دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تحلیل و بررسی ویرایش: 2nd. نویسندگان: Andrew F. Hayes سری: Methodology in social sciences ISBN (شابک) : 9781462534654 ناشر: Guilford Press سال نشر: 2018 تعداد صفحات: 714 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 54 مگابایت
در صورت تبدیل فایل کتاب Introduction to Mediation, Moderation, and Conditional Process Analysis. A Regression-based Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر میانجی گری ، تعدیل و تحلیل فرایند مشروط. رویکردی مبتنی بر رگرسیون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب که به دلیل بحث آسان و محاورهای مبانی میانجیگری، تعدیل و تحلیل فرآیند مشروط مورد ستایش قرار گرفته است، به طور کامل با 50% محتوای جدید، شامل بخشهایی در مورد کار با متغیرهای پیشین چند طبقهای، استفاده از نسخه PROCESS بازبینی شده است. 3 برای SPSS و SAS برای تخمین مدل و خروجی های PROCESS v3 مشروح. اندرو اف. هیز با استفاده از اصول رگرسیون حداقل مربعات معمولی، روشهایی را برای آزمایش فرضیهها در مورد شرایط و مکانیسمهایی که اثرات علی توسط آنها عمل میکنند، و همچنین تعدیل چنین مکانیسمهایی را به دقت توضیح میدهد. هیز نحوه تخمین و تفسیر اثرات مستقیم، غیرمستقیم و مشروط را نشان می دهد. بررسی و تجسم تعاملات؛ سوالات آزمون در مورد میانجیگری تعدیل شده؛ و انواع مختلف تجزیه و تحلیل را گزارش کنید. دادههای همه نمونهها در وبسایت همراه (www.afhayes.com) به همراه پیوندهای دانلود PROCESS موجود است. جدید به این نسخه فصل هایی در مورد استفاده از هر نوع تحلیل با متغیرهای پیشین چند طبقه ای. تجزیه و تحلیل نمونه با استفاده از PROCESS نسخه 3، با خروجی های مشروح در سراسر کتاب. نکات و توصیههای بیشتر، از جمله بحثهای جدید یا تجدیدنظر شده در مورد آزمایش رسمی تعدیل مکانیزم با استفاده از شاخص میانجیگری تعدیلشده؛ اندازه اثر در تحلیل میانجیگری. مقایسه اثرات مشروط در مدل های با بیش از یک تعدیل کننده. استفاده از کد R برای تجسم تعاملات. تمایز بین تست تعامل و بررسی آن؛ و بیشتر. ضمیمه A بازنویسی شده است که تنها مستندات PROCESS v3 شامل 13 مدل از پیش برنامه ریزی شده جدید را ارائه می دهد که اعتدال را با واسطه گری سریال یا واسطه گری موازی و سریالی ترکیب می کند. پیوست B، نحوه ایجاد مدل های سفارشی شده در PROCESS v3 یا ویرایش مدل های از پیش برنامه ریزی شده را شرح می دهد. این عنوان بخشی از متدولوژی در مجموعه علوم اجتماعی است که توسط دکتر تاد دی لیتل ویرایش شده است.
Lauded for its easy-to-understand, conversational discussion of the fundamentals of mediation, moderation, and conditional process analysis, this book has been fully revised with 50% new content, including sections on working with multicategorical antecedent variables, the use of PROCESS version 3 for SPSS and SAS for model estimation, and annotated PROCESS v3 outputs. Using the principles of ordinary least squares regression, Andrew F. Hayes carefully explains procedures for testing hypotheses about the conditions under and the mechanisms by which causal effects operate, as well as the moderation of such mechanisms. Hayes shows how to estimate and interpret direct, indirect, and conditional effects; probe and visualize interactions; test questions about moderated mediation; and report different types of analyses. Data for all the examples are available on the companion website (www.afhayes.com), along with links to download PROCESS. New to This Edition Chapters on using each type of analysis with multicategorical antecedent variables. Example analyses using PROCESS v3, with annotated outputs throughout the book. More tips and advice, including new or revised discussions of formally testing moderation of a mechanism using the index of moderated mediation; effect size in mediation analysis; comparing conditional effects in models with more than one moderator; using R code for visualizing interactions; distinguishing between testing interaction and probing it; and more. Rewritten Appendix A, which provides the only documentation of PROCESS v3, including 13 new preprogrammed models that combine moderation with serial mediation or parallel and serial mediation. Appendix B, describing how to create customized models in PROCESS v3 or edit preprogrammed models. This title is part of the Methodology in the Social Sciences Series, edited by Todd D. Little, PhD.
. Fundamentals 1. Introduction 1.1. A Scientist in Training 1.2. Questions of Whether, If, How, and When 1.3. Conditional Process Analysis 1.4. Correlation, Causality, and Statistical Modeling 1.5. Statistical and Conceptual Diagrams, and Antecedent and Consequent Variables 1.6. Statistical Software 1.7. Overview of This Book 1.8. Chapter Summary 2. Fundamentals of Linear Regression Analysis 2.1. Correlation and Prediction 2.2. The Simple Linear Regression Model 2.3. Alternative Explanations for Association 2.4. Multiple Linear Regression 2.5. Measures of Model Fit 2.6. Statistical Inference 2.7. Multicategorical Antecedent Variables 2.8. Assumptions for Interpretation and Statistical Inference 2.9. Chapter Summary II. Mediation Analysis 3. The Simple Mediation Model 3.1. The Simple Mediation Model 3.2. Estimation of the Direct, Indirect, and Total Effects of X 3.3. Example with Dichotomous X: The Influence of Presumed Media Influence 3.4. Statistical Inference 3.5. An Example with Continuous X: Economic Stress among Small-Business Owners 3.6. Chapter Summary 4. Causal Steps, Confounding, and Causal Order 4.1. What about Baron and Kenny? 4.2. Confounding and Causal Order 4.3. Effect Size 4.4. Statistical Power 4.5. Multiple Xs or Ys: Analyze Separately or Simultaneously? 4.6. Chapter Summary 5. More Than One Mediator 5.1. The Parallel Multiple Mediator Model 5.2. Example Using the Presumed Media Influence Study 5.3. Statistical Inference 5.4. The Serial Multiple Mediator Model 5.5. Models With Parallel and Serial Mediation Properties 5.6. Complementarity and Competition among Mediators 5.7. Chapter Summary 6. Mediation Analysis with a Multicategorical Antecedent X 6.1. Relative Total, Direct, and Indirect Effects 6.2. An Example: Sex Discrimination in the Workplace 6.3. Using a Different Group Coding System 6.4. Some Miscellaneous Issues 6.5. Chapter Summary III. Moderation Analysis 7. Fundamentals of Moderation Analysis 7.1. Conditional and Unconditional Effects 7.2. An Example: Climate Change Disasters and Humanitarianism 7.3. Visualizing Moderation 7.4. Probing an Interaction 7.5. The Difference between Testing for Moderation and Probing It 7.6. Artificial Categorization and Subgroups Analysis 7.7. Chapter Summary 8. Extending the Fundamentals of Moderation Analysis 8.1. Moderation with a Dichotomous Moderator 8.2. Interaction between Two Quantitative Variables 8.3. Hierarchical versus Simultaneous Entry 8.4. The Equivalence between Moderated Regression Analysis and a 2 × 2 Factorial Analysis of Variance 8.5. Chapter Summary 9. Some Myths and Further Extensions of Moderation Analysis 9.1. Truths and Myths about Mean Centering 9.2. The Estimation and Interpretation of Standardized Regression Coefficients in a Moderation Analysis 9.3. A Caution on Manual Centering and Standardization 9.4. More than One Moderator 9.5. Comparing Conditional Effects 9.6. Chapter Summary 10. Multicategorical Focal Antecedents and Moderators 10.1. Moderation of the Effect of a Multicategorical Antecedent Variable 10.2. An Example from the Sex Discrimination in the Work Place Study 10.3. Visualizing the Model 10.4. Probing the Interaction 10.5. When the Moderator is Multicategorical 10.6. Using a Different Coding System 10.7. Chapter Summary IV. Conditional Process Analysis 11. Fundamentals of Conditional Process Analysis 11.1. Examples of Conditional Process Models in the Literature 11.2. Conditional Direct and Indirect Effects 11.3. Example: Hiding Your Feelings from Your Work Team 11.4. Estimation of a Conditional Process Model using PROCESS 11.5. Quantifying and Visualizing (Conditional) Indirect and Direct Effects 11.6. Statistical Inference 11.7. Chapter Summary 12. Further Examples of Conditional Process Analysis 12.1. Revisiting the Disaster Framing Study 12.2. Moderation of the Direct and Indirect Effects in a Conditional Process Model 12.3. Statistical Inference 12.4. Mediated Moderation 12.5. Chapter Summary 13. Conditional Process Analysis with a Multicategorical Antecedent 13.1. Revisiting Sexual Discrimination in the Work Place 13.2. Looking at the Components of the Indirect Effect of X 13.3. Relative Conditional Indirect Effects 13.4. Testing and Probing Moderation of Mediation 13.5. Relative Conditional Direct Effects 13.6. Putting It All Together 13.7. Chapter Summary V. Miscellanea 14. Miscellaneous Topics and Some Frequently Asked Questions 14.1. A Strategy for Approaching a Conditional Process Analysis 14.2. How Do I Write about This? 14.3. Should I Use Structural Equation Modeling Instead of Regression Analysis? 14.4. The Pitfalls of Subgroups Analysis 14.5. Can a Variable Simultaneously Mediate and Moderate Another Variable’s Effect? 14.6. Interaction between X and M in Mediation Analysis 14.7. Repeated Measures Designs 14.8. Dichotomous, Ordinal, Count, and Survival Outcomes 14.9. Chapter Summary Appendices Appendix A. Using PROCESS Appendix B. Constructing and Customizing Models in PROCESS Appendix C. Monte Carlo Confidence Intervals in SPSS and SAS References About the Author