دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: 6 نویسندگان: F. K.Richtmyer, E.H. Kennard, John N. Cooper سری: International Series In Pure And Applied Physics ناشر: McGraw-Hill Book Company, Inc سال نشر: 1969 تعداد صفحات: 790 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 54 مگابایت
در صورت تبدیل فایل کتاب Introduction To Modern Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر فیزیک مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Introduction To Modern Physics Sixth Edition Constants Rest-Masses Conversion Factors Half-Title McGraw-Hill International Series In Pure And Applied Physics Title-Page Copyright Preface vii Contents Chapter 1 The Heritage of Modern Physics 1 1.1 Classical vs. Modern Physics 1.2 The Greeks 1.3 Thales of Miletus 1.4 Pythagoras 1.5 Anaxagoras and Empedocles 1.6 Democritus 1.7 Aristotle 1.8 Aristarchus 1.9 Archimedes 1.10 From the Greeks to Copernicus 1.11 The Copernican System 1.12 Galileo Galilei 1.13 Tycho Brahe and Kepler 1.14 The Experimental Method Spreads 1.15 Sir Isaac Newton 1.16 Newton's Contemporaries 1.17 Mechanics during the Eighteenth Century 1.18 Heat during the Eighteenth Century 1.19 Light during the Eighteenth Century 1.20 Electricity during the Eighteenth Century 1.21 Close of the Second Period 1.22 The Nineteenth Century in Physics 1.23 Heat and Energy 1.24 Light 1.25 Electricity and Magnetism 1.26 Michael Faraday 1.27 Joseph Henry 1.28 James Clerk Maxwell 1.29 Clouds over Classical Physics Chapter 2 Introduction to Relativity 45 2.1 Galilean-Newtonian Relativity 2.2 Galilean Relativity and Electricity 2.3 Relativity and the Propagation of Light 2.4 The Michelson-Morley Experiment 2.5 The New Relativity of Einstein 2.6 Simultaneity and Time Order 2.7 The Lorentz Transformation 2.8 Space Contraction and Time Dilation 2.9 Velocity Transformations 2.10 The Variation of Mass 2.11 Force and Kinetic Energy 2.12 Mass and Energy 2.13 Mass and Potential Energy Problems Chapter 3 Relativity and Four-vectors 73 3.1 The Interval between Events 3.2 Four-vectors 3.3 Proper Time and the Four-momentum 3.4 Relativistic Mechanics 3.5 Relativity and Electromagnetism 3.6 Maxwell's Equations and the Four-potential 3.7 The Field Tensor 3.8 General Theory of Relativity Problems Chapter 4 Atoms and Molecules 97 4.1 Chemical Evidence for Atoms 4.2 The Ideal Gas 4.3 Degrees of Freedom and the Equiparlition of Energy 4.4 The Maxwellian Distribution 4.5 The Boltzmann Distribution 4.6 Phase Space and the Maxwell-Boltzmann Distribution 4.7 The Sizes of Atoms Appendix 4A Integrals Arising in the Kinetic Theory Problems Chapter 5 The Origin of the Quantum Theory 117 5.1 Thermal Radiation 5.2 Early Radiation Laws 5.3 Degrees of Freedom in an Enclosure 5.4 The Rayleigh-Jeans Radiation Law 5.5 Planck's Investigation of Blackbody Radiation 5.6 Distribution of Energy among Oscillators in Thermal Equilibrium 5.7 Planck's Quantum Hypothesis 5.8 Planck's Radiation Law Appendix 5A Classical Radiation Theory 5A.1 Pressure and Energy Flux Due to Isotropic Radiation 5A.2 The Stefan-Boltzmann Law 5A.3 Reflection from a Moving Mirror 5 A.4 Effect of an Adiabatic Expansion upon Blackbody Radiation 5A.5 The Wien Displacement Law Problems Chapter 6 Electrons and the Photoelectric Effect 149 6.1 Electricity in Matter 6.2 Discovery of Photoelectricity 6.3 The Zeeman Effect 6.4 Cathode Rays and the Electron 6.5 The Electronic Charge 6.6 Photoelectrons 6.7 What Is the Photoelectric Mechanism? 6.8 Properties of Photoelectric Emission 6.9 Thermionic Emission Problems Chapter 7 X-rays 171 7.1 The Discovery of X-rays 7.2 Production and Detection of X-rays 7.3 Wavelengths of X-rays 7.4 Bragg's Law 7.5 The X-ray Spectrometer 7.6 Monochromatic Characteristic Radiation 7.7 Moseley's Law 7.8 The Continuous X-ray Spectrum 7.9 X-ray Scattering, Classical 7.10 Compton Scattering 7.11 Compton Recoil Electrons 7.12 The Nature of Electromagnetic Radiation Problems Chapter 8 Radioactivity and the Nuclear Atom 203 8.1 Earliest Developments 8.2 Alpha, Beta, and Gamma Rays 8.3 Early Views on Atomic Structure 8.4 The Scattering of Alpha Particles by Atoms 8.5 The Nuclear Atom 8.6 Radioactive Transformations Appendix 8A The Rutherford Scattering Law Problems Chapter 9 Spectral Lines and the Bohr Model 227 9.1 The Balmer Series 9.2 Spectral Series and Their Interrelations 9.3 Spectral Terms 9.4 The Bohr Theory 9.5 The Spectrum of Atomic Hydrogen 9.6 Ionized Helium 9.7 Moseley's Law 9.8 The Bohr Magneton 9.9 Electron Spin 9.10 The Bohr Correspondence Principle 9.11 Extension of Bohr's Theory Problems Chapter 10 Particles and Interactions 251 10.1 Alpha and Gamma Spectra of Radioelements 10.2 Beta Rays and the Antineutrino 10.3 Masses of Atoms 10.4 Isotopes of Stable Elements 10.5 The Nucleons 10.6 The Positron 10.7 Muons and Pions 10.8 Particles and Antiparticles 10.9 The Conservation Laws 10.10 Interactions between Particles 10.11 Preternatural Atoms Problems Chapter 11 Wave Properties of Particles 277 11.1 Matter Waves 11.2 Mechanics as Geometrical Optics of the Waves 11.3 Phase and Group Velocity 11.4 The de Broglie Wavelength 11.5 Experiments on Electron Waves 11.6 Diffraction of Neutrons and Molecules 11.7 Electrons and the Wave Function 11.8 The Heisenberg Uncertainty Principle 11.9 The Schrddinger Wave Equation Problems Chapter 12 Wave Mechanics I—Free States 307 12.1 Electron Ream in a Field-free Space 12.2 The Step Barrier 12.3 Barrier Penetration 12.4 The “Square" Well Free States 12.5 Wave Packets and the Momentum Representation 12.6 The Heisenberg Uncertainty Principle 12.7 Probability Stream Density Problems Chapter 13 Wave Mechanics II—Bound States 327 13.1 Stationary or Quantum States 13.2 General Solutions for the Square Welt 13.3 The Infinite Square Well 13.4 The Finite Square Well 13.5 Expectation Values 13.6 Differential Operators 13.7 The Rectangular Box 13.8 The Harmonic Oscillator 13.9 Properties of Eigenfunctions 13.10 Transitions between States 13.11 Perturbation Theory 13.12 Emission and Absorption of Radiation Appendix Appendix 13A The Harmonic Oscillator Appendix 13B Proof of the Orthogonality Relation Problems Chapter 14 Wave Mechanics III—The Hydrogen Atom 357 14.1 The Schrodinger Equation for a One-electron Atom 14.2 Separation of Variables 14.3 The Wave Functions and Energy Levels 14.4 Probability Density and Charge-cloud Density 14.5 Orbital Angular Momentum 14.6 Retativistic Effects and Electron Spin 14.7 The Spin-Orbit Interaction 14.8 The Quantum Number j 14.9 Spatial Degeneracy of the Wave Function Appendix Appendix 14A Solutions of the Radial Equation Problems Chapter 15 Atomic Structure 381 15.1 The Pauli Exclusion Principle 15.2 Shells and Subshells 15.3 The Periodic Table 15.4 The First Two Periods 15.5 Remainder of the Periodic Table 15.6 Penetrating Orbits 15.7 Low-lying Energy States 15.8 X-ray Energy Levels 15.9 Photoelectrons Ejected by X-rays Appendix 15A Wave Mechanics for Two Identical Particles with Spin One-half 15 A.1 Interacting Particles 15A.2 Electron Spin. The Exclusion Principle Problems Chapter 16 X-ray Spectra 411 16.1 Low-lying Energy Levels 16.2 Characteristic X-ray Lines 16.3 Electron Excitation of X-ray Levels 16.4 X-ray Doublets and Screening Constants 16.5 The Fluorescence Yield and the Auger Effect 16.6 Multiple Ionization of Inner Shells 16.7 X-ray Spectra and the Outer Part of the Atom 16.8 Refraction and Reflection of X-rays Problems Chapter 17 Atomic Spectra 431 17.1 Angular Momentum and the Selection Rules 17.2 Alkali-type Spectra 17.3 Fine Structure in Alkali Spectra 17.4 The Spectrum of Helium 17.5 Many-electron Wave Theory 17.6 LS or Russell-Saunders Coupling 17.7 LS Multiplets of Levels 17.8 Spacing of the LS Multiplet Levels 17.9 The Arc Spectrum of Mercury 17.10 Equivalent Electrons 17.11 Coupling of the jj Type 17.12 The Rreadth of Spectral Lines Problems Chapter 18 Atoms in a Magnetic Field 463 18.1 Effects of a Magnetic Field on an Atom 18.2 The Normal Zeeman Effect 18.3 Electron Spin and the Lande g Factor 18.4 Zeeman Patterns of LS Multiplets in a Weak Field 18.5 The Paschen-Rack Effect 18.6 Zeeman Effect in a Huge Field 18.7 The Stern-Gerlach Experiment 18.8 Isotope Structure and Hyperfine Structure 18.9 The Stark Effect Problems Chapter 19 Molecules and Molecular Spectra 489 19.1 Interatomic Forces 19.2 The Ionic Rond 19.3 The Hydrogen Molecule Ion 19.4 The Hydrogen Molecule and the Covalent Rond 19.5 Binding between Square Wells 19.6 Molecular Spectra 19.7 Rotation Spectra 19.8 Vibration-rotation Spectra 19.9 Molecular Quantum Stales 19.10 Electronic Rands 19.11 The Raman Effect 19.12 The Ammonia Inversion Spectrum Problems Chapter 20 Introduction to Quantum Statistics 529 20.1 Statistics of Distinguishable Objects 20.2 Indistinguishable and Exclusive Particles 20.3 The Bose-Einslein Distribution 20.4 The Fermi- Dirac Distribution Law 20.5 Comparison of the Distribution Laws 20.6 The Specific Heats of Gases 20.7 Specific Heats of Solids 20.8 The Photon Gas 20.9 Homonuclear Molecules Problems Chapter 21 Solids—Insulators and Metals 559 21.1 Crystals 21.2 Binding in Solids 21.3 The Ionic Crystal 21.4 Covalent Binding 21.5 Metallic Binding 21.6 Metals and Insulators 21.7 Metallic Conduction 21.8 The Sommerfield Free-electron Model 21.9 Thermionic Emission 21.10 Metals in Contact Problems Chapter 22 The Band Model for Metals 587 22.1 The Hall Effect 22.2 Electrons in a Periodic Lattice 22.3 Effective Mass 22.4 Brillouin Zones 22.5 The Fermi Surface 22.6 Density of States 22.7 Filled Bands and Holes 22.8 Transition Metals Problems Chapter 23 Semiconductors 609 23.1 Semiconducting Materials 23.2 Intrinsic Semiconductors 23.3 Conductivity 23.4 Extrinsic Semiconductors 23.5 The Fermi Level in Extrinsic Semiconductors 23.6 The p-n Junction 23.7 The p-n Rectifier 23.8 The Photovoltaic Effect 23.9 The Tunnel (or Esaki) Diode 23.10 Metal- Semiconductor Junctions 23.11 Thermoelectricity 23.12 The Transistor Problems Chapter 24 Interactions of High-energy Particles with Matter 635 24.1 Attenuation of a Photon Beam 24.2 Attenuation Processes 24.3 Absorption vs. Attenuation 24.4 Energy Loss of Charged Particles 24.5 The Stopping of Electrons 24.6 Cerenkov Radiation 24.7 Detection of Charged Particles Problems Chapter 25 The Nucleus 661 25.1 Discovery of Artificial Transmutation 25.2 Discovery of the Neutron 25.3 Properties of Nuclei 25.4 Constituents of Nuclei 25.5 Masses and Binding Energies 25.6 Nuclear Forces 25.7 Induced Radioactivity 25.8 Nuclear Transformations with Artificially Accelerated Particles 25.9 Accelerators 25.10 General Features of Nuclear Reactions 25.11 Masses of Mirror Nuclides 25.12 Particle Groups 25.13 Nuclear Resonances 25.14 Liquid-drop Model 25.15 Neutron Reactions 25.16 Energy Levels of Nuclei 25.17 The Shell Model 25.18 The Collective Model 25.19 Discovery of Fission 25.20 Theory of Fission 25.21 Prompt Neutrons—Chain Reactions 25.22 Fusion Problems Appendix—Electronic Structure of Atoms 753 Index 755