دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Sujit K. Sahu
سری:
ISBN (شابک) : 9783031378645, 9783031378652
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 559
[557]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Introduction to Probability, Statistics & R: Foundations for Data-Based Sciences به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر احتمالات، آمار و تحقیق: مبانی علوم مبتنی بر داده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
درک قوی از آمار ابتدایی و احتمال، همراه با مهارت های اولیه در استفاده از R، برای رشته های علمی مختلف وابسته به تجزیه و تحلیل داده ها ضروری است. این کتاب بهعنوان دروازهای برای یادگیری روشهای آماری از ابتدا، با فرض پیشزمینهای قوی در ریاضیات دبیرستان عمل میکند. خوانندگان به تدریج از مفاهیم اولیه به مدلسازی آماری پیشرفته، با مثالهایی از علوم اکچوئری، بیولوژیکی، زیستمحیطی، مهندسی، محیطزیست، پزشکی و علوم اجتماعی که ارتباط واقعی موضوع را برجسته میکنند، پیشرفت میکنند. یک بسته R همراه، تمرین بیوقفه و کاربرد فوری را امکانپذیر میکند و آن را برای مبتدیان ایدهآل میکند. این کتاب شامل 19 فصل است که در پنج بخش تقسیم شده است. بخش اول آمار پایه و بسته نرم افزاری R را معرفی می کند و به خوانندگان آموزش محاسبه آمار ساده و ایجاد نمودارهای داده های اساسی را می دهد. بخش دوم به مفاهیم احتمال، از جمله قواعد و احتمال شرطی می پردازد و توزیع های احتمال گسسته و پیوسته پرکاربرد را معرفی می کند (به عنوان مثال، دو جمله ای، پواسون، نرمال، log-normal). این با قضیه حد مرکزی و توزیع مشترک برای متغیرهای تصادفی چندگانه به پایان می رسد. بخش سوم استنتاج آماری، تخمین نقطه و بازه پوشش، آزمون فرضیه و استنتاج بیزی را بررسی می کند. این بخش عمداً کمتر فنی است و بدون پیشینه ریاضی گسترده برای خوانندگان قابل دسترسی است. بخش چهارم به احتمال پیشرفته و نظریه توزیع آماری می پردازد، با فرض آشنایی (یا مطالعه همزمان) روش های ریاضی مانند حساب دیفرانسیل و انتگرال و جبر خطی. در نهایت، بخش پنجم بر مدلسازی آماری پیشرفته با استفاده از رگرسیون ساده و چندگانه و تجزیه و تحلیل واریانس تمرکز میکند، و پایهای را برای مطالعات بیشتر در یادگیری ماشین و علم دادهای که در زمینههای مختلف دادهها و تجزیه و تحلیل تصمیمگیری میشود، قرار میدهد. بر اساس سال ها تجربه تدریس، این کتاب درسی شامل تمرین های متعددی است و از R به طور گسترده استفاده می کند، و آن را برای ماژول ها و دوره های علمی داده یک ساله ایده آل می کند. این کتاب علاوه بر دروس دانشگاهی، برنامه درسی آزمون آمار اکچوئری 1 مؤسسه و دانشکده اکچوئری در لندن را نیز پوشش می دهد. همچنین پایه محکمی برای تحصیلات تکمیلی در زمینه آمار و احتمال یا مرجع قابل اعتمادی برای آمار فراهم می کند.
A strong grasp of elementary statistics and probability, along with basic skills in using R, is essential for various scientific disciplines reliant on data analysis. This book serves as a gateway to learning statistical methods from scratch, assuming a solid background in high school mathematics. Readers gradually progress from basic concepts to advanced statistical modelling, with examples from actuarial, biological, ecological, engineering, environmental, medicine, and social sciences highlighting the real-world relevance of the subject. An accompanying R package enables seamless practice and immediate application, making it ideal for beginners. The book comprises 19 chapters divided into five parts. Part I introduces basic statistics and the R software package, teaching readers to calculate simple statistics and create basic data graphs. Part II delves into probability concepts, including rules and conditional probability, and introduces widelyused discrete and continuous probability distributions (e.g., binomial, Poisson, normal, log-normal). It concludes with the central limit theorem and joint distributions for multiple random variables. Part III explores statistical inference, covering point and interval estimation, hypothesis testing, and Bayesian inference. This part is intentionally less technical, making it accessible to readers without an extensive mathematical background. Part IV addresses advanced probability and statistical distribution theory, assuming some familiarity with (or concurrent study of) mathematical methods like advanced calculus and linear algebra. Finally, Part V focuses on advanced statistical modelling using simple and multiple regression and analysis of variance, laying the foundation for further studies in machine learning and data science applicable to various data and decision analytics contexts. Based on years of teaching experience, this textbook includes numerousexercises and makes extensive use of R, making it ideal for year-long data science modules and courses. In addition to university courses, the book amply covers the syllabus for the Actuarial Statistics 1 examination of the Institute and Faculty of Actuaries in London. It also provides a solid foundation for postgraduate studies in statistics and probability, or a reliable reference for statistics.
Preface Contents Part I Introduction to Basic Statistics and R 1 Introduction to Basic Statistics 1.1 What Is Statistics? 1.1.1 Early and Modern Definitions 1.1.2 Uncertainty: The Main Obstacle to DecisionMaking 1.1.3 Statistics Tames Uncertainty 1.1.4 Place of Statistics Among Other Disciplines 1.1.5 Lies, Damned Lies and Statistics? 1.1.6 Example: Harold Shipman Murder Enquiry 1.1.7 Summary 1.2 Example Data Sets 1.3 Basic Statistics 1.3.1 Measures of Location 1.3.1.1 Mean, Median and Mode 1.3.1.2 Which of the Three Measures to Use? 1.3.2 Measures of Spread 1.3.3 Boxplot 1.3.4 Summary 1.4 Exercises 2 Getting Started with R 2.1 What Is R? 2.1.1 R Basics 2.1.2 Script Files 2.1.3 Working Directory in R 2.1.4 Reading Data into R 2.1.5 Summary Statistics from R 2.2 R Data Types 2.2.1 Vectors and Matrices 2.2.2 Data Frames and Lists 2.2.3 Factors and Logical Vectors 2.3 Plotting in R 2.3.1 Stem and Leaf Diagrams 2.3.2 Bar Plot 2.3.3 Histograms 2.3.4 Scatter Plot 2.3.5 Boxplots 2.4 Appendix: Advanced Materials 2.4.1 The Functions apply and tapply 2.4.2 Graphing Using ggplot2 2.4.3 Writing Functions: Drawing a Butterfly 2.5 Summary 2.6 Exercises Part II Introduction to Probability 3 Introduction to Probability 3.1 Two Types of Probabilities: Subjective and Objective 3.2 Union, Intersection, Mutually Exclusive and Complementary Events 3.3 Axioms of Probability 3.4 Exercises 3.5 Using Combinatorics to Find Probability 3.5.1 Multiplication Rule of Counting 3.5.2 The Number of Permutations of k from n: nPk 3.5.3 The Number of Combinations of k from n: nCk or n ()k 3.5.3.1 Calculating nCk 3.5.4 Calculation of Probabilities of Events Under Sampling `at Random' 3.5.5 A General `urn Problem' 3.5.6 Section Summary 3.6 Exercises 4 Conditional Probability and Independence 4.1 Definition of Conditional Probability 4.2 Exercises 4.3 Multiplication Rule of Conditional Probability 4.4 Total Probability Formula 4.5 The Bayes Theorem 4.6 Example: Monty Hall Problem 4.7 Exercises 4.8 Independent Events 4.8.1 Definition 4.8.2 Independence of Complementary Events 4.8.3 Independence of More Than Two Events 4.8.4 Bernoulli Trials 4.9 Fun Examples of Independent Events 4.9.1 System Reliability 4.9.1.1 Two Components in Series 4.9.1.2 Two Components in Parallel 4.9.1.3 A General System 4.9.2 The Randomised Response Technique 4.10 Exercises 5 Random Variables and Their Probability Distributions 5.1 Definition of a Random Variable 5.2 Probability Distribution of a Random Variable 5.2.1 Continuous Random Variable 5.2.2 Cumulative Distribution Function (cdf) 5.2.2.1 cdf of a Discrete Random Variable 5.2.2.2 cdf of a Continuous Random Variable 5.3 Exercises 5.4 Expectation and Variance of a Random Variable 5.4.1 Variance of a Random Variable 5.5 Quantile of a Random Variable 5.6 Exercises 6 Standard Discrete Distributions 6.1 Bernoulli Distribution 6.2 Binomial Distribution 6.2.1 Probability Calculation Using R 6.2.2 Mean of the Binomial Distribution 6.2.3 Variance of the Binomial Distribution 6.3 Geometric Distribution 6.3.1 Probability Calculation Using R 6.3.2 Negative Binomial Series 6.3.3 Mean of the Geometric Distribution 6.3.4 Variance of the Geometric Distribution 6.3.5 Memoryless Property of the GeometricDistribution 6.4 Hypergeometric Distribution 6.5 Negative Binomial Distribution 6.5.1 Probability Calculation Using R 6.5.2 Mean of the Negative Binomial Distribution 6.5.3 Variance of the Negative Binomial Distribution 6.6 Poisson Distribution 6.6.1 Probability Calculation Using R 6.6.2 Mean of the Poisson Distribution 6.6.3 Variance of the Poisson Distribution 6.6.4 Poisson Distribution as a Limit of the Binomial Distribution 6.7 Exercises 7 Standard Continuous Distributions 7.1 Exponential Distribution 7.1.1 Definition 7.1.2 Using R to Calculate Probabilities 7.1.3 Gamma Function 7.1.4 Mean and Variance of the ExponentialDistribution 7.1.5 Memoryless Property 7.1.6 Exercises 7.2 The Normal Distribution 7.2.1 The Mean and Variance of the NormalDistribution 7.2.2 Mode of the Normal Distribution 7.2.3 Symmetry of the Normal Distribution 7.2.4 Standard Normal Distribution 7.2.5 Using R for the Normal Distribution 7.2.5.1 Probability Calculation Using R 7.2.5.2 Quantile Calculation Using R 7.2.6 Log-Normal Distribution 7.2.7 Exercises 7.3 Gamma and Beta Distributions 7.3.1 Gamma Distribution 7.3.2 Probability Calculation Using R 7.3.3 Mean and Variance of the Gamma Distribution 7.3.4 Beta Distribution 7.3.5 Exercises 8 Joint Distributions and the CLT 8.1 Joint Distribution of Discrete Random Variables 8.2 Continuous Bivariate Distributions 8.3 Covariance and Correlation 8.4 Independence 8.5 Conditional Distribution 8.5.1 Conditional Expectation 8.5.2 Conditional Distribution Under Independence 8.5.3 Some Further Remarks on ConditionalDistribution 8.6 Exercises 8.7 Properties of Sum of Independent Random Variables 8.8 The Central Limit Theorem 8.8.1 Statement of the Central Limit Theorem (CLT) 8.8.2 Application of CLT to Binomial Distribution 8.9 Exercises Part III Introduction to Statistical Inference 9 Introduction to Statistical Inference 9.1 Drawing Random Samples 9.2 Foundations of Statistical Inference 9.2.1 Statistical Models 9.2.2 A Fully Specified Model 9.2.3 A Parametric Statistical Model 9.2.4 A Nonparametric Statistical Model 9.2.5 Modelling Cycle 9.3 Estimation 9.3.1 Population and Sample 9.3.2 Statistic, Estimator and Sampling Distribution 9.3.3 Bias and Mean Square Error 9.3.4 Section Summary 9.4 Estimation of Mean, Variance and Standard Error 9.4.1 Estimation of a Population Mean 9.4.2 Standard Deviation and Standard Error 9.4.3 Section Summary 9.5 Exercises 10 Methods of Point Estimation 10.1 Method of Moments 10.2 Maximum Likelihood Estimation 10.2.1 Examples of the Log-Likelihood Function 10.2.2 Maximum Likelihood Estimates 10.2.3 Examples of m.l.e 10.3 Bayesian Estimation and Inference 10.3.1 Prior and Posterior Distributions 10.3.1.1 Bayesian Learning 10.3.2 Bayes Estimators 10.3.3 Squared Error Loss Function 10.3.4 Absolute Error Loss Function 10.3.5 Step Function Loss 10.3.6 Credible Regions 10.4 Exercises 11 Interval Estimation 11.1 Pivoting Method 11.2 Interpreting Confidence Intervals 11.3 Confidence Intervals Using the CLT 11.3.1 Confidence Intervals for μ Using the CLT 11.3.2 Confidence Interval for a Bernoulli p by Quadratic Inversion 11.3.3 Confidence Interval for a Poisson λ by Quadratic Inversion 11.3.4 Summary 11.4 Exact Confidence Interval for the Normal Mean 11.5 Exercises 12 Hypothesis Testing 12.1 Testing Procedure 12.2 The Test Statistic 12.2.1 The Significance Level 12.2.2 Rejection Region for the t-Test 12.2.3 t-Test Summary 12.2.4 p-Values 12.3 Power Function, Sensitivity and Specificity 12.4 Equivalence of Testing and Interval Estimation 12.5 Two Sample t-Tests 12.6 Paired t-Test 12.7 Design of Experiments 12.7.1 Three Principles of Experimental Design 12.7.2 Questions of Interest 12.7.3 Main Effects 12.7.4 Interaction Between Factors A and B 12.7.5 Computation of Interaction Effect 12.7.6 Summary 12.8 Exercises Part IV Advanced Distribution Theory and Probability 13 Generating Functions 13.1 Moments, Skewnees and Kurtosis 13.2 Moment Generating Function 13.2.1 Uniqueness of the Moment GeneratingFunctions 13.2.2 Using mgf to Prove Distribution of SampleSum 13.3 Cumulant Generating Function 13.4 Probability Generating Function 13.5 Exercises 14 Transformation and Transformed Distributions 14.1 Transformation of a Random Variable 14.1.1 Transformation of Discrete Random Variables 14.1.2 Transformation of Continuous RandomVariables 14.2 Exercises 14.3 Transformation Theorem for Joint Density 14.4 Exercises 14.5 Generated Distributions: χ2, t and F 14.5.1 χ2 Distribution 14.5.2 t Distribution 14.5.3 F Distribution 14.6 Sampling from the Normal Distribution 14.7 Exercises 15 Multivariate Distributions 15.1 An Example of a Bivariate Continuous Distribution 15.2 Joint cdf 15.3 Iterated Expectations 15.4 Exercises 15.5 Bivariate Normal Distribution 15.5.1 Derivation of the Joint Density 15.5.2 Marginal Distributions 15.5.3 Covariance and Correlation 15.5.4 Independence 15.5.5 Conditional Distributions 15.5.6 Linear Combinations 15.5.7 Exercises 15.6 Multivariate Probability Distributions 15.6.1 Expectation 15.6.2 Variance and Covariance 15.6.3 Independence 15.7 Joint Moment Generating Function 15.7.1 The Multivariate Normal Distribution 15.7.2 Conditional Distribution 15.7.3 Joint mgf of the Multivariate NormalDistribution 15.8 Multinomial Distribution 15.8.1 Relation Between the Multinomial and Binomial Distributions 15.8.2 Means, Variances and Covariances 15.8.3 Exercises 15.9 Compound Distributions 16 Convergence of Estimators 16.1 Convergence in Distribution 16.2 Convergence in Probability 16.3 Consistent Estimator 16.4 Extending the CLT Using Slutsky's Theorem 16.5 Score Function 16.6 Information 16.7 Asymptotic Distribution of the Maximum LikelihoodEstimators 16.8 Exercises Part V Introduction to Statistical Modelling 17 Simple Linear Regression Model 17.1 Motivating Example: The Body Fat Data 17.2 Writing Down the Model 17.3 Fitting the Model 17.3.1 Least Squares Estimation 17.3.2 Estimating Fitted Values 17.3.3 Defining Residuals 17.4 Estimating the Variance 17.5 Quantifying Uncertainty 17.6 Obtaining Confidence Intervals 17.7 Performing Hypothesis Testing 17.8 Comparing Models 17.9 Analysis of Variance (ANOVA) Decomposition 17.10 Assessing Correlation and Judging Goodness-of-Fit 17.11 Using the lm Command 17.12 Estimating the Conditional Mean 17.13 Predicting Observations 17.14 Analysing Residuals 17.15 Applying Diagnostics Techniques 17.15.1 The Anscombe Residual Plot 17.15.2 Normal Probability Plots 17.15.3 Dependence Plots 17.15.4 Discrepant Explanatory Variables 17.15.5 Suggested Remedies 17.16 Illustration of Diagnostics Plots for the Body Fat DataExample 17.17 Remphasising the Paradigm of Regression Modelling 17.18 Summary of Linear Regression Methods 17.19 Exercises 18 Multiple Linear Regression Model 18.1 Motivating Example: Optimising Rice Yields 18.2 Motivating Example: Cheese Testing 18.3 Matrix Formulation of the Model 18.4 Least Squares Estimation 18.5 Simple Linear Regression: A Special Case of Multiple Regression 18.6 Inference for the Multiple Regression Model 18.6.1 Estimating σ2 18.6.2 Cochran's Theorem 18.6.3 The Sampling Distribution of S2 18.6.4 Inference for Regression Coefficients 18.6.5 Inference for Fitted Values and Residuals 18.6.6 Prediction 18.6.7 Model Comparison 18.7 Illustrative Example: Puffin Nesting 18.8 Model Selection 18.8.1 Omitting a Variable Which Is Needed 18.8.2 Including an Unnecessary Variable 18.8.3 Backwards Elimination 18.8.4 Forward Selection 18.8.5 Criteria Based Model Selection 18.9 Illustrative Example: Nitrous Oxide Emission 18.10 Multicollinearity 18.11 Summary of Multiple Regression Modelling 18.12 Exercises 19 Analysis of Variance 19.1 The Problem 19.2 Motivating Example: Possum Data 19.3 Formulating a Multiple Regression Model 19.4 Testing Significance of a Factor—One-Way Anova 19.5 Modelling Interaction Effects 19.6 Possum Data Example Revisited 19.7 Exercises 20 Solutions to Selected Exercises Problems of Chap.1 Problems of Chap.2 Problems of Chap.3 Problems of Chap.4 Problems of Chap.5 Problems of Chap.6 Problems of Chap.7 Problems of Chap.8 Problems of Chap.9 Problems of Chap.10 Problems of Chap.11 Problems of Chap.12 Problems of Chap.13 Problems of Chap.14 Problems of Chap.15 Problems of Chap.16 Problems of Chap.17 Problems of Chap.18 Problems of Chap.19 A Appendix: Table of Common Probability Distributions A.1 Discrete Distributions A.2 Continuous Distributions A.3 An Important Mathematical Result A.4 Revision of Some Useful Matrix Algebra Results References Index