دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: منطق ویرایش: نویسندگان: Rudolf Carnap سری: ISBN (شابک) : 9780486143491 ناشر: Dover Publications, Inc. سال نشر: 1958 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
کلمات کلیدی مربوط به کتاب مقدمه ای بر منطق نمادین و کاربردهای آن: منطق، منطق نمادین
در صورت تبدیل فایل کتاب Introduction to Symbolic Logic and Its Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر منطق نمادین و کاربردهای آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برخورد واضح، جامع و دقیق موضوع را از مفاهیم ابتدایی تا ساخت و تجزیه و تحلیل زبانهای منطقی نسبتاً پیچیده توسعه میدهد. صدها مسئله، مثال و تمرین. نسخه 1958.
Clear, comprehensive, and rigorous treatment develops the subject from elementary concepts to the construction and analysis of relatively complex logical languages. Hundreds of problems, examples, and exercises. 1958 edition.
CONTENTS PART ONE System of symbolic logic Chapter A. The simple language A 1. The problem of symbolic logic a. The purpose of symbolic language b. The development of symbolic logic 2. Individual constants and predicates a. Individual constants and predicates b. Sentential constants c. Illustrative predicates 3. Sentential connectives a. Descriptive and logical signs b. Connective signs c. Omission of parentheses d. Exercises 4. Truth-tables a. Truth-tables b. Truth-conditions and meaning 5. L-concepts a. Tautologies b. Range and L-truth 6. L-implication and L-equivalence a. L-implication and L-equivalence b. Content c. Classes of sentences d. Examples and exercises 7. Sentential variables a. Variables and sentential formulas b. Sentential variables 8. Sentential formulas that are tautologies a. Conditional formulas that are tautologies b. Interchangeability c. Biconditional formulas that are tautologies d. Derivations 9. Universal and existential sentences a. Individual variables and quantifiers b. Multiple quantification c. Universal conditionals d. Translation from the word-language 10. Predicate variables a. Predicate variables b. Intensions and extensions 11. Value-assignments 12. Substitutions a. Substitutions for sentential variables b. Substitutions for individual variables c. Substitutions for predicate variables d. Theorems on substitutions e. Example and exercises 13. Theorems on quantifiers 14. L-true formulas with quantifiers a. L-true conditionals b. L-true biconditionals c. Exercises 15. Definitions a. Interchangeably b. Definitions c. Examples 16. Predicates of higher levels a. Predicates and predicate variables of different levels b. Raising levels c. Examples and exercises 17. Identity. Cardinal numbers a. Identity b. Examples and exercises c. Cardinal numbers 18. Functors a. Functors. Domains of a relation b. Conditions permitting the introduction of functors 19. Isomorphism Chapter B. The language B 20. Semantical and syntactical systems 21. Rules of formation for language B a. The language B b. The system of types c. Russell’s antinomy d. Sentential formulas and sentences in B e. Definitions in B 22. Rules of transformation for language B a. Primitive sentence schemata b. Explanatory notes on the separate primitive sentences c. Rules of inference 23. Proofs and derivations in language B a. Proofs b. Derivations 24. Theorems on provability and derivability in language B a. General theorems for B b. Interchangeability 25. The semantical system for language B a. Value-assignments and evaluations b. Rules of designation c. Truth 26. Relations between syntactical and semantical systems a. Interpretation of a language b. On the possibility of a formalization of syntax and semantics Chapter C. The extended language C 27. The language C 28. Compound predicate expressions a. Predicate expressions b. Universality c. Class terminology d. Exercises 29. Identity. Extensionality a. Identity b. Regarding the types of logical constants c. Extensionality 30. Relative product. Powers of relations a. Relative product b. Powers of relations c. Supplementary remarks 31. Various kinds of relations a. Representations of relations b. Symmetry, transitivity, reflexivity c. Theorems about relations d. Linear order: series and simple order e. One-oneness 32. Additional logical predicates, functors and connectives a. The null class and the universal class b. Union class and intersection class c. Connections between relations and classes d. Theorems e. Enumeration classes 33. The λ-operator a. The λ-operator b. Rule for the λ-operator c. Definitions with the help of λ-expressions d. The R’s of b 34. Equivalence classes, structures, cardinal numbers a. Equivalence relations and equivalence classes b. Structures c. Cardinal numbers d. Structural properties 35. Individual descriptions a. Descriptions b. Relational descriptions 36. Heredity and ancestral relations a. Heredity b. Ancestral relations c. R-families 37. Finite and infinite a. Progressions b. Sum and predecessor relation c. Inductive cardinal numbers d. Reflexive classes e. Assumption of infinity 38. Continuity a. Well-ordered relations, dense relations, rational orders b. Dedekind continuity and Cantor continuity PART TWO Application of symbolic logic Chapter D. Forms and methods of the construction of languages 39. Thing languages a. Things and their slices b. Three forms of the thing language; language form I c. Language form II d. Language form III 40. Coordinate languages a. Coordinate language with natural numbers b. Recursive definitions c. Coordinate language with integers d. Real numbers 41. Quantitative concepts a. Quantitative concepts in thing languages b. Formulation of laws c. Quantitative concepts in coordinate languages 42. The axiomatic method a. Axioms and theorems b. Formalization and symbolization; interpretations and models c. Consistency, completeness, monomorphism d. The explicit concept e. Concerning the axiom systems (ASs) in Part Two of this book Chapter E. Axiom systems (ASs) for set theory and arithmetic 43. AS for set theory a. The Zermelo-Fraenkel AS b. The axiom of restriction c. A modified version of the AS in an elementary basic language 44. Peano’s AS for the natural numbers a. The first version: the original form b. The second version: just one primitive sign 45. AS for the real numbers Chapter F. Axiom systems (ASs) for geometry 46. AS for topology (neighborhood axioms) a. The first version b. The second version c. Definition of logical concepts 47. ASs of projective, of affine and of metric geometry a. AS of projective geometry: A1-A20 b. AS of affine geometry c. AS of metric Euclidean geometry: A1-A32 Chapter G. ASs of physics 48. ASs of space-time topology: 1. The C-T system a. General remarks b. C, T, and world-lines c. The signal relation d. The structure of space 49. ASs of space-time topology: 2. The Wlin-system 50. ASs of space-time topology: 3. The S-system 51. Determination and causality a. The general concept of determination b. The principle of causality Chapter H. ASs of biology 52. AS of things and their parts a. Things and their parts b. The slices of things c. The time relation 53. AS involving biological concepts a. Division and fusion b. Hierarchies, cells, organisms 54. AS for kinship relations a. Biological concepts of kinship b. Legal concepts of kinship Appendix 55. Problems in the application of symbolic logic a. Set theory and arithmetic b. Geometry c. Physics d. Biology 56. Bibliography 57. General guide to the literature Index Symbols of the symbolic language and of the metalanguage