ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Introduction to Membrane Science and Technology

دانلود کتاب مقدمه ای بر علم و فناوری غشاء و فرآیندهای غشایی

Introduction to Membrane Science and Technology

مشخصات کتاب

Introduction to Membrane Science and Technology

دسته بندی: مواد
ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 9783527324514, 3527324518 
ناشر: Wiley-VCH 
سال نشر: 2011 
تعداد صفحات: 498 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 58 مگابایت 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Introduction to Membrane Science and Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه ای بر علم و فناوری غشاء و فرآیندهای غشایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Contents
Preface
Symbols
	Roman Symbols
	Greek symbols
	Subscripts
	Superscripts
1. Introduction
	Overview of Membrane Science and Technology
	History of Membrane Science and Technology
	Advantages and Limitations of Membrane Processes
	The Membrane-Based Industry: Its Structure and Markets
	Future Developments in Membrane Science and Technology
		Biological Membranes
	Summary
	Recommended Reading
	References
2. Fundamentals
	Introduction
	Definition of Terms
		The Membrane and Its Function
		Membrane Materials and Membrane Structures
			Symmetric and Asymmetric Membranes
			Porous Membranes
			Homogeneous Dense Membranes
			Ion-Exchange Membranes
			Liquid Membranes
			Fixed Carrier Membranes
			Other Membranes
			Membrane Geometries
		Mass Transport in Membranes
		Membrane Separation Properties
		Definition of Various Membrane Processes
			Pressure-Driven Membrane Processes
			Activity and Concentration Gradient Driven Membrane Processes
			Electrical Potential and Electrochemical Potential Driven Processes
	Fundamentals of Mass Transport in Membranes and Membrane Processes
		Basic Thermodynamic Relationships with Relevance to Membrane Processes
		Basic Electrochemical Relationships with Relevance to Membrane Processes
			Electron and Ion Conductivity and Ohm\'s Law
			Ion Conductivity, Ion Mobility, and Drift Speed
			Coulomb\'s Law and the Electric Field Effect on Ions in Solution
			The Electric Field Effect in Electrolyte Solutions and the Debye-Hückel Theory
			Electrical Dipoles and Intermolecular Forces
		Chemical and Electrochemical Equilibrium in Membrane Systems
			Water Dissociation Equilibrium and the pH- and pK Values of Acids and Bases
			Osmotic Equilibrium, Osmotic Pressure, Osmosis. and Reverse Osmosis
			The Electrochemical Equilibrium and the Donnan Potential between a Membrane and a Solution
			The Donnan Exclusion of the Co-ions
		Fluxes and Driving Forces in Membrane Processes
			Viscous Flow through Porous Membranes
			Diffusion in Liquids and Dense Membranes
			Diffusion in Solid or Dense Materials
			Jon Flux and Electrical Current
			Diffusion of Ions in an Electrolyte Solution
			Jon Mobility and Ion Radius in Aqueous Solutions
			Migration of Ions and the Electrical Current
			The Transport Number and the Permselectivity of Ion-exchange Membranes
			Interdependence of Fluxes and Driving Forces
			Gas Flux through Porous Membranes, the Knudsen and Surface Diffusion and Molecular Sieving
			Surface Diffusion and Capillary Condensation of Gases
	Mathematical Description of Mass Transport in Membranes
		Mass Transport Described by the Thermodynamics of Irreversible Processes
		Mass Transport Described by the Stefan-Maxwell Equations
		Membrane Mass Transport Models
			The Solution-Diffusion Model
			The Pore Flow Model and the Membrane Cut-off
	References
3. Membrane Preparation and Characterization
	Introduction
	Membrane Materials
		Polymeric Membrane Materials
			The Physical State of a Polymer
			Crystallinity and Glass Transition Temperature
			The Glass Transition Temperature and the Free Volume
			Molecular Weight o fa Polymer Chain
			Macroscopic Structures of Polymers
			Polymer Chain Interaction and Its Effect on Physical Properties
			The Chemical Structure of the Polymer and Its Effect on Polymer Properties
		Inorganic Membrane Materials
			Metal Membranes
			Glass Membranes
			Carbon Membranes
			Metal Oxide Membranes
		Liquid Membrane Materials
	Preparation of Membranes
		Preparation of Symmetric Porous Membranes
			Isotropic Membranes Made by Sintering of Powders, Stretching of Films, and Template Leaching
			Membranes Made by Pressing and Sintering of Polymer Powders
			Membranes Made by Stretching a Polymer Film of Partial Crystallinity
			Membranes Made by Track-Etching
			Membranes Made by Micro-Lithography and Etching Techniques
			Glass Membranes Made by Template Leaching
			Porous Graphite Membranes Made by Pyrolyzing Polymer Structures
			Symmetric Porous Polymer Membranes Made by Phase Inversion Techniques
		Preparation of Asymmetric Membranes
			Preparation of Integral Asymmetric Membranes
		Practical Membrane Preparation by Phase Inversion
			Temperature-Induced Membrane Preparation
			Diffusion-Induced Membrane Preparation
		Phenomenological Description of the Phase Separation Process
			Temperature-Induced Phase Separation Process
			Thermodynamics of a Temperature-Induced Phase Separation of a Two-Component Mixture
			The Diffusion-Induced Phase Separation Process
			Structures of Asymmetric Membranes Obtained by Phase Inversion
			Identification of Various Process Parameters in the Preparation of Phase Inversion Membranes
			General Observation Concerning the Structure of Phase Inversion Membranes
			The Selection of a Polymer/Solvent/Precipitant System for the Preparation of Membranes
			Membrane Pre- and Post-Precipitation Treatment
		Preparation of Composite Membranes
			Techniques Used for the Preparation of Polymeric Composite Membranes
		Preparation of Inorganic Membranes
			Suspension Coating and the Sol-Gel Process
			Perovskite Membranes
			Zeolite Membranes
			Porous Carbon Membranes
			Porous Glass Membranes
		Preparation of Homogeneous Solid Membranes
			Preparation of Liquid Membranes
			Preparation of Ion-Exchange Membranes
	Membrane Characterization
		Characterization of Porous Membranes
			Techniques using Microscopy
			Determination of Micro- and Ultrafiltration Membrane Fluxes
			Membrane Retention and Molecular Weight Cut-Off
			The Bacterial Challenge Test
		Membrane Pore Size Determination
			Air/Liquid and Liquid/Liquid Displacement
			The Bubble Point Method and Gas Liquid Porosimetry
			Liquid/Liquid Displacement
			Permporometry
			Thermoporometry
		Characterization of Dense Membranes
			Determination of Diffusivity in Dense Membranes
			Long-Term Stability of Membranes
		Determination of Electrochemical Properties of Membranes
			Hydraulic Permeability of Ion-Exchange Membranes
			The Fixed Charge Density of Ion-Exchange Membranes
			Determination of the Electrical Resistance of lon-Exchange Membranes
			Membrane Resistance Measurements by Impedance Spectroscopy
			Permselectivity of Ion-Exchange Membranes
			Membrane Permeation Selectivity for Different Counter-ions
			Water Transport in Ion-Exchange Membranes
			Characterization of Special Property Jon-Exchange Membranes
			The Mechanical Properties of Membranes
	References
4. Principles of Membrane Separation Processes
	Introduction
	The Principle of Membrane Filtration Processes
		The Principle of Microfiltration
		The Principle of Ultrafiltration
		The Principle of Nanofiltration
		The Principle of Reverse Osmosis
			The Reverse Osmosis Mass Transport Described by the Solution-Diffusion Model
			Reverse Osmosis Transport Described by the Phenomenological Equations
			The Water and Salt Distribution in a Polymer Matrix and the Cluster Function
	The Principle of Gas and Vapor Separation
		Gas Separation by Knudsen Diffusion
		Gas Separation by Surface Diffusion and Molecular Sieving
		Gas Transport in a Dense Polymer Matrix
		The Principle of Pervaporation
			Material Selection for the Preparation of Pervaporation Membranes
	The Principle of Dialysis
		Mass Transport of Components Carrying No Electrical Charges in Dialysis
		Dialysis Mass Transport of Electrolytes in a Membrane without Fixed Ions
		Dialysis of Electrolytes with Ion-Exchange Membranes
	The Principle of Electro membrane Processes
		Electrodialysis and Related Processes
			Mass Transport in Electrodialysis
			Electrical Current and Ion Fluxes in Electrodialysis
			The Transport Number and Membrane Permselectivity
			Membrane Counter-Ion Permselectivity
			Water Transport in Electrodialysis
			Current Efficiency in Electrodialysis
			Electrodialysis with Bipolar Membranes
			Continuous Electrodeionization
			Capacitive Deionization
			Energy Generation by Reverse Electrodialysis
		Electrochemical Synthesis with Ion-Exchange Membranes
		Ion-Exchange Membranes in Energy Storage and Conversion
	The Principle of Membrane Contactors
		Membrane Contactors Separating a Hydrophobic from a Hydrophilic Phase
		Membrane Contactors Used to Separate Two Immiscible Liquid Phases
		Membrane Contactors Separating a Liquid from a Gas Phase
		Membrane Distillation
		Osmotic Distillation
		Supported Liquid Membranes and Facilitated Transport
		Counter-Current Coupled Facilitated Transport
	Membrane Reactors
		Membrane Emulsifier
	Membrane-Based Controlled Release of Active Agents
	References
5. Membrane Modules and Concentration Polarization
	Introduction
	Membrane Modules
		Membrane Holding Devices in Laboratory and Small-Scale Applications
			The Stirred Batch Cell
			The Sealed Membrane Point-of-Use Filter
			The Plate-and-Frame Membrane Module
		Industrial-Type Membrane Modules for Large Capacity Applications
			The Pleated Filter Membrane Cartridge
			The Spiral-Wound Module
			The Tubular Membrane Module
			The Capillary Membrane Module
			The Hollow Fiber Membrane Module
		Other Membrane Modules
			Membrane Modules Used in Electrodialysis and in Dialysis
	Concentration Polarization and Membrane Fouling
		Concentration Polarization in Filtration Processes
			Concentration Polarization without Solute Precipitation
			Concentration Polarization in Turbulent Flow Described by the Film Model
			Concentration Polarization in Laminar Flow Membrane Devices
			Rigorous Analysis of Concentration Polarization
			Membrane Flux Decline due to Concentration Polarization without Solute Precipitation
			Concentration Polarization with Solute Precipitation at the Membrane Surface
		Concentration Polarization in Other Membrane Separation Processes
			Concentration Polarization in Dialysis and Electrodialysis
			Concentration Polarization in Electrodialysis
			Concentration Polarization in Gas Separation
			Concentration Polarization in Pervaporation
		Membrane Fouling and Its Causes and Consequences
			Prevention of Membrane Fouling
	References
6. Membrane Process Design and Operation
	Introduction
	Membrane Filtration Processes
		Recovery Rate, Membrane Rejection, Retentate, and Filtrate Concentrations
			Solute Losses in Membrane Filtration Processes
			Operation Modes in Filtration Processes
			Reverse Osmosis Process Design
			Stages and Cascades in Membrane Filtration
			Ultra- and Microfiltration Process Design
			Ultrafiltration Process Design
			Diafiltration
		Costs of Membrane Filtration Processes
			Energy Requirements in Filtration Processes
			Investment and Maintenance-Related Costs in Filtration Processes
	Gas Separation
		Gas Separation Process Design and Operation
			Staging in Gas Separation and the Reflux Cascade
		Energy Consumption and Cost of Gas Separation
	Pervaporation
		Pervaporation Modes of Operation
			Staging and Cascades in Pervaporation
		Pervaporation Energy Consumption and Process Costs
	Dialysis
		Dialysis Process and System Design
			Dialyzer Membrane Module Constructions
		Process Costs in Dialysis
	Electrodialysis and Related Processes
		Process Design in Conventional Electrodialysis
			Operation of the Electrodialysis Stacks in a Desalination Plant
		Process Costs in Electrodialysis
	References
Appendix A
Questions and Exercises
Appendix B
Index




نظرات کاربران