ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب INTERNAL COMBUSTION ENGINES

دانلود کتاب موتورهای احتراق داخلی

INTERNAL COMBUSTION ENGINES

مشخصات کتاب

INTERNAL COMBUSTION ENGINES

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781259006197 
ناشر: McGraw-Hill Education 
سال نشر: 2017 
تعداد صفحات: 768
[765] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب INTERNAL COMBUSTION ENGINES به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب موتورهای احتراق داخلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Title
Contents
1 Introduction
	1.1 Energy Conversion
		1.1.1 Definition of ‘Engine’
		1.1.2 Definition of ‘Heat Engine’
		1.1.3 Classification and Some Basic Details of Heat Engines
		1.1.4 External Combustion and Internal Combustion Engines
	1.2 Basic Engine Components and Nomenclature
		1.2.1 Engine Components
		1.2.2 Nomenclature
	1.3 The Working Principle of Engines
		1.3.1 Four-Stroke Spark-Ignition Engine
		1.3.2 Four-Stroke Compression-Ignition Engine
		1.3.3 Four-stroke SI and CI Engines
		1.3.4 Two-Stroke Engine
		1.3.5 Comparison of Four-Stroke and Two-Stroke Engines
	1.4 Actual Engines
	1.5 Classification of IC Engines
		1.5.1 Cycle of Operation
		1.5.2 Type of Fuel Used
		1.5.3 Method of Charging
		1.5.4 Type of Ignition
		1.5.5 Type of Cooling
		1.5.6 Cylinder Arrangements
	1.6 Application of IC Engines
		1.6.1 Two-Stroke Gasoline Engines
		1.6.2 Two-Stroke Diesel Engines
		1.6.3 Four-Stroke Gasoline Engines
		1.6.4 Four-Stroke Diesel Engines
	1.7 The First Law Analysis of Engine Cycle
	1.8 Engine Performance Parameters
		1.8.1 Indicated Thermal Efficiency (ηith)
		1.8.2 Brake Thermal Efficiency (ηbth)
		1.8.3 Mechanical Efficiency (ηm)
		1.8.4 Volumetric Efficiency (ηv)
		1.8.5 Relative Efficiency or Efficiency Ratio (ηrel)
		1.8.6 Mean Effective Pressure (pm)
		1.8.7 Mean Piston Speed (sp)
		1.8.8 Specific Power Output (Ps)
		1.8.9 Specific Fuel Consumption (sfc)
		1.8.10 Inlet-Valve Mach Index (Z)
		1.8.11 Fuel-Air (F/A) or Air-Fuel Ratio (A/F)
		1.8.12 Calorific Value (CV )
	1.9 Design and Performance Data
	Worked out Examples
	Review Questions
	Exercise
	Multiple Choice Questions
2 Air-Standard Cycles and Their Analysis
	2.1 Introduction
	2.2 The Carnot Cycle
	2.3 The Stirling Cycle
	2.4 The Ericsson Cycle
	2.5 The Otto Cycle
		2.5.1 Thermal Efficiency
		2.5.2 Work Output
		2.5.3 Mean Effective Pressure
	2.6 The Diesel Cycle
		2.6.1 Thermal Efficiency
		2.6.2 Work Output
		2.6.3 Mean Effective Pressure
	2.7 The Dual Cycle
		2.7.1 Thermal Efficiency
		2.7.2 Work Output
		2.7.3 Mean Effective Pressure
	2.8 Comparison of the Otto, Diesel and Dual Cycles
		2.8.1 Same Compression Ratio and Heat Addition
		2.8.2 Same Compression Ratio and Heat Rejection
		2.8.3 Same Peak Pressure, Peak Temperature & Heat Rejection
		2.8.4 Same Maximum Pressure and Heat Input
		2.8.5 Same Maximum Pressure and Work Output
	2.9 The Lenoir Cycle
	2.10 The Atkinson Cycle
	2.11 The Brayton Cycle
	Worked out Examples
	Review Questions
	Exercise
	Multiple Choice Questions
3 Fuel–Air Cycles and their Analysis
	3.1 Introduction
	3.2 Fuel–Air Cycles and their Significance
	3.3 Composition of Cylinder Gases
	3.4 Variable Specific Heats
	3.5 Dissociation
	3.6 Effect of Number of Moles
	3.7 Comparison of Air–Standard and Fuel–Air Cycles
	3.8 Effect of Operating Variables
		3.8.1 Compression Ratio
		3.8.2 Fuel–Air Ratio
	Worked out Examples
	Review Questions
	Exercise
	Multiple Choice Questions
4 Actual Cycles and their Analysis
	4.1 Introduction
	4.2 Comparison of Air-Standard and Actual Cycles
	4.3 Time Loss Factor
	4.4 Heat Loss Factor
	4.5 Exhaust Blowdown
		4.5.1 Loss Due to Gas Exchange Processes
		4.5.2 Volumetric Efficiency
	4.6 Loss due to Rubbing Friction
	4.7 Actual and Fuel-Air Cycles of CI Engines
	Review Questions
	Multiple Choice Questions
5 Conventional Fuels
	5.1 Introduction
	5.2 Fuels
		5.2.1 Solid Fuels
		5.2.2 Gaseous Fuels
		5.2.3 Liquid Fuels
	5.3 Chemical Structure of Petroleum
		5.3.1 Paraffin Series
		5.3.2 Olefin Series
		5.3.3 Naphthene Series
		5.3.4 Aromatic Series
	5.4 Petroleum Refining Process
	5.5 Important Qualities of Engine Fuels
		5.5.1 SI Engine Fuels
		5.5.2 CI Engine Fuels
	5.6 Rating of Fuels
		5.6.1 Rating of SI Engine Fuels
		5.6.2 Rating of CI Engine Fuels
	Review Questions
	Multiple Choice Questions
6 Alternate Fuels
	6.1 Introduction
	6.2 Possible Alternatives
	6.3 Solid Fuels
	6.4 Liquid Fuels
		6.4.1 Alcohol
		6.4.2 Methanol
		6.4.3 Ethanol
		6.4.4 Alcohol for SI Engines
		6.4.5 Reformulated Gasoline for SI Engine
		6.4.6 Water-Gasoline Mixture for SI Engines
		6.4.7 Alcohol for CI Engines
	6.5 Surface-Ignition Alcohol CI Engine
	6.6 Spark-Assisted Diesel
	6.7 Vegetable Oil
	6.8 Biodiesel
		6.8.1 Production
		6.8.2 Properties
		6.8.3 Environmental Effects
		6.8.4 Current Research
	6.9 Gaseous Fuels
		6.9.1 Hydrogen
	6.10 Hydrogen Engines
		6.10.1 Natural Gas
		6.10.2 Advantages of Natural Gas
		6.10.3 Disadvantages of Natural Gas
		6.10.4 Compressed Natural Gas (CNG)
		6.10.5 Liquefied Petroleum Gas (LPG)
		6.10.6 Advantages and Disadvantages of LPG
		6.10.7 Future Scenario for LPG Vehicles
		6.10.8 LPG (Propane) Fuel Feed System
	6.11 Dual Fuel Operation
	6.12 Other Possible Fuels
		6.12.1 Biogas
		6.12.2 Producer Gas
		6.12.3 Blast Furnace Gas
		6.12.4 Coke Oven Gas
		6.12.5 Benzol
		6.12.6 Acetone
		6.12.7 Diethyl Ether
	Review Questions
	Multiple Choice Questions
7 Carburetion
	7.1 Introduction
	7.2 Definition of Carburetion
	7.3 Factors Affecting Carburetion
	7.4 Air–Fuel Mixtures
	7.5 Mixture Requirements at Different Loads and Speeds
	7.6 Automotive Engine Air–Fuel Mixture Requirements
		7.6.1 Idling Range
		7.6.2 Cruising Range
		7.6.3 Power Range
	7.7 Principle of Carburetion
	7.8 The Simple Carburetor
	7.9 Calculation of the Air–Fuel Ratio
		7.9.1 Air–Fuel Ratio Neglecting Compressibility of Air
		7.9.2 Air–Fuel Ratio Provided by a Simple Carburetor
		7.9.3 Size of the Carburetor
	7.10 Essential Parts of a Carburetor
		7.10.1 The Fuel Strainer
		7.10.2 The Float Chamber
		7.10.3 The Main Metering and Idling System
		7.10.4 The Choke and the Throttle
	7.11 Compensating Devices
		7.11.1 Air-bleed jet
		7.11.2 Compensating Jet
		7.11.3 Emulsion Tube
		7.11.4 Back Suction Control Mechanism
		7.11.5 Auxiliary Valve
		7.11.6 Auxiliary Port
	7.12 Additional Systems in Modern Carburetors
		7.12.1 Anti-dieseling System
		7.12.2 Richer Coasting System
		7.12.3 Acceleration Pump System
		7.12.4 Economizer or Power Enrichment System
	7.13 Types of Carburetors
		7.13.1 Constant Choke Carburetor
		7.13.2 Constant Vacuum Carburetor
		7.13.3 Multiple Venturi Carburetor
		7.13.4 Advantages of a Multiple Venturi System
		7.13.5 Multijet Carburetors
		7.13.6 Multi-barrel Venturi Carburetor
	7.14 Automobile Carburetors
		7.14.1 Solex Carburetors
		7.14.2 Carter Carburetor
		7.14.3 S.U. Carburetor
	7.15 Altitude Compensation
		7.15.1 Altitude Compensation Devices
	Worked out Examples
	Review Questions
	Exercise
	Multiple Choice Questions
8 Mechanical Injection Systems
	8.1 Introduction
	8.2 Functional Requirements of an Injection System
	8.3 Classification of Injection Systems
		8.3.1 Air Injection System
		8.3.2 Solid Injection System
		8.3.3 Individual Pump and Nozzle System
		8.3.4 Unit Injector System
		8.3.5 Common Rail System
		8.3.6 Distributor System
	8.4 Fuel Feed Pump
	8.5 Injection Pump
		8.5.1 Jerk Type Pump
		8.5.2 Distributor Type Pump
	8.6 Injection Pump Governor
	8.7 Mechanical Governor
	8.8 Pneumatic Governor
	8.9 Fuel Injector
	8.10 Nozzle
		8.10.1 Types of Nozzle
		8.10.2 Spray Formation
		8.10.3 Quantity of Fuel and the Size of Nozzle Orifice
	8.11 Injection in SI Engine
	Worked out Examples
	Review Questions
	Exercise
	Multiple Choice Questions
9 Electronic Injection Systems
	9.1 Introduction
	9.2 Why Gasoline Injection?
		9.2.1 Types of Injection Systems
		9.2.2 Components of Injection System
	9.3 Electronic Fuel Injection System
		9.3.1 Merits of EFI System
		9.3.2 Demerits of EFI System
	9.4 Multi-Point Fuel Injection (MPFI) System
		9.4.1 Port Injection
		9.4.2 Throttle Body Injection System
		9.4.3 D-MPFI System
		9.4.4 L-MPFI System
	9.5 Functional Divisions of MPFI System
		9.5.1 MPFI-Electronic Control System
		9.5.2 MPFI-Fuel System
		9.5.3 MPFI-Air Induction System
	9.6 Electronic Control System
		9.6.1 Electronic Control Unit (ECU)
		9.6.2 Cold Start Injector
		9.6.3 Air Valve
	9.7 Injection Timing
	9.8 Group Gasoline Injection System
	9.9 Electronic Diesel Injection System
	9.10 Electronic Diesel Injection Control
		9.10.1 Electronically Controlled Unit Injectors
		9.10.2 Electronically Controlled Injection Pumps (Inline and Distributor Type)
		9.10.3 Common-Rail Fuel Injection System
	Review Questions
	Multiple Choice Questions
10 Ignition
	10.1 Introduction
	10.2 Energy Requirements for Ignition
	10.3 The Spark Energy and Duration
	10.4 Ignition System
	10.5 Requirements of an Ignition System
	10.6 Battery Ignition System
		10.6.1 Battery
		10.6.2 Ignition Switch
		10.6.3 Ballast Resistor
		10.6.4 Ignition Coil
		10.6.5 Contact Breaker
		10.6.6 Capacitor
		10.6.7 Distributor
		10.6.8 Spark Plug
	10.7 Operation of a Battery Ignition System
	10.8 Limitations
	10.9 Dwell Angle
	10.10 Advantage of a 12 V Ignition System
	10.11 Magneto Ignition System
	10.12 Modern Ignition Systems
		10.12.1 Transistorized Coil Ignition (TCI) System
		10.12.2 Capacitive Discharge Ignition (CDI) System
	10.13 Firing Order
	10.14 Ignition Timing and Engine Parameters
		10.14.1 Engine Speed
		10.14.2 Mixture Strength
		10.14.3 Part Load Operation
		10.14.4 Type of Fuel
	10.15 Spark Advance Mechanism
		10.15.1 Centrifugal Advance Mechanism
		10.15.2 Vacuum Advance Mechanism
	10.16 Ignition Timing and Exhaust Emissions
	Review Questions
	Multiple Choice Questions
11 Combustion and Combustion Chambers
	11.1 Introduction
	11.2 Homogeneous Mixture
	11.3 Heterogeneous Mixture
	11.4 Combustion in Spark–Ignition Engines
	11.5 Stages of Combustion in SI Engines
	11.6 Flame Front Propagation
	11.7 Factors Influencing the Flame Speed
	11.8 Rate of Pressure Rise
	11.9 Abnormal Combustion
	11.10 The Phenomenon of Knock in SI Engines
		11.10.1 Knock Limited Parameters
	11.11 Effect of Engine Variables on Knock
		11.11.1 Density Factors
		11.11.2 Time Factors
		11.11.3 Composition Factors
	11.12 Combustion Chambers for SI Engines
		11.12.1 Smooth Engine Operation
		11.12.2 High Power Output and Thermal Efficiency
	11.13 Combustion in Compression-Ignition Engines
	11.14 Stages of Combustion in CI Engines
		11.14.1 Ignition Delay Period
		11.14.2 Period of Rapid Combustion
		11.14.3 Period of Controlled Combustion
		11.14.4 Period of After-Burning
	11.15 Factors Affecting the Delay Period
		11.15.1 Compression Ratio
		11.15.2 Engine Speed
		11.15.3 Output
		11.15.4 Atomization and Duration of Injection
		11.15.5 Injection Timing
		11.15.6 Quality of Fuel
		11.15.7 Intake Temperature
		11.15.8 Intake Pressure
	11.16 The Phenomenon of Knock in CI Engines
	11.17 Comparison of Knock in SI and CI Engines
	11.18 Combustion Chambers for CI Engines
		11.18.1 Direct–Injection Chambers
		11.18.2 Indirect–Injection Chambers
	Review Questions
	Multiple Choice Questions
12 Engine Friction and Lubrication
	12.1 Introduction
		12.1.1 Direct Frictional Losses
		12.1.2 Pumping Loss
		12.1.3 Power Loss to Drive Components to Charge and Scavenge
		12.1.4 Power Loss to Drive the Auxiliaries
	12.2 Mechanical Efficiency
	12.3 Mechanical Friction
		12.3.1 Fluid-film or Hydrodynamic Friction
		12.3.2 Partial-film Friction
		12.3.3 Rolling Friction
		12.3.4 Dry Friction
		12.3.5 Journal Bearing Friction
		12.3.6 Friction due to Piston Motion
	12.4 Blowby Losses
	12.5 Pumping Loss
		12.5.1 Exhaust Blowdown Loss
		12.5.2 Exhaust Stroke Loss
		12.5.3 Intake Stroke Loss
	12.6 Factors Affecting Mechanical Friction
		12.6.1 Engine Design
		12.6.2 Engine Speed
		12.6.3 Engine Load
		12.6.4 Cooling Water Temperature
		12.6.5 Oil Viscosity
	12.7 Lubrication
		12.7.1 Function of Lubrication
		12.7.2 Mechanism of Lubrication
		12.7.3 Elastohydrodynamic Lubrication
		12.7.4 Journal Bearing Lubrication
		12.7.5 Stable Lubrication
	12.8 Lubrication of Engine Components
		12.8.1 Piston
		12.8.2 Crankshaft Bearings
		12.8.3 Crankpin Bearings
		12.8.4 Wristpin Bearing
	12.9 Lubrication System
		12.9.1 Mist Lubrication System
		12.9.2 Wet Sump Lubrication System
		12.9.3 Dry Sump Lubrication System
	12.10 Crankcase Ventilation
	12.11 Properties of Lubricants
		12.11.1 Viscosity
		12.11.2 Flash and Fire Points
		12.11.3 Cloud and Pour Points
		12.11.4 Oiliness or Film Strength
		12.11.5 Corrosiveness
		12.11.6 Detergency
		12.11.7 Stability
		12.11.8 Foaming
	12.12 SAE Rating of Lubricants
		12.12.1 Single-grade
		12.12.2 Multi-grade
	12.13 Additives for Lubricants
		12.13.1 Anti-oxidants and Anticorrosive Agents
		12.13.2 Detergent-Dispersant
		12.13.3 Extreme Pressure Additives
		12.13.4 Pour Point Depressors
		12.13.5 Viscosity Index Improvers
		12.13.6 Oiliness and Film Strength Agents
		12.13.7 Antifoam Agents
	Review Questions
	Multiple Choice Questions
13 Heat Rejection and Cooling
	13.1 Introduction
	13.2 Variation of Gas Temperature
	13.3 Piston Temperature Distribution
	13.4 Cylinder Temperature Distribution
	13.5 Heat Transfer
	13.6 Theory of Engine Heat Transfer
	13.7 Parameters Affecting Engine Heat Transfer
		13.7.1 Fuel-Air Ratio
		13.7.2 Compression Ratio
		13.7.3 Spark Advance
		13.7.4 Preignition and Knocking
		13.7.5 Engine Output
		13.7.6 Cylinder Wall Temperature
	13.8 Power Required to Cool the Engine
	13.9 Need for Cooling System
	13.10 Characteristics of an Efficient Cooling System
	13.11 Types of Cooling Systems
	13.12 Liquid Cooled Systems
		13.12.1 Direct or Non-return System
		13.12.2 Thermosyphon System
		13.12.3 Forced Circulation Cooling System
		13.12.4 Evaporative Cooling System
		13.12.5 Pressure Cooling System
	13.13 Air–Cooled System
		13.13.1 Cooling Fins
		13.13.2 Baffles
	13.14 Comparison of Liquid and Air–Cooling Systems
		13.14.1 Advantages of Liquid-Cooling System
		13.14.2 Limitations
		13.14.3 Advantages of Air-Cooling System
		13.14.4 Limitations
	Review Questions
	Multiple Choice Questions
14 Engine Emissions and Their Control
	14.1 Introduction
	14.2 Air Pollution due to IC Engines
	14.3 Emission Norms
		14.3.1 Overview of the Emission Norms in India
	14.4 Comparison between Bharat Stage and Euro norms
	14.5 Engine Emissions
		14.5.1 Exhaust Emissions
	14.6 Hydrocarbons (HC)
	14.7 Hydrocarbon Emission
		14.7.1 Incomplete Combustion
		14.7.2 Crevice Volumes and Flow in Crevices
		14.7.3 Leakage Past the Exhaust Valve
		14.7.4 Valve Overlap
		14.7.5 Deposits on Walls
		14.7.6 Oil on Combustion Chamber Walls
	14.8 Hydrocarbon Emission from Two-Stroke Engines
	14.9 Hydrocarbon Emission from CI Engines
	14.10 Carbon Monoxide (CO) Emission
	14.11 Oxides Of Nitrogen (NOx)
		14.11.1 Photochemical Smog
	14.12 Particulates
	14.13 Other Emissions
		14.13.1 Aldehydes
		14.13.2 Sulphur
		14.13.3 Lead
		14.13.4 Phosphorus
	14.14 Emission Control Methods
		14.14.1 Thermal Converters
	14.15 Catalytic Converters
		14.15.1 Sulphur
		14.15.2 Cold Start-Ups
	14.16 CI engines
		14.16.1 Particulate Traps
		14.16.2 Modern Diesel Engines
	14.17 Reducing Emissions by Chemical Methods
		14.17.1 Ammonia Injection Systems
	14.18 Exhaust Gas Recirculation (EGR)
	14.19 Non-Exhaust Emissions
		14.19.1 Evaporative Emissions
		14.19.2 Evaporation Loss Control Device (ELCD)
	14.20 Modern Evaporative Emission Control System
		14.20.1 Charcoal Canister
	14.21 Crankcase Blowby
		14.21.1 Blowby Control
		14.21.2 Intake Manifold Return PCV System (Open Type)
	Review Questions
	Multiple Choice Questions
15 Measurements and Testing
	15.1 Introduction
	15.2 Friction Power
		15.2.1 Willan’s Line Method
		15.2.2 Morse Test
		15.2.3 Motoring Test
		15.2.4 From the Measurement of Indicated and Brake Power
		15.2.5 Retardation Test
		15.2.6 Comparison of Various Methods
	15.3 Indicated Power
		15.3.1 Method using the Indicator Diagram
		15.3.2 Engine Indicators
		15.3.3 Electronic Indicators
	15.4 Brake Power
		15.4.1 Prony Brake
		15.4.2 Rope Brake
		15.4.3 Hydraulic Dynamometer
		15.4.4 Eddy Current Dynamometer
		15.4.5 Swinging Field DC Dynamometer
		15.4.6 Fan Dynamometer
		15.4.7 Transmission Dynamometer
		15.4.8 Chassis Dynamometer
	15.5 Fuel Consumption
		15.5.1 Volumetric Type Flowmeter
		15.5.2 Gravimetric Fuel Flow Measurement
		15.5.3 Fuel Consumption Measurement in Vehicles
	15.6 Air Consumption
		15.6.1 Air Box Method
		15.6.2 Viscous-Flow Air Meter
	15.7 Speed
	15.8 Exhaust and Coolant Temperature
	15.9 Emission
		15.9.1 Oxides of Nitrogen
		15.9.2 Carbon Monoxide
		15.9.3 Unburned Hydrocarbons
		15.9.4 Aldehydes
	15.10 Visible Emissions
		15.10.1 Smoke
	15.11 Noise
	15.12 Combustion Phenomenon
		15.12.1 Flame Temperature Measurement
		15.12.2 Flame Propagation
		15.12.3 Combustion Process
	Review Questions
	Multiple Choice Questions
16 Performance Parameters and Characteristics
	16.1 Introduction
	16.2 Engine Power
		16.2.1 Indicated Mean Effective Pressure (pim)
		16.2.2 Indicated Power (ip)
		16.2.3 Brake Power (bp)
		16.2.4 Brake Mean Effective Pressure (pbm)
	16.3 Engine Efficiencies
		16.3.1 Air-Standard Efficiency
		16.3.2 Indicated and Brake Thermal Efficiencies
		16.3.3 Mechanical Efficiency
		16.3.4 Relative Efficiency
		16.3.5 Volumetric Efficiency
		16.3.6 Scavenging Efficiency
		16.3.7 Charge Efficiency
		16.3.8 Combustion Efficiency
	16.4 Engine Performance Characteristics
	16.5 Variables Affecting Performance Characteristics
		16.5.1 Combustion Rate and Spark Timing
		16.5.2 Air-Fuel Ratio
		16.5.3 Compression Ratio
		16.5.4 Engine Speed
		16.5.5 Mass of Inducted Charge
		16.5.6 Heat Losses
	16.6 Methods of Improving Engine Performance
	16.7 Heat Balance
	16.8 Performance Maps
		16.8.1 SI Engines
		16.8.2 CI Engines
	16.9 Analytical Method of Performance Estimation
	Worked out Examples
	Review Questions
	Exercise
	Multiple Choice Questions
17 Engine Electronics
	17.1 Introduction
	17.2 Typical Engine Management Systems
	17.3 Position Displacement and Speed Sensing
		17.3.1 Inductive Transducers
		17.3.2 Hall Effect Pickup
		17.3.3 Potentiometers
		17.3.4 Linear Variable Differential transformer (LVDT)
		17.3.5 Electro Optical Sensors
	17.4 Measurement of Pressure
		17.4.1 Strain Gauge Sensors
		17.4.2 Capacitance Transducers
		17.4.3 Peizoelectric Sensors
	17.5 Temperature Measurement
		17.5.1 Thermistors
		17.5.2 Thermocouples
		17.5.3 Resistance Temperature Detector (RTD)
	17.6 Intake air flow measurement
		17.6.1 Hot Wire Sensor
		17.6.2 Flap Type Sensor
		17.6.3 Vortex Sensor
	17.7 Exhaust Oxygen Sensor
		17.7.1 Knock Sensor
	Review Questions
	Multiple Choice Questions
18 Supercharging
	18.1 Introduction
	18.2 Supercharging
	18.3 Types Of Superchargers
		18.3.1 Centrifugal Type Supercharger
		18.3.2 Root’s Supercharger
		18.3.3 Vane Type Supercharger
		18.3.4 Comparison between the Three Superchargers
	18.4 Methods of Supercharging
		18.4.1 Electric Motor Driven Supercharging
		18.4.2 Ram Effect of Supercharging
		18.4.3 Under Piston Supercharging
		18.4.4 Kadenacy System of Supercharging
	18.5 Effects of Supercharging
	18.6 Limitations to Supercharging
	18.7 Thermodynamic Analysis of Supercharged Engine Cycle
	18.8 Power Input for Mechanical Driven Supercharger
	18.9 Gear Driven and Exhaust Driven Supercharging Arrangements
	18.10 Turbocharging
		18.10.1 Charge Cooling
	Worked out Examples
	Review Questions
	Exercise
	Multiple Choice Questions
19 Two-Stroke Engines
	19.1 Introduction
	19.2 Types of Two-Stroke Engines
		19.2.1 Crankcase Scavenged Engine
		19.2.2 Separately Scavenged Engine
	19.3 Terminologies and Definitions
		19.3.1 Delivery Ratio (Rdel)
		19.3.2 Trapping Efficiency
		19.3.3 Relative Cylinder Charge
		19.3.4 Scavenging Efficiency
		19.3.5 Charging Efficiency
		19.3.6 Pressure Loss Coefficient (Pl)
		19.3.7 Index for Compressing the Scavenge Air (n)
		19.3.8 Excess Air Factor (λ)
	19.4 Two-stroke Air Capacity
	19.5 Theoretical Scavenging Processes
		19.5.1 Perfect Scavenging
		19.5.2 Perfect Mixing
		19.5.3 Short Circuiting
	19.6 Actual Scavenging Process
	19.7 Classification Based on Scavenging Process
	19.8 Comparison of Scavenging Methods
	19.9 Scavenging Pumps
	19.10 Advantages and Disadvantages of Two-stroke Engines
		19.10.1 Advantages of Two-stroke Engines
		19.10.2 Disadvantages of Two-Stroke Engines
	19.11 Comparison of Two-stroke SI and CI Engines
	Worked out Examples
	Review Questions
	Exercise
	Multiple Choice Questions
20 Nonconventional Engines
	20.1 Introduction
	20.2 Common Rail Direct Injection Engine
		20.2.1 The Working Principle
		20.2.2 The Injector
		20.2.3 Sensors
		20.2.4 Electronic Control Unit (ECU)
		20.2.5 Microcomputer
		20.2.6 Status of CRDI Engines
		20.2.7 Principle of CRDI in Gasoline Engines
		20.2.8 Advantages of CRDI Systems
	20.3 Dual Fuel and Multi-Fuel Engine
		20.3.1 The Working Principle
		20.3.2 Combustion in Dual-Fuel Engines
		20.3.3 Nature of Knock in a Dual-Fuel Engine
		20.3.4 Weak and Rich Combustion Limits
		20.3.5 Factors Affecting Combustion in a Dual-Fuel Engine
		20.3.6 Advantages of Dual Fuel Engines
	20.4 Multifuel Engines
		20.4.1 Characteristics of a Multi-Fuel Engine
	20.5 Free Piston Engine
		20.5.1 Free-Piston Engine Basics
		20.5.2 Categories of Free Piston Engine
		20.5.3 Single Piston
		20.5.4 Dual Piston
		20.5.5 Opposed Piston
		20.5.6 Free Piston Gas Generators
		20.5.7 Loading Requirements
		20.5.8 Design Features
		20.5.9 The Combustion Process
		20.5.10 Combustion Optimization
		20.5.11 Advantages and Disadvantages of Free Piston Engine
		20.5.12 Applications of Free Piston Engine
	20.6 Gasoline Direct Injection Engine
		20.6.1 Modes of Operation
	20.7 Homogeneous Charge Compression Ignition Engine
		20.7.1 Control
		20.7.2 Variable Compression Ratio
		20.7.3 Variable Induction Temperature
		20.7.4 Variable Exhaust Gas Percentage
		20.7.5 Variable Valve Actuation
		20.7.6 Variable Fuel Ignition Quality
		20.7.7 Power
		20.7.8 Emissions
		20.7.9 Difference in Engine Knock
		20.7.10 Advantages and Disadvantages of HCCI Engine
	20.8 Lean Burn Engine
		20.8.1 Basics of Lean Burn Technology
		20.8.2 Lean Burn Combustion
		20.8.3 Combustion Monitoring
		20.8.4 Lean Burn Emissions
		20.8.5 Fuel Flexibility
		20.8.6 Toyota Lean Burn Engine
		20.8.7 Honda Lean Burn Systems
		20.8.8 Mitsubishi Ultra Lean Burn Combustion Engines
	20.9 Stirling Engine
		20.9.1 Principle of Operation
		20.9.2 Types of Stirling Engines
		20.9.3 Alpha Stirling Engine
		20.9.4 Working Principle of Alpha Stirling Engine
		20.9.5 Beta Stirling Engine
		20.9.6 Working Principle of Beta Stirling Engine
		20.9.7 The Stirling Cycle
		20.9.8 Displacer Type Stirling Engine
		20.9.9 Pressurization
		20.9.10 Lubricants and Friction
		20.9.11 Comparison with Internal Combustion Engines
		20.9.12 Advantages and Disadvantages of Stirling Engine
		20.9.13 Applications
		20.9.14 Future of Stirling Engines
	20.10 Stratified Charge Engine
		20.10.1 Advantages of Burning Leaner Overall Fuel-Air Mixtures
		20.10.2 Methods of Charge Stratification
		20.10.3 Stratification by Fuel Injection and Positive Ignition
		20.10.4 Volkswagen PCI stratified charge engine
		20.10.5 Broderson Method of Stratification
		20.10.6 Charge Stratification by Swirl
		20.10.7 Ford Combustion Process (FCP)
		20.10.8 Ford PROCO
		20.10.9 Texaco Combustion Process (TCP)
		20.10.10 Witzky Swirl Stratification Process
		20.10.11 Honda CVCC Engine
		20.10.12 Advantages and Disadvantages of Stratified Charge Engines
	20.11 Variable Compression Ratio Engine
		20.11.1 Cortina Variable Compression Engine
		20.11.2 Cycle Analysis
		20.11.3 The CFR Engine
		20.11.4 Performance of Variable Compression Ratio Engines
		20.11.5 Variable Compression Ratio Applications
	20.12 Wankel Engine
		20.12.1 Basic Design
		20.12.2 Comparison of Reciprocating and Wankel Rotary Engine
		20.12.3 Materials
		20.12.4 Sealing
		20.12.5 Fuel consumption and emissions
		20.12.6 Advantages and Disadvantages of Wankel Engines
	Review Questions
	Multiple Choice Questions
Index




نظرات کاربران