دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 Global ed.]
نویسندگان: Pang-Ning Tan
سری:
ISBN (شابک) : 9780273775324, 0273775324
ناشر: Pearson Education Limited
سال نشر: 2019
تعداد صفحات: [866]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Introduction to Data Mining به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر داده کاوی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مقدمه ای بر داده کاوی مفاهیم و الگوریتم های اساسی را برای کسانی که برای اولین بار داده کاوی را یاد می گیرند ارائه می کند. هر مفهوم به طور کامل بررسی شده و با مثال های متعدد پشتیبانی می شود. متن فقط به پیشینه متوسطی در ریاضیات نیاز دارد. هر موضوع اصلی در دو فصل سازماندهی شده است، که با مفاهیم اساسی شروع می شود که زمینه لازم برای درک هر تکنیک داده کاوی را فراهم می کند و به دنبال آن مفاهیم و الگوریتم های پیشرفته تر ارائه می شود. متن کامل بارگیری شده در رایانه شما با کتابهای الکترونیکی میتوانید: جستجوی مفاهیم، کلمات و عبارات کلیدی ایجاد نکات برجسته و یادداشتبرداری در حین مطالعه یادداشتهای خود را با دوستان خود به اشتراک بگذارید کتابهای الکترونیکی در رایانه شما دانلود میشوند و به صورت آفلاین از طریق قفسه کتاب در دسترس هستند (به صورت رایگان موجود است. دانلود)، به صورت آنلاین و همچنین از طریق برنامه های iPad و Android در دسترس است. پس از خرید، دسترسی فوری به این کتاب الکترونیکی خواهید داشت. محدودیت زمانی محصولات کتاب های الکترونیکی تاریخ انقضا ندارند. تا زمانی که قفسه کتاب خود را نصب کرده باشید، همچنان به محصولات کتاب الکترونیکی دیجیتال خود دسترسی خواهید داشت.
Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organised into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms. The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
Front Cover Title Page Copyright Page Dedication Preface to the Second Edition Contents 1 Introduction 1.1 What Is Data Mining? 1.2 Motivating Challenges 1.3 the Origins of Data Mining 1.4 Data Mining Tasks 1.5 Scope and Organization of the Book 1.6 Bibliographic Notes 1.7 Exercises 2 Data 2.1 Types of Data 2.1.1 Attributes and Measurement 2.1.2 Types of Data Sets 2.2 Data Quality 2.2.1 Measurement and Data Collection Issues 2.2.2 Issues Related to Applications 2.3 Data Preprocessing 2.3.1 Aggregation 2.3.2 Sampling 2.3.3 Dimensionality Reduction 2.3.4 Feature Subset Selection 2.3.5 Feature Creation 2.3.6 Discretization and Binarization 2.3.7 Variable Transformation 2.4 Measures of Similarity and Dissimilarity 2.4.1 Basics 2.4.2 Similarity and Dissimilarity Between Simple Attributes 2.4.3 Dissimilarities Between Data Objects 2.4.4 Similarities Between Data Objects 2.4.5 Examples of Proximity Measures 2.4.6 Mutual Information 2.4.7 Kernel Functions* 2.4.8 Bregman Divergence* 2.4.9 Issues in Proximity Calculation 2.4.10 Selecting the Right Proximity Measure 2.5 Bibliographic Notes 2.6 Exercises 3 Classification: Basic Concepts and Techniques 3.1 Basic Concepts 3.2 General Framework for Classification 3.3 Decision Tree Classifier 3.3.1 A Basic Algorithm to Build a Decision Tree 3.3.2 Methods for Expressing Attribute Test Conditions 3.3.3 Measures for Selecting an Attribute Test Condition 3.3.4 Algorithm for Decision Tree Induction 3.3.5 Example Application: Web Robot Detection 3.3.6 Characteristics of Decision Tree Classifiers 3.4 Model Overfitting 3.4.1 Reasons for Model Overfitting 3.5 Model Selection 3.5.1 Using a Validation Set 3.5.2 Incorporating Model Complexity 3.5.3 Estimating Statistical Bounds 3.5.4 Model Selection for Decision Trees 3.6 Model Evaluation 3.6.1 Holdout Method 3.6.2 Cross-validation 3.7 Presence of Hyper-parameters 3.7.1 Hyper-parameter Selection 3.7.2 Nested Cross-validation 3.8 Pitfalls of Model Selection and Evaluation 3.8.1 Overlap Between Training and Test Sets 3.8.2 Use of Validation Error as Generalization Error 3.9 Model Comparison* 3.9.1 Estimating the Confidence Interval for Accuracy 3.9.2 Comparing the Performance of Two Models 3.10 Bibliographic Notes 3.11 Exercises 4 Association Analysis: Basic Concepts and Algorithms 4.1 Preliminaries 4.2 Frequent Itemset Generation 4.2.1 The Apriori Principle 4.2.2 Frequent Itemset Generation in the Algorithm 4.2.3 Candidate Generation and Pruning 4.2.4 Support Counting 4.2.5 Computational Complexity 4.3 Rule Generation 4.3.1 Confidence-based Pruning 4.3.2 Rule Generation in Algorithm 4.3.3 an Example: Congressional Voting Records 4.4 Compact Representation of Frequent Itemsets 4.4.1 Maximal Frequent Itemsets 4.4.2 Closed Itemsets 4.5 Alternative Methods for Generating Frequent Itemsets* 4.6 FP-Growth Algorithm* 4.6.1 FP-Tree Representation 4.6.2 Frequent Itemset Generation in FP-Growth Algorithm 4.7 Evaluation of Association Patterns 4.7.1 Objective Measures of Interestingness 4.7.2 Measures Beyond Pairs of Binary Variables 4.7.3 Simpson’s Paradox 4.8 Effect of Skewed Support Distribution 4.9 Bibliographic Notes 4.10 Exercises 5 Cluster Analysis: Basic Concepts and Algorithms 5.1 Overview 5.1.1 What Is Cluster Analysis? 5.1.2 Different Types of Clusterings 5.1.3 Different Types of Clusters Road Map 5.2 K-means 5.2.1 The Basic K-means Algorithm 5.2.2 K-means: Additional Issues 5.2.3 Bisecting K-means 5.2.4 K-means and Different Types of Clusters 5.2.5 Strengths and Weaknesses 5.2.6 K-means as an Optimization Problem 5.3 Agglomerative Hierarchical Clustering 5.3.1 Basic Agglomerative Hierarchical Clustering Algorithm 5.3.2 Specific Techniques 5.3.3 The Lance-williams Formula for Cluster Proximity 5.3.4 Key Issues in Hierarchical Clustering 5.3.5 Outliers 5.3.6 Strengths and Weaknesses 5.4 DBSCAN 5.4.1 Traditional Density: Center-based Approach 5.4.2 The Dbscan Algorithm 5.4.3 Strengths and Weaknesses 5.5 Cluster Evaluation 5.5.1 Overview 5.5.2 Unsupervised Cluster Evaluation Using Cohesion and Separation 5.5.3 Unsupervised Cluster Evaluation Using the Proximity Matrix 5.5.4 Unsupervised Evaluation of Hierarchical Clustering 5.5.5 Determining the Correct Number of Clusters 5.5.6 Clustering Tendency 5.5.7 Supervised Measures of Cluster Validity 5.5.8 Assessing the Significance of Cluster Validity Measures 5.5.9 Choosing a Cluster Validity Measure 5.6 Bibliographic Notes 5.7 Exercises 6 Classification: Alternative Techniques 6.1 Types of Classifiers 6.2 Rule-Based Classifier 6.2.1 How a Rule-Based Classifier Works 6.2.2 Properties of a Rule Set 6.2.3 Direct Methods for Rule Extraction 6.2.4 Indirect Methods for Rule Extraction 6.2.5 Characteristics of Rule-Based Classifiers 6.3 Nearest Neighbor Classifiers 6.3.1 Algorithm 6.3.2 Characteristics of Nearest Neighbor Classifiers 6.4 Na¨ive Bayes Classifier 6.4.1 Basics of Probability Theory 6.4.2 Na¨ive Bayes Assumption 6.5 Bayesian Networks 6.5.1 Graphical Representation 6.5.2 Inference and Learning 6.5.3 Characteristics of Bayesian Networks 6.6 Logistic Regression 6.6.1 Logistic Regression as a Generalized Linear Model 6.6.2 Learning Model Parameters 6.6.3 Characteristics of Logistic Regression 6.7 Artificial Neural Network (ann) 6.7.1 Perceptron 6.7.2 Multi-layer Neural Network 6.7.3 Characteristics of Ann 6.8 Deep Learning 6.8.1 Using Synergistic Loss Functions 6.8.2 Using Responsive Activation Functions 6.8.3 Regularization 6.8.4 Initialization of Model Parameters 6.8.5 Characteristics of Deep Learning 6.9 Support Vector Machine (svm) 6.9.1 Margin of a Separating Hyperplane 6.9.2 Linear SVM 6.9.3 Soft-margin SVM 6.9.4 Nonlinear SVM 6.9.5 Characteristics of SVM 6.10 Ensemble Methods 6.10.1 Rationale for Ensemble Method 6.10.2 Methods for Constructing an Ensemble Classifier 6.10.3 Bias-Variance Decomposition 6.10.4 Bagging 6.10.5 Boosting 6.10.6 Random Forests 6.10.7 Empirical Comparison Among Ensemble Methods 6.11 Class Imbalance Problem 6.11.1 Building Classifiers with Class Imbalance 6.11.2 Evaluating Performance with Class Imbalance 6.11.3 Finding an Optimal Score Threshold 6.11.4 Aggregate Evaluation of Performance 6.12 Multiclass Problem 6.13 Bibliographic Notes 6.14 Exercises 7 Association Analysis: Advanced Concepts 7.1 Handling Categorical Attributes 7.2 Handling Continuous Attributes 7.2.1 Discretization-Based Methods 7.2.2 Statistics-Based Methods 7.2.3 Non-Discretization Methods 7.3 Handling a Concept Hierarchy 7.4 Sequential Patterns 7.4.1 Preliminaries 7.4.2 Sequential Pattern Discovery 7.4.3 Timing Constraints* 7.4.4 Alternative Counting Schemes* 7.5 Subgraph Patterns 7.5.1 Preliminaries 7.5.2 Frequent Subgraph Mining 7.5.3 Candidate Generation 7.5.4 Candidate Pruning 7.5.5 Support Counting 7.6 Infrequent Patterns* 7.6.1 Negative Patterns 7.6.2 Negatively Correlated Patterns 7.6.3 Comparisons Among Infrequent Patterns, Negative Patterns, and Negatively Correlated Patterns 7.6.4 Techniques for Mining Interesting Infrequent Patterns 7.6.5 Techniques Based on Mining Negative Patterns 7.6.6 Techniques Based on Support Expectation 7.7 Bibliographic Notes 7.8 Exercises 8 Cluster Analysis: Additional Issues and Algorithms 8.1 Characteristics of Data, Clusters, and Clustering Algorithms 8.1.1 Example: Comparing K-means and Dbscan 8.1.2 Data Characteristics 8.1.3 Cluster Characteristics 8.1.4 General Characteristics of Clustering Algorithms Road Map 8.2 Prototype-based Clustering 8.2.1 Fuzzy Clustering 8.2.2 Clustering Using Mixture Models 8.2.3 Self-organizing Maps (SOM) 8.3 Density-Based Clustering 8.3.1 Grid-Based Clustering 8.3.2 Subspace Clustering 8.3.3 Denclue: A Kernel-Based Scheme for Density-based Clustering 8.4 Graph-Based Clustering 8.4.1 Sparsification 8.4.2 Minimum Spanning Tree (MST) Clustering 8.4.3 Opossum: Optimal Partitioning of Sparse Similarities Using Metis 8.4.4 Chameleon: Hierarchical Clustering with Dynamic Modeling 8.4.5 Spectral Clustering 8.4.6 Shared Nearest Neighbor Similarity 8.4.7 the Jarvis-patrick Clustering Algorithm 8.4.8 SNN Density 8.4.9 SNN Density-Based Clustering 8.5 Scalable Clustering Algorithms 8.5.1 Scalability: General Issues and Approaches 8.5.2 Birch 8.5.3 Cure 8.6 Which Clustering Algorithm? 8.7 Bibliographic Notes 8.8 Exercises 9 Anomaly Detection 9.1 Characteristics of Anomaly Detection Problems 9.1.1 A Definition of an Anomaly 9.1.2 Nature of Data 9.1.3 How Anomaly Detection is Used 9.2 Characteristics of Anomaly Detection Methods 9.3 Statistical Approaches 9.3.1 Using Parametric Models 9.3.2 Using Non-Parametric Models 9.3.3 Modeling Normal and Anomalous Classes 9.3.4 Assessing Statistical Significance 9.3.5 Strengths and Weaknesses 9.4 Proximity-Based Approaches 9.4.1 Distance-Based Anomaly Score 9.4.2 Density-Based Anomaly Score 9.4.3 Relative Density-Based Anomaly Score 9.4.4 Strengths and Weaknesses 9.5 Clustering-Based Approaches 9.5.1 Finding Anomalous Clusters 9.5.2 Finding Anomalous Instances 9.5.3 Strengths and Weaknesses 9.6 Reconstruction-Based Approaches 9.6.1 Strengths and Weaknesses 9.7 One-Class Classification 9.7.1 Use of Kernels 9.7.2 The Origin Trick 9.7.3 Strengths and Weaknesses 9.8 Information Theoretic Approaches 9.8.1 Strengths and Weaknesses 9.9 Evaluation of Anomaly Detection 9.10 Bibliographic Notes 9.11 Exercises 10 Avoiding False Discoveries 10.1 Preliminaries: Statistical Testing 10.1.1 Significance Testing 10.1.2 Hypothesis Testing 10.1.3 Multiple Hypothesis Testing 10.1.4 Pitfalls in Statistical Testing 10.2 Modeling Null and Alternative Distributions 10.2.1 Generating Synthetic Data Sets 10.2.2 Randomizing Class Labels 10.2.3 Resampling Instances 10.2.4 Modeling the Distribution of the Test Statistic 10.3 Statistical Testing for Classification 10.3.1 Evaluating Classification Performance 10.3.2 Binary Classification as Multiple Hypothesis Testing 10.3.3 Multiple Hypothesis Testing in Model Selection 10.4 Statistical Testing for Association Analysis 10.4.1 Using Statistical Models 10.4.2 Using Randomization Methods 10.5 Statistical Testing for Cluster Analysis 10.5.1 Generating a Null Distribution for Internal Indices 10.5.2 Generating a Null Distribution for External Indices 10.5.3 Enrichment 10.6 Statistical Testing for Anomaly Detection 10.7 Bibliographic Notes 10.8 Exercises Author Index Subject Index Copyright Permissions Back Cover