5.3 Current U.S. Regulation of Unmanned Aircraft
	5.4 How the Process Works
	5.5 Standards and Guidance versus Regulations
	5.6 International Aviation Regulations
	5.7 Other Nations’ Domestic Regulatory Efforts
	5.8 The Way Forward: The Future of Unmanned Aircraft Systems Regulations
	5.9 Conclusion
	Discussion Questions
	Notes
6 Human Factors in Unmanned Aerial Systems
	6.1 Introduction
	6.2 The Enormity of the Scope
	6.3 A Caution Regarding Hindsight Bias
	6.4 Human Perception and RPA Operations
	6.5 Attention
	6.6 Selective Attention
	6.7 Focused Attention
	6.8 Divided Attention
	6.9 Sustained Attention
	6.10 Human Error
	6.11 Threat and Error Management
	6.12 Crew Resource Management
	6.13 Situation Awareness
		6.13.1 Vigilance
		6.13.2 Diagnosis
		6.13.3 Risk Analysis
		6.13.4 Action
	6.14 Human–Machine Interfacing
	6.15 Compatibility
	6.16 Compatibility Types
	Recommended Readings
	Discussion Questions
	References
7 Safety Assessments
	7.1 Introduction
	7.2 Hazard Analysis
		7.2.1 Purpose
		7.2.2 Preliminary Hazard List
		7.2.3 Preliminary Hazard Analysis
		7.2.4 Operational Hazard Review and Analysis
		7.2.5 Change Analysis
	7.3 Risk Assessment
		7.3.1 Purpose
		7.3.2 Development
		7.3.3 Use
	7.4 Safety Evaluation
		7.4.1 Risk Assessment
		7.4.2 Flight Test Cards
		7.4.3 Airworthiness Certification
	7.5 Accident Investigation Considerations
		7.5.1 Software and Hardware
		7.5.2 Human Factors
		7.5.3 Suggestions
	7.6 Conclusion and Recommendations
	Discussion Questions
	References
8 Export Control and ITAR
	8.1 Introduction
	8.2 Glossary of Terms for Export Control Understanding
	8.3 The Sources of Export Controls
	8.4 What Is Export Control?
	8.5 Where Do Export Controls Come From?
	8.5.1 Export Control Reform Act and UAS
	8.6 Export Administration Regulations
		8.6.1 Commerce Control List (CCL)
		8.6.2 Missile Technology Control Regime Annex
	8.7 International Traffic in Arms Regulation (ITAR)
		Category VIII – Aircraft, Space, and Associated Equipment
		Category XI – Military and Space Electronics
		Category XV – Spacecraft Systems and Associated Equipment Aircraft
		Other USML Categories Also Have the Potential to Include Items Relevant to USML Controls
	8.8 How Do Export Control Issues Come Up in Real Life?
	8.9 How to Protect Export-Controlled Products and Information (“Know How”)?
	8.10 What Are Export Control Violations?
	8.11 How Do We Perform Work Outside of the United States?
	Discussion Questions
	Notes
9 Unmanned Aircraft System Design
	9.1 Introduction: Mission Capability-Derived Design
	9.2 The UAS Design Process
		9.2.1 Design Tools
		9.2.2 Design Automation and Optimization
	9.3 Unmanned Aircraft Subsystems
		9.3.1 Airframe
		9.3.2 Propulsion System
		9.3.3 Flight Control System
		9.3.4 Control Station
		9.3.5 Payloads
		9.3.6 Communications, Command, and Control (C3)
	9.4 Standards for UAS Design, Construction, and Operations
	9.5 UAS Design Verification and Mission Validation
	9.6 Design Characteristics for UAS
	Discussion Questions
	References
10 UAS Airframe Design
	10.1 Introduction
	10.2 A Few Observations Regarding UAS Design
		10.2.1 Form Follows Function: The Best Place to Begin the Design Process
		10.2.2 Economic Influences on the Design Process
		10.2.3 Exogenous Factors Affecting the Design of UASs
		10.2.4 Selected Preliminary Comments Relevant to UAS Flight Dynamics and Physics
	10.3 Airframe Designs
		10.3.1 Fixed-Wing Designs
			10.3.1.1 Factors in UAS Tail Designs
			10.3.1.2 Conventional Wing, Inverted-T-Tail Aircraft
			10.3.1.3 Conventional Fuselage, Aft Engine Designs
			10.3.1.4 Twin-Boom, Pusher-Propeller Designs
			10.3.1.5 Flying Wings
			10.3.1.6 Canard UASs
		10.3.2 Rotating-Wing or Rotary-Wing Designs
			10.3.2.1 Helicopter UAS
			10.3.2.2 Multirotors
			10.3.2.3 Other Rotating-Wing UASs
	10.4 Launch and Recovery Systems
	10.5 Conclusion
	Discussion Questions
	References
11 UAS Propulsion System Design
	11.1 Introduction
	11.2 Engine Design
		11.2.1 Reciprocating Engines
			11.2.1.1 Four-Cycle Engines
			11.2.1.2 Two-Cycle Engines
			11.2.1.3 Diesel Engines
		11.2.2 Wankel or Rotary Powerplants
		11.2.3 Gas Turbine Engines
			11.2.3.1 Turboprop and Turboshaft Engines
			11.2.3.2 Turbofan Engines
			11.2.3.3 Turbojets
		11.2.4 Electric Motors
	11.3 Propellers and Rotors on UASs
	11.4 Propulsion System Design
		11.4.1 Engine Subsystems
		11.4.2 Propulsion System Installation
		11.4.3 Hybrid Electric Systems
	11.5 Safety Evaluation
		11.5.1 Reliability and Risk Assessment
		11.5.2 Certification
	11.6 Maintainability
	11.7 Conclusion
	Discussion Questions
	References
12 UAS Subsystem Nexus: : The Electrical System
	12.1 Introduction
	12.2 UAS Electrical Systems: General Characteristics
	12.3 sUAS Electrical Systems
		12.3.1 All-Electric sUAS
			12.3.1.1 Power Sources for All-Electric sUAS
			12.3.1.2 Electric sUAS Propulsion
		12.3.2 Nonelectrically Powered sUAS
	12.4 Electrical Systems for Large UASs
	12.5 Conclusion
	Discussion Questions
	References
13 Unmanned Aircraft Systems (UAS) Communications
	13.1 Introduction
	13.2 Electromagnetic Wave (EM) Propagation
		13.2.1 The Electromagnetic Spectrum
		13.2.2 Electromagnetic Wave Propagation in Free Space
	13.3 Basic Communication System and Its Elements
		13.3.1 Modulation
		13.3.2 Transmitter
			13.3.2.1 Frequency Hopping Technique for Transmission
		13.3.3 Channel
			13.3.3.1 Antenna Directivity
			13.3.3.2 Antenna Gain
			13.3.3.3 Antenna Polarization
		13.3.4 Receiver
			13.3.4.1 Signal to Noise   Ratio
			13.3.4.2 Receiver Sensitivity
			13.3.4.3 Despreading the Signal
		13.3.5 Demodulation
	13.4 System Design
		13.4.1 Establishing Bandwidth Requirements
		13.4.2 Link Design
			13.4.2.1 Reflection at Antenna–Cable Junction
			13.4.2.2 Losses at the Transmitting Antenna
			13.4.2.3 Losses due to Free Space Propagation
			13.4.2.4 Power Received at the Receiving Antenna
			13.4.2.5 Power in Decibel Milliwatt
			13.4.2.6 Signal-to-Noise Ratio at the Receiver
			13.4.2.7 Calculation of Signal-to-Noise Margin from Receiver Sensitivity
	13.5 Summary of Design Principles
	13.6 Associated Problems from EMI Interference, Jamming, and Multipath
		13.6.1 EMI Interference
		13.6.2 Jamming
		13.6.3 Multipath
	13.7 Review Questions
	Discussion Questions
	References
14 Command and Control
	14.1 Introduction
	14.2 Human Element
	14.3 Datalinks
		14.3.1 RF Spectrum and FCC
		14.3.2 Line-of-Sight Communication
		14.3.3 Beyond Line-of-Sight Communication
		14.3.4 Communication Protocols
			14.3.4.1 MAVLink Protocol
			14.3.4.2 MAVLink Header Structure
			14.3.4.3 MAVLink Message (Payload) Structure
		14.3.5 Error Detection/Correction
		14.3.6 Encryption
	14.4 UAS Flight Control
		14.4.1 Autopilot Systems
		14.4.2 Sensors and Components
		14.4.3 Tuning
	14.5 Large UAS
		14.5.1 IMU/INS Stabilization Systems
		14.5.2 Additional Navigation Options
		14.5.3 Launch and Recovery
	14.6 Open Source
	14.7 Conclusion
	Discussion Questions
	References
15 Unmanned Aircraft Subsystem Integration
	15.1 The Design Process
	15.2 Mission Statement and Objectives
	15.3 Concept Development and Trade Studies
	15.4 Preliminary Design Review
	15.5 Critical Design Review
	15.6 Fabrication
	15.7 System Testing
	15.8 Flight Testing
	15.9 Concluding Remarks
	Discussion Questions
	References
16 Detect and Avoid
	The MITRE Corporation
	16.1 Introduction
		16.1.1 UAS as a Transformational Technology
		16.1.2 Standards as a Driver for UAS Integration
	16.2 Regulatory Basis
	16.3 Functions of DAA System
		16.3.1 Remain Well Clear
		16.3.2 Collision Avoidance
		16.3.3 Detect and Avoid: Subfunctions
	16.4 Process and Functions of a DAA System
		16.4.1 “Observe” Tasks
			16.4.1.1 Detect Target
			16.4.1.2 Track Target
			16.4.1.3 Combine Target Tracks
		16.4.2 “Orient” Tasks
			16.4.2.1 Identify Object
			16.4.2.2 Evaluate Threat
			16.4.2.3 Prioritize Threat
		16.4.3 “Decide” Tasks
			16.4.3.1 Declare/Alert
			16.4.3.2 Determine Maneuver
		16.4.4 “Act” Tasks
			16.4.4.1 Command Maneuver
			16.4.4.2 Execute Maneuver
			16.4.4.3 Return to Course
	16.5 The Role of the Pilot
		16.5.1 Pilot in-the-Loop
		16.5.2 Pilot on-the-Loop
		16.5.3 Pilot Off-the-loop
	16.6 The Role of Air Traffic Control
	16.7 DAA System Components
		16.7.1 Surveillance
		16.7.2 Avoidance Algorithms
		16.7.3 Displays
	16.8 Detect and Avoid in the Terminal Area
	16.9 Conclusion
	Acknowledgments
	Discussion Questions
	Note
	References
17 UAS in Public Safety
	17.1 UAS in Public Safety: Introduction
	17.2 UAS in Public Safety: Laws and Regulations
	17.3 UAS in Public Safety: Policy
	17.4 UAS in Public Safety: Enabling Technology
	17.5 UAS in Public Safety: Training the Operator
	17.6 Conclusion
	Discussion Questions
18 Cybersecurity Counter Unmanned Aircraft Systems (C-UAS) and Artificial Intelligence (AI)
	18.0 Problem – The Risk of Terrorist Attack vs. U.S. Air Defense System
		18.0.1 Contributing Technologies
		18.0.2 Attack/Defense Scenarios
		18.0.3 Chapter 18 Plan
	18.1 Description of the sUAS/UAS Landscape
		18.1.1 Autonomy vs. Automation Levels
		18.1.2 UAS Collaboration
	18.2 Establishment of a Risk Metric and Attack/Defense Scenarios
		18.2.1 Risk
		18.2.2 Attack/Defense (A/D) Scenario Analysis
	18.3 Discussion of Conventional Vulnerabilities of Air Defense Systems (ADS), Attacks by sUASs, and Countermeasures
		18.3.1 What Is the Counter-UAS Problem?
		18.3.2 Operational Protection from Hostile UAS Attacks – A Helicopter View
		18.3.3 Countering UAS Air Threats
		18.3.4 Vulnerabilities Perspective
		18.3.5 Conventional Vulnerabilities of Air Defense Systems (ADS), Attacks by sUAS, and Countermeasures
		18.3.6 Conventional Countermeasures against sUAS / UAS
			18.3.6.1 Active Measures
			18.3.6.2 Passive Measures
		18.3.7 Aggressor Counter-Countermeasures Specific to UAS Deployment – SWARM
	18.4 UAS Sense and Avoid Systems (SAA)
		18.4.1 Airborne Sensing Systems (AS)
		18.4.2 Sensor Parameters
		18.4.3 Autopilot
		18.4.4 SAA Services and Subfunctions
	18.5 SCADA
		18.5.1 “UAS Are Just Flying SCADA Machines!” (Nichols R.-0., 2016)
		18.5.2 SCADA Cyber Vulnerabilities
		18.5.3 SCADA Cyberattack Vectors
		18.5.4 Cyberattack Taxonomy
			18.5.4.1 Espionage
			18.5.4.2 Software-Based Vulnerabilities
			18.5.4.3 Insider Threat Vulnerabilities
			18.5.4.4 Hardware-Based Vulnerabilities
			18.5.4.5 Wireless Attacks
			18.5.4.6 General Attack Possibilities
	18.6 Counter Unmanned Aircraft Systems (C-UAS)
		18.6.1 Active sUAS/UAS Countermeasures
		18.6.2 Passive sUAS/UAS Countermeasures
		18.6.3 Aggressor Counter-Countermeasures Specific to UAS Deployment
		18.6.4 Designing for Stealth
		18.6.5 Design to Acceptable Risk Level
		18.6.6 Detection Signatures
		18.6.7 Acoustical Signatures
		18.6.8 Acoustic Signature Reductions
		18.6.9 Acoustical Detection Issues
		18.6.10 MEMS Gyroscope
		18.6.11 Resonance Effects on MEMS
		18.6.12 Countermeasures to Acoustic Attack – Gyroscopes
		18.6.13 Resonance Tuning
		18.6.14 SWARM C-UAS Functionality and Threats
			Destructive countermeasures include
			Nondestructive Countermeasures include
		18.6.15 SWARM C-UAS Functionality Challenges
		18.6.16 Counter-UAS as Disruptive Technology
		18.6.17 Joint Forces C-UAS Challenges
	18.7 Conclusions
	18.8 Discussion Topics
	Notes
	Bibliography
19 Unmanned Traffic Management (“UTM”)
	Note
20 The Future of Unmanned Aircraft Systems
	20.1 Introduction
	20.2 Anticipated Market Growth
	20.3 The Future of UAS Market Segments
		20.3.1 Private/Commercial UAS Market Segment
		20.3.2 Public UAS Market Segment
		20.3.3 Predicates to Future Market Access
			20.3.3.1 Routine Airspace Access
			20.3.3.2 Training and Certification
	20.4 The Potential for Career Opportunities
	20.5 Emerging Trends in Technology
		20.5.1 Miniaturization
		20.5.2 Power Solutions
			20.5.2.1 Alternative Energy
			20.5.2.2 Electric Options
		20.5.3 Materials Improvements
		20.5.4 Revolutionary Manufacturing
		20.5.5 Computing and Artificial Intelligence
	20.6 Future Applications
		20.6.1 Atmospheric Satellites
		20.6.2 Air Transportation
		20.6.3 Unmanned Combat Air Vehicle
		20.6.4 Commonality/Scalability
		20.6.5 Swarming UAS
	20.7 Five Years and Beyond
	Discussion Questions
	References
Epilogue
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
Index




نظرات کاربران