دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [11 ed.]
نویسندگان: Frederick Hillier. Gerald Lieberman
سری:
ISBN (شابک) : 1259872998, 9781259872990
ناشر: McGraw Hill
سال نشر: 2020
تعداد صفحات: 992
[1345]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 53 Mb
در صورت تبدیل فایل کتاب Introduction to Operations Research به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر تحقیق در عملیات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای بیش از چهار دهه، مقدمه ای بر تحقیق در
عملیات متن کلاسیک تحقیق در عملیات بوده است.
نویسنده با تکیه بر نقاط قوت کلاسیک متن، همچنان به یافتن راههای
جدیدی برای جاریسازی و مرتبط کردن متن برای دانشآموزان ادامه
میدهد. یکی از راهها، گنجاندن انبوهی از پیشرفتهترین
نرمافزارهای کاربرپسند و پوشش بیشتر برنامههای تجاری از هر زمان
دیگری است. هنگامی که اولین نویسنده مشترک جایزه معتبر نگارش
Expository را از INFORMS برای نسخه اخیر دریافت کرد، استناد
جایزه دلایل موفقیت بزرگ کتاب را به شرح زیر توصیف کرد:
«حساب دو ویژگی برای این موفقیت اولاً،
نسخهها به دلیل انگیزه عالی، توضیحات واضح و شهودی، نمونههای
خوب تمرین حرفهای، سازماندهی عالی مطالب، نرمافزار پشتیبانی
بسیار مفید و ریاضیات مناسب اما نه بیش از حد، از دیدگاه
دانشآموزان برجسته بودهاند. دوم، این نسخهها از دیدگاه مربیان
جذاب بودهاند، زیرا مکرراً مطالب پیشرفتهای را با شفافیت و
زبانی ساده القا میکنند.»
For over four decades, Introduction to
Operations Research has been the classic text on
operations research. While building on the classic strengths of
the text, the author continues to find new ways to make the
text current and relevant to students. One way is by
incorporating a wealth of state-of-the art, user-friendly
software and more coverage of business applications than ever
before. When the first co-author received the prestigious
Expository Writing Award from INFORMS for a recent edition, the
award citation described the reasons for the book’s great
success as follows:
“Two features account for this success.
First, the editions have been outstanding from students’ points
of view due to excellent motivation, clear and intuitive
explanations, good examples of professional practice, excellent
organization of material, very useful supporting software, and
appropriate but not excessive mathematics. Second, the editions
have been attractive from instructors’ points of view because
they repeatedly infuse state-of-the-art material with
remarkable lucidity and plain
language.”
Cover Title Page Copyright Page About the Authors About the Case Writers Dedication Table of Contents Preface CHAPTER 1 Introduction 1.1 The Origins of Operations Research 1.2 The Nature of Operations Research 1.3 The Relationship between Analytics and Operations Research 1.4 The Impact of Operations Research 1.5 Some Trends that Should Further Increase the Future Impact of Operations Research 1.6 Algorithms and OR Courseware Selected References Problems CHAPTER 2 Overview of How Operations Research and Analytics Professionals Analyze Problems 2.1 Defining the Problem 2.2 Gathering and Organizing Relevant Data 2.3 Using Descriptive Analytics to Analyze Big Data 2.4 Using Predictive Analytics to Analyze Big Data 2.5 Formulating a Mathematical Model to Begin Applying Prescriptive Analytics 2.6 Learning How to Derive Solutions from the Model 2.7 Testing the Model 2.8 Preparing to Apply the Model 2.9 Implementation 2.10 Conclusions Selected References Problems CHAPTER 3 Introduction to Linear Programming 3.1 Prototype Example 3.2 The Linear Programming Model 3.3 Assumptions of Linear Programming 3.4 Additional Examples 3.5 Formulating and Solving Linear Programming Models on a Spreadsheet 3.6 Formulating Very Large Linear Programming Models 3.7 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems Case 3.1 Reclaiming Solid Wastes Previews of Added Cases on Our Website Case 3.2 Cutting Cafeteria Costs Case 3.3 Staffing a Call Center Case 3.4 Promoting a Breakfast Cereal Case 3.5 Auto Assembly CHAPTER 4 Solving Linear Programming Problems: The Simplex Method 4.1 The Essence of the Simplex Method 4.2 Setting Up the Simplex Method 4.3 The Algebra of the Simplex Method 4.4 The Simplex Method in Tabular Form 4.5 Tie Breaking in the Simplex Method 4.6 Reformulating Nonstandard Models to Prepare for Applying the Simplex Method 4.7 The Big M Method for Helping to Solve Reformulated Models 4.8 The Two-Phase Method is an Alternative to the Big M Method 4.9 Postoptimality Analysis 4.10 Computer Implementation 4.11 The Interior-Point Approach to Solving Linear Programming Problems 4.12 Conclusions Appendix 4.1: An Introduction to Using LINDO and LINGO Selected References Learning Aids for this Chapter on Our Website Problems Case 4.1 Fabrics and Fall Fashions Previews of Added Cases on Our Website Case 4.2 New Frontiers Case 4.3 Assigning Students to Schools CHAPTER 5 The Theory of the Simplex Method 5.1 Foundations of the Simplex Method 5.2 The Simplex Method in Matrix Form 5.3 A Fundamental Insight 5.4 The Revised Simplex Method 5.5 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems CHAPTER 6 Duality Theory 6.1 The Essence of Duality Theory 6.2 Primal-Dual Relationships 6.3 Adapting to Other Primal Forms 6.4 The Role of Duality Theory in Sensitivity Analysis 6.5 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems CHAPTER 7 Linear Programming under Uncertainty 7.1 The Essence of Sensitivity Analysis 7.2 Applying Sensitivity Analysis 7.3 Performing Sensitivity Analysis on a Spreadsheet 7.4 Robust Optimization 7.5 Chance Constraints 7.6 Stochastic Programming with Recourse 7.7 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems Case 7.1 Controlling Air Pollution Previews of Added Cases on Our Website Case 7.2 Farm Management Case 7.3 Assigning Students to Schools, Revisited Case 7.4 Writing a Nontechnical Memo CHAPTER 8 Other Algorithms for Linear Programming 8.1 The Dual Simplex Method 8.2 Parametric Linear Programming 8.3 The Upper Bound Technique 8.4 An Interior-Point Algorithm 8.5 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems CHAPTER 9 The Transportation and Assignment Problems 9.1 The Transportation Problem 9.2 A Streamlined Simplex Method for the Transportation Problem 9.3 The Assignment Problem 9.4 A Special Algorithm for the Assignment Problem 9.5 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems Case 9.1 Shipping Wood to Market Previews of Added Cases on Our Website Case 9.2 Continuation of the Texago Case Study Case 9.3 Project Pickings CHAPTER 10 Network Optimization Models 10.1 Prototype Example 10.2 The Terminology of Networks 10.3 The Shortest-Path Problem 10.4 The Minimum Spanning Tree Problem 10.5 The Maximum Flow Problem 10.6 The Minimum Cost Flow Problem 10.7 The Network Simplex Method 10.8 A Network Model for Optimizing a Project’s Time-Cost Trade-Off 10.9 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems Case 10.1 Money in Motion Previews of Added Cases on Our Website Case 10.2 Aiding Allies Case 10.3 Steps to Success CHAPTER 11 Dynamic Programming 11.1 A Prototype Example for Dynamic Programming 11.2 Characteristics of Dynamic Programming Problems 11.3 Deterministic Dynamic Programming 11.4 Probabilistic Dynamic Programming 11.5 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems CHAPTER 12 Integer Programming 12.1 Prototype Example 12.2 Some BIP Applications 12.3 Using Binary Variables to Deal with Fixed Charges 12.4 A Binary Representation of General Integer Variables 12.5 Some Perspectives on Solving Integer Programming Problems 12.6 The Branch-and-Bound Technique and its Application to Binary Integer Programming 12.7 A Branch-and-Bound Algorithm for Mixed Integer Programming 12.8 The Branch-and-Cut Approach to Solving BIP Problems 12.9 The Incorporation of Constraint Programming 12.10 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems Case 12.1 Capacity Concerns Previews of Added Cases on Our Website Case 12.2 Assigning Art Case 12.3 Stocking Sets Case 12.4 Assigning Students to Schools, Revisited Again CHAPTER 13 Nonlinear Programming 13.1 Sample Applications 13.2 Graphical Illustration of Nonlinear Programming Problems 13.3 Types of Nonlinear Programming Problems 13.4 One-Variable Unconstrained Optimization 13.5 Multivariable Unconstrained Optimization 13.6 The Karush-Kuhn-Tucker (KKT) Conditions for Constrained Optimization 13.7 Quadratic Programming 13.8 Separable Programming 13.9 Convex Programming 13.10 Nonconvex Programming (with Spreadsheets) 13.11 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems Case 13.1 Savvy Stock Selection Previews of Added Cases on Our Website Case 13.2 International Investments Case 13.3 Promoting a Breakfast Cereal, Revisited CHAPTER 14 Metaheuristics 14.1 The Nature of Metaheuristics 14.2 Tabu Search 14.3 Simulated Annealing 14.4 Genetic Algorithms 14.5 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems CHAPTER 15 Game Theory 15.1 The Formulation of Two-Person, Zero-Sum Games 15.2 Solving Simple Games—A Prototype Example 15.3 Games with Mixed Strategies 15.4 Graphical Solution Procedure 15.5 Solving by Linear Programming 15.6 Extensions 15.7 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems CHAPTER 16 Decision Analysis 16.1 A Prototype Example 16.2 Decision Making without Experimentation 16.3 Decision Making with Experimentation 16.4 Decision Trees 16.5 Utility Theory 16.6 The Practical Application of Decision Analysis 16.7 Multiple Criteria Decision Analysis, Including Goal Programming 16.8 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems Case 16.1 Brainy Business Preview of Added Cases on Our Website Case 16.2 Smart Steering Support Case 16.3 Who Wants to Be a Millionaire? Case 16.4 University Toys and the Engineering Professor Action Figures CHAPTER 17 Queueing Theory 17.1 Prototype Example 17.2 Basic Structure of Queueing Models 17.3 Some Common Types of Real Queueing Systems 17.4 The Role of the Exponential Distribution 17.5 The Birth-and-Death Process 17.6 Queueing Models Based on the Birth-and-Death Process 17.7 Queueing Models Involving Nonexponential Distributions 17.8 Priority-Discipline Queueing Models 17.9 Queueing Networks 17.10 The Application of Queueing Theory 17.11 Behavioral Queueing Theory 17.12 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems Case 17.1 Reducing In-Process Inventory Preview of an Added Case on Our Website Case 17.2 Queueing Quandary CHAPTER 18 Inventory Theory 18.1 Examples 18.2 Components of Inventory Models 18.3 Deterministic Continuous-Review Models 18.4 A Deterministic Periodic-Review Model 18.5 Deterministic Multiechelon Inventory Models for Supply Chain Management 18.6 A Stochastic Continuous-Review Model 18.7 A Stochastic Single-Period Model for Perishable Products 18.8 Revenue Management 18.9 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems Case 18.1 Brushing Up on Inventory Control Previews of Added Cases on Our Website Case 18.2 TNT: Tackling Newsboy’s Teaching Case 18.3 Jettisoning Surplus Stock CHAPTER 19 Markov Decision Processes 19.1 A Prototype Example 19.2 A Model for Markov Decision Processes 19.3 Linear Programming and Optimal Policies 19.4 Markov Decision Processes in Practice 19.5 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems CHAPTER 20 Simulation 20.1 The Essence of Simulation 20.2 Some Common Types of Applications of Simulation 20.3 Generation of Random Numbers 20.4 Generation of Random Observations from a Probability Distribution 20.5 Simulation Optimization 20.6 Outline of a Major Simulation Study 20.7 Conclusions Selected References Learning Aids for this Chapter on Our Website Problems Case 20.1 Reducing In-Process Inventory, Revisted Previews of Added Cases on Our Website Case 20.2 Planning Planers Case 20.3 Pricing under Pressure APPENDIXES 1. Documentation for the OR Courseware 2. Convexity 3. Classical Optimization Methods 4. Matrices and Matrix Operations 5. Table for a Normal Distribution PARTIAL ANSWERS TO SELECTED PROBLEMS INDEXES Author Index Subject Index