دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 نویسندگان: Christian Heumann, Michael Schomaker, Shalabh سری: ISBN (شابک) : 9783031118326, 9783031118333 ناشر: Springer سال نشر: 2022 تعداد صفحات: 584 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Introduction to Statistics and Data Analysis. With Exercises, Solutions and Applications in R به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر آمار و تجزیه و تحلیل داده ها. با تمرین ها، راه حل ها و کاربردها در R نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface to the Second Edition Preface to the First Edition Contents About the Authors Part IDescriptive Statistics 1 Introduction and Framework 1.1 Population, Sample and Observations 1.2 Variables 1.2.1 Qualitative and Quantitative Variables 1.2.2 Discrete and Continuous Variables 1.2.3 Scales 1.2.4 Grouped Data 1.3 Data Collection 1.3.1 Survey 1.3.2 Experiment 1.3.3 Observational Data 1.3.4 Primary and Secondary Data 1.4 Creating a Data Set 1.4.1 Statistical Software 1.5 Key Points and Further Issues 1.6 Exercises 2 Frequency Measures and Graphical Representation of Data 2.1 Absolute and Relative Frequencies 2.1.1 Discrete Data 2.1.2 Grouped Metric Data 2.2 Empirical Cumulative Distribution Function 2.2.1 ECDF for Ordinal Variables 2.2.2 ECDF for Metric Variables 2.3 Graphical Representation of a Variable 2.3.1 Bar Chart 2.3.2 Pie Chart 2.3.3 Histogram 2.4 Kernel Density Plots 2.5 Key Points and Further Issues 2.6 Exercises 3 Measures of Central Tendency and Dispersion 3.1 Measures of Central Tendency 3.1.1 Arithmetic Mean 3.1.2 Median and Quantiles 3.1.3 Quantile–Quantile Plots (QQ-Plots) 3.1.4 Mode 3.1.5 Geometric Mean 3.1.6 Harmonic Mean 3.2 Measures of Dispersion 3.2.1 Range and Interquartile Range 3.2.2 Absolute Deviation, Variance and Standard Deviation 3.2.3 Coefficient of Variation 3.3 Box Plots 3.4 Measures of Concentration 3.4.1 Lorenz Curve 3.4.2 Gini Coefficient 3.5 Key Points and Further Issues 3.6 Exercises 4 Association of Two Variables 4.1 Summarizing the Distribution of Two Discrete Variables 4.1.1 Contingency Tables for Discrete Data 4.1.2 Joint, Marginal, and Conditional Frequency Distributions 4.1.3 Graphical Representation of Two Nominal or Ordinal Variables 4.2 Measures of Association for Two Discrete Variables 4.2.1 Pearson\'s χ2 Statistic 4.2.2 Cramer\'s V Statistic 4.2.3 Contingency Coefficient C 4.2.4 Relative Risks and Odds Ratios 4.3 Association Between Ordinal and Metrical Variables 4.3.1 Graphical Representation of Two Metrical Variables 4.3.2 Correlation Coefficient 4.3.3 Spearman\'s Rank Correlation Coefficient 4.3.4 Measures Using Discordant and Concordant Pairs 4.4 Visualization of Variables from Different Scales 4.5 Key Points and Further Issues 4.6 Exercises Part IIProbability Calculus 5 Combinatorics 5.1 Introduction 5.2 Permutations 5.2.1 Permutations Without Replacement 5.2.2 Permutations with Replacement 5.3 Combinations 5.3.1 Combinations Without Replacement and Without Consideration of the Order 5.3.2 Combinations Without Replacement and with Consideration of the Order 5.3.3 Combinations with Replacement and Without Consideration of the Order 5.3.4 Combinations with Replacement and with Consideration of the Order 5.4 Key Points and Further Issues 5.5 Exercises 6 Elements of Probability Theory 6.1 Basic Concepts and Set Theory 6.2 Relative Frequency and Laplace Probability 6.3 The Axiomatic Definition of Probability 6.3.1 Corollaries Following from Kolomogorov\'s Axioms 6.3.2 Calculation Rules for Probabilities 6.4 Conditional Probability 6.4.1 Bayes\' Theorem 6.5 Independence 6.6 Key Points and Further Issues 6.7 Exercises 7 Random Variables 7.1 Random Variables 7.2 Cumulative Distribution Function (CDF) 7.2.1 CDF of Continuous Random Variables 7.2.2 CDF of Discrete Random Variables 7.3 Expectation and Variance of a Random Variable 7.3.1 Expectation 7.3.2 Variance 7.3.3 Quantiles of a Distribution 7.3.4 Standardization 7.4 Tschebyschev\'s Inequality 7.5 Bivariate Random Variables 7.6 Calculation Rules for Expectation and Variance 7.6.1 Expectation and Variance of the Arithmetic Mean 7.7 Covariance and Correlation 7.7.1 Covariance 7.7.2 Correlation Coefficient 7.8 Key Points and Further Issues 7.9 Exercises 8 Probability Distributions 8.1 Standard Discrete Distributions 8.1.1 Discrete Uniform Distribution 8.1.2 Degenerate Distribution 8.1.3 Bernoulli Distribution 8.1.4 Binomial Distribution 8.1.5 The Poisson Distribution 8.1.6 The Multinomial Distribution 8.1.7 The Geometric Distribution 8.1.8 Hypergeometric Distribution 8.2 Standard Continuous Distributions 8.2.1 Continuous Uniform Distribution 8.2.2 The Normal Distribution 8.2.3 The Exponential Distribution 8.3 Sampling Distributions 8.3.1 The χ2-Distribution 8.3.2 The t-Distribution 8.3.3 The F-Distribution 8.4 Key Points and Further Issues 8.5 Exercises Part IIIInductive Statistics 9 Inference 9.1 Introduction 9.2 Properties of Point Estimators 9.2.1 Unbiasedness and Efficiency 9.2.2 Consistency of Estimators 9.2.3 Sufficiency of Estimators 9.3 Point Estimation 9.3.1 Maximum Likelihood Estimation 9.3.2 Method of Moments 9.4 Interval Estimation 9.4.1 Introduction 9.4.2 Confidence Interval for the Mean of a Normal Distribution 9.4.3 Confidence Interval for a Binomial Probability 9.4.4 Confidence Interval for the Odds Ratio 9.5 Sample Size Determinations 9.5.1 Sample Size Calculation for µ 9.5.2 Sample Size Calculation for p 9.6 Key Points and Further Issues 9.7 Exercises 10 Hypothesis Testing 10.1 Introduction 10.2 Basic Definitions 10.2.1 One- and Two- Sample Problems 10.2.2 Hypotheses 10.2.3 One- and Two-Sided Tests 10.2.4 Type I and Type II Error 10.2.5 How to Conduct a Statistical Test 10.2.6 Test Decisions Using the p-Value 10.2.7 Test Decisions Using Confidence Intervals 10.3 Parametric Tests for Location Parameters 10.3.1 Test for the Mean When the Variance is Known (One-Sample Gauss-Test) 10.3.2 Test for the Mean When the Variance is Unknown (One-Sample t-Test) 10.3.3 Comparing the Means of Two Independent Samples 10.3.4 Test for Comparing the Means of Two Dependent Samples (Paired t-Test) 10.4 Parametric Tests for Probabilities 10.4.1 One-Sample Binomial Test for the Probability p 10.4.2 Two-Sample Binomial Test 10.5 Tests for Scale Parameters 10.6 Wilcoxon–Mann–Whitney (WMW) U-Test 10.7 χ2-Goodness of Fit Test 10.8 χ2-Independence Test and Other χ2-Tests 10.9 Beyond Dichotomies 10.9.1 Compatibility 10.9.2 The S-Value 10.9.3 Graphs of p- and S-Values 10.9.4 Unconditional Interpretations 10.10 Key Points and Further Issues 10.11 Exercises 11 Linear Regression 11.1 The Linear Model 11.2 Method of Least Squares 11.2.1 Properties of the Linear Regression Line 11.3 Goodness of Fit 11.4 Linear Regression with a Binary Covariate 11.5 Linear Regression with a Transformed Covariate 11.6 Linear Regression with Multiple Covariates 11.6.1 Matrix Notation 11.6.2 Categorical Covariates 11.6.3 Transformations 11.7 The Inductive View of Linear Regression 11.7.1 Properties of Least Squares and Maximum Likelihood Estimators 11.7.2 The ANOVA Table 11.7.3 Interactions 11.8 Comparing Different Models 11.9 Checking Model Assumptions 11.10 Association Versus Causation 11.11 Key Points and Further Issues 11.12 Exercises 12 Logistic Regression 12.1 Parameter Interpretation 12.2 Estimation of Parameters and Predictions 12.3 Logistic Regression in R 12.4 Model Selection and Goodness-of-Fit 12.5 Key Points and Further Issues 12.6 Exercises Part IVAdditional Topics 13 Simple Random Sampling and Bootstrapping 13.1 Introduction 13.2 Methodology of Simple Random Sampling 13.2.1 Procedure of Selection of a Random Sample 13.2.2 Probabilities of Selection 13.3 Estimation of the Population Mean and Population Variance 13.3.1 Estimation of the Population Total 13.3.2 Confidence Interval for the Population Mean 13.4 Sampling for Proportions 13.4.1 Estimation of the Total Count 13.4.2 Confidence Interval Estimation of P 13.5 Bootstrap Methodology 13.6 Nonparametric Bootstrap Methodology 13.6.1 The Empirical Distribution Function 13.6.2 The Plug-in Principle 13.6.3 Steps in Applying the Bootstrap 13.6.4 Bootstrap Estimator and Bootstrap Variance 13.6.5 Bootstrap Estimate of the Bias and Standard Error 13.6.6 Bootstrap Confidence Intervals 13.7 Key Points and Further Issues 13.8 Exercises 14 Causality 14.1 Potential Outcomes 14.2 Causal Questions 14.3 The Causal Model: Directed Acyclic Graphs 14.3.1 Confounders and Confounding 14.3.2 Colliders 14.3.3 Mediators 14.4 Identification 14.4.1 Randomization 14.5 The Statistical Model: Estimation 14.5.1 The g-formula 14.5.2 Regression 14.6 Roadmap 14.7 Key Points and Further Issues 14.8 Exercises A Introduction to R A.1 Background A.2 Installation and Basic Functionalities A.3 Statistical Functions A.4 Data Sets A.4.1 Pizza Delivery Data A.4.2 Decathlon Data A.4.3 Theatre Data A.4.4 Cattaneo Data B Solutions to Exercises C Technical Appendix C.1 More Details on Chap.3摥映數爠eflinkchapter333 C.2 More Details on Chap.7摥映數爠eflinkchapter777 C.3 More Details on Chap.8摥映數爠eflinkchapter888 C.4 More Details on Chap.9摥映數爠eflinkchapter999 C.5 More Details on Chap.10摥映數爠eflinkchapter101010 C.6 More Details on Chap.11摥映數爠eflinkchapter111111 C.7 More Details on Chap.12摥映數爠eflinkchapter121212 C.8 More Details on Chap.13摥映數爠eflinkchapter131313 C.9 Distribution Tables D Visual Summaries D.1 Descriptive Data Analysis D.2 Summary of Tests for Metric and Ordinal Variables D.3 Summary of Tests for Nominal Variables References Index