دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: امنیت ویرایش: نویسندگان: Amit Kumar Singh, Mohamed Elhoseny سری: Intelligent Data Centric Systems ISBN (شابک) : 9780128195116, 0128195118 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 322 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Intelligent Data Security Solutions for e-Health Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهکارهای هوشمند اطلاعات امنیتی برای برنامه های سلامت الکترونیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کاربردهای سلامت الکترونیک مانند پزشکی از راه دور، رادیولوژی از راه دور، چشم پزشکی از راه دور و تشخیص از راه دور بسیار امیدوارکننده هستند و پتانسیل بسیار زیادی برای بهبود مراقبت های بهداشتی جهانی دارند. آنها می توانند دسترسی، برابری و کیفیت را از طریق اتصال امکانات مراقبت های بهداشتی و متخصصان مراقبت های بهداشتی بهبود بخشند و موانع جغرافیایی و فیزیکی را کاهش دهند. با این حال، یکی از مسائل مهم مربوط به امنیت انتقال داده ها و دسترسی به فناوری های اطلاعات پزشکی است. در حال حاضر، سرقت هویت مرتبط با پزشکی سالانه میلیاردها دلار هزینه دارد و اطلاعات پزشکی تغییر یافته می تواند سلامت فرد را از طریق تشخیص اشتباه، تاخیر در درمان یا تجویز نادرست در معرض خطر قرار دهد. با این حال، استفاده از دستگاههای دستی برای ذخیره، دسترسی و انتقال اطلاعات پزشکی از حریم خصوصی و حفاظتهای امنیتی آن دستگاهها پیشی میگیرد. محققان شروع به ایجاد برخی علائم نامحسوس برای اطمینان از ضد دستکاری، مقرون به صرفه بودن و اصالت تضمین شده سوابق پزشکی کردهاند. با این حال، استحکام، امنیت و بایگانی تصاویر کارآمد و بازیابی اطلاعات داده های پزشکی در برابر این حملات سایبری یک حوزه چالش برانگیز برای محققان در زمینه برنامه های کاربردی سلامت الکترونیک است. راه حل های هوشمند امنیت داده برای برنامه های کاربردی سلامت الکترونیک بر تحقیقات آکادمیک و مرتبط با صنعت در این زمینه با تاکید ویژه بر رویکردهای بین رشته ای و تکنیک های جدید برای ارائه راه حل های امنیتی برای برنامه های هوشمند تمرکز دارد. این کتاب مروری بر تکنیکها و ایدههای امنیتی پیشرفته برای کمک به دانشجویان فارغالتحصیل، محققان و همچنین متخصصان فناوری اطلاعات که میخواهند فرصتها و چالشهای استفاده از تکنیکها و الگوریتمهای نوظهور را برای طراحی و توسعه سیستمها و روشهای ایمنتر برای الکترونیک درک کنند، ارائه میکند. -برنامه های بهداشتی بررسی الزامات امنیت و حریم خصوصی جدید مربوط به فناوریهای سلامت الکترونیک و مجموعههای وسیعی از برنامههای کاربردی بررسی چگونگی جمعآوری، پردازش و استفاده فراوان اطلاعات دیجیتال در مورد رفتار سیستم در حال حاضر برای بهبود و تقویت امنیت و حریم خصوصی، مروری بر تکنیکهای امنیتی نوآورانه ارائه میکند. در حال توسعه برای اطمینان از صحت تضمین شده داده ها/اطلاعات ارسال شده، اشتراک گذاری شده یا ذخیره شده
E-health applications such as tele-medicine, tele-radiology, tele-ophthalmology, and tele-diagnosis are very promising and have immense potential to improve global healthcare. They can improve access, equity, and quality through the connection of healthcare facilities and healthcare professionals, diminishing geographical and physical barriers. One critical issue, however, is related to the security of data transmission and access to the technologies of medical information. Currently, medical-related identity theft costs billions of dollars each year and altered medical information can put a person's health at risk through misdiagnosis, delayed treatment or incorrect prescriptions. Yet, the use of hand-held devices for storing, accessing, and transmitting medical information is outpacing the privacy and security protections on those devices. Researchers are starting to develop some imperceptible marks to ensure the tamper-proofing, cost effective, and guaranteed originality of the medical records. However, the robustness, security and efficient image archiving and retrieval of medical data information against these cyberattacks is a challenging area for researchers in the field of e-health applications. Intelligent Data Security Solutions for e-Health Applications focuses on cutting-edge academic and industry-related research in this field, with particular emphasis on interdisciplinary approaches and novel techniques to provide security solutions for smart applications. The book provides an overview of cutting-edge security techniques and ideas to help graduate students, researchers, as well as IT professionals who want to understand the opportunities and challenges of using emerging techniques and algorithms for designing and developing more secure systems and methods for e-health applications. Investigates new security and privacy requirements related to eHealth technologies and large sets of applications Reviews how the abundance of digital information on system behavior is now being captured, processed, and used to improve and strengthen security and privacy Provides an overview of innovative security techniques which are being developed to ensure the guaranteed authenticity of transmitted, shared or stored data/information
Front-Matter_2020_Intelligent-Data-Security-Solutions-for-e-Health-Applicati Front Matter Copyright_2020_Intelligent-Data-Security-Solutions-for-e-Health-Applications Copyright Contributors_2020_Intelligent-Data-Security-Solutions-for-e-Health-Applicati Contributors Preface_2020_Intelligent-Data-Security-Solutions-for-e-Health-Applications Preface Outline of the book and chapter synopsis Special Acknowledgments Chapter-1---Perceptual-hashing-based-nov_2020_Intelligent-Data-Security-Solu Perceptual hashing-based novel security framework for medical images Introduction Mathematical preliminaries SIFT features Nonlinear chaotic map Singular value decomposition Discrete cosine transform Proposed technique Perceptual feature extraction Hash generation process Watermark construction Watermark verification Experimental results and discussion Robustness analysis Key sensitivity analysis Computational time complexity Conclusion References Chapter-2---Frequency-domain-based-data_2020_Intelligent-Data-Security-Solut Frequency domain based data hiding for encrypted medical images Introduction Literature survey Theoretical background Histogram shifting RDH method Integer wavelet transform with lifting scheme The proposed algorithm Watermark embedding procedure Phase 1-Image preprocessing Phase 2-Image segmentation Phase 3-Frequency domain payload generation phase Phase 4-Data embedding phase Watermark extraction procedure Performance evaluation Test images Performance evaluation metrics Embedding capacity Image visual quality Entropy Performance of the proposed algorithm in the frequency domain Performance of the proposed algorithm in the encrypted domain Combined performance of the frequency and encrypted domains Pure embedding capacity Comparison of the proposed algorithms against state-of-the-art studies Conclusions and future work References Chapter-3---An-OpenSim-guided-tour-in-ma_2020_Intelligent-Data-Security-Solu An OpenSim guided tour in machine learning for e-health applications Introduction State of the art Basic musculoskeletal elements and capabilities of OpenSim OpenSim capabilities Applications of OpenSim OpenSim: Musculoskeletal simulation framework The OpenSim model Importing experimental data Scaling The inverse problem The forward problem Analyzing simulations Methodology OpenSim: Plugins, research issues, and future trends Plugins Research issues and future trends References Further reading Chapter-4---Advances-and-challenges-_2020_Intelligent-Data-Security-Solution Advances and challenges in fMRI and DTI techniques Introduction fMRI analysis and survey Application DTI analysis and survey Application Fusion analysis of fMRI and DTI Applications Classification and prediction methods and scope Traditional classifiers Deep learning classifiers Future directions and challenges Challenges Trends and future directions Conclusions and important findings References Chapter-5---Homomorphic-transform-based-dual-i_2020_Intelligent-Data-Securit Homomorphic transform-based dual image watermarking using IWT-SVD for secure e-healthcare applications Introduction Significant features of the proposed technique Basic terminologies Homomorphic transform Integer wavelet transform Singular value decomposition Arnold transform Proposed watermarking technique Embedding process Extraction process Simulation results Conclusions References Chapter-6---An-analysis-of-security-acces_2020_Intelligent-Data-Security-Sol An analysis of security access control on healthcare records in the cloud Introduction Review of the EHR literature Overview of electronic health records Important components Electronic medical records Health information exchange (HIE) Threat model of EHR Healthcare access-control requirements Access-control requirements Access-control mechanisms for EHR Access-control policy specification for EHRs Security requirements Categories of ACMs Discretionary access control (DAC) for EHR Mandatory access control (MAC) for EHR Biba model Role-based access control (RBAC) for EHR Benefits of RABC Attribute-based access control (ABAC) for EHR Access-control constraints for EHRs Overall performance of access controls Conclusions References Chapter-7---Security-and-interference-manage_2020_Intelligent-Data-Security- Security and interference management in the cognitive-inspired Internet of Medical Things Introduction Constituents of the cognitive-inspired Internet of Medical Things Spectrum sharing in cognitive radio networks Internet of Things Internet of Medical Things Cognitive-inspired Internet of Medical Things Spectrum sensing techniques Energy-based spectrum sensing Matched filter detection Feature detection Eigenvalue-based detector Spectrum accessing techniques Interweave spectrum accessing Underlay spectrum accessing Overlay spectrum accessing Hybrid spectrum accessing technique Interference management in the cognitive-inspired Internet of Medical Things Spectrum sensing Spectrum prediction Transmission below the PU interference tolerable limit Using advanced encoding techniques Spectrum monitoring Security concerns regarding the cognitive-inspired IoMT Conclusion References Chapter-8---Access-control-and-classifier-ba_2020_Intelligent-Data-Security- Access control and classifier-based blockchain technology in e-healthcare applications Introduction Related works Purpose of BT Methodology for security BT-A distributed ledger technology Classifier: An SVM Pros of the proposed SVM RBF-SVM classifier RBF E-healthcare security analysis via BT Procedure of BTs Important elements in BT BT toward security Access-control model for e-healthcare Result analysis Conclusion Acknowledgment References Chapter-9---Machine-learning-algorith_2020_Intelligent-Data-Security-Solutio Machine learning algorithms for medical image security Introduction Deep learning for steganography Brief insight into deep learning networks Least significant bit substitution using a feed-forward neural network Deep-stego Steganography using deep convolutional generative adversarial networks CNN-based adversarial embedding Machine learning for steganalysis Steganalysis using CNNs Support vector machine-based steganalyzer for LSB matching steganography Machine learning for medical image encryption Iris image encryption using CNN Combined encryption and data hiding using SVMs Machine learning for privacy in medical images CNN for homomorphic inference on encrypted medical images Random forest for privacy preserving and disease prediction Conclusion References Chapter-10---Genetic-algorithm-based-intelligen_2020_Intelligent-Data-Securi Genetic algorithm-based intelligent watermarking for security of medical images in telemedicine applications Introduction Genetic algorithm-based image watermarking Technical background Image transformation Genetic algorithm Proposed scheme Embedding process Extraction process Selection of proper scaling factor using GA Results and discussion Imperceptibility test Robustness test Performance comparison Conclusions References Chapter-11---Data-security-for-WBAN-_2020_Intelligent-Data-Security-Solution Data security for WBAN in e-health IoT applications Introduction E-health applications WBAN technology WBAN architecture Security challenge in WBAN Security attacks in WBAN Attacks at the data collection level Attacks at transmission level Data security advancements Survey on encryption algorithms Survey on authentication algorithms Conclusion References Chapter-12---Cloud-based-computer-assis_2020_Intelligent-Data-Security-Solut Cloud-based computer-assisted diagnostic solutions for e-health Introduction Enabling techniques for IoT-based early diagnostic systems Digital signal/image processing Artificial intelligence/machine learning/deep learning Medical sensor based Internet of Medical Things IoT hardware design Cloud-based intelligent diagnostic system Cloud-based early diagnostic systems Cataract Diabetic retinopathy/glaucoma [21] M-cardiac care platform Risk of fall detection Challenges in cloud-based e-health systems Chapter summary References Chapter-13---Progressive-advancements-in-sec_2020_Intelligent-Data-Security- Progressive advancements in security challenges, issues, and solutions in e-health systems Introduction to e-health systems Telehomecare Telerehabilitation Remote physiological monitoring Telenursing Remote patient monitoring Telehealthcare Teleconsultation Applications of telemedicine Telestroke Telemedicine in the management of gestational diabetes management (GDM) Telemedicine in diabetes retinopathy Telemedicine in surgery or telesurgery Telemedicine in the management of chronic liver disease Telemedicine for finding nucleosome positioning Telemedicine in postsurgical care Security attacks and solutions Attacks at the data collection level Jamming attack Data collision attack Desynchronization attack Spoofing attack Selective forwarding attack Sybil attacks Attacks at the transmission level Man-in-the-middle attack Data tampering attack Scrambling attack Signaling attack Unfairness in allocation Message modification attack Hello flood attack Data interception Wormhole attack Attacks at the storage level Inference of patients information Malware attack Social engineering attacks Removable distribution media attack Security challenges and issues in telemedicine Security solutions Limitations of telemedicine Role of IoT and cloud in telemedicine Future of telemedicine Disease heterogeneity Precision medicine Drug safety Decentralized care system Patient-centric medical homes will become a reality Assistive technologies will become cheaper Wearable, implantable, and microcapsule devices Smart-based healthcare network Conclusion References Chapter-14---Despeckling-of-ultrasound-images-_2020_Intelligent-Data-Securit Despeckling of ultrasound images based on the multiresolution approach and Gaussianization transform Introduction Background and basic principles Discrete wavelet transform Distribution of wavelet coefficients and their statistical modeling Goodness-of-fit analysis Gaussianization transformation Bayesian MMSE estimator Methodology Simulation results Conclusion and discussion References Chapter-15---Wireless-medical-sensor-_2020_Intelligent-Data-Security-Solutio Wireless medical sensor networks for smart e-healthcare Introduction Typical medical body sensors in a WSN Different scenarios in WSN-based e-healthcare Framework for WSN enabled e-healthcare Real-time application of WSN networks in e-healthcare WSN applications for cardiovascular diseases WSN applications for the care of children and people of an elderly age WSN applications for Alzheimers disease and other mental illnesses MAC layer protocol design for e-health applications Contention-based MAC protocols Schedule-based MAC protocols Hybrid MAC protocols Challenges and research issues for WSN-based healthcare Conclusions References Chapter-16---A-secure-lightweight-mutual-auth_2020_Intelligent-Data-Security A secure lightweight mutual authentication and key agreement protocol for healthcare systems Introduction Organization of the chapter Essential building blocks of the proposed protocol Biometric fuzzy extractor function Bitwise X-OR function Literature review System model Network model Threat model Proposed security scheme Set-up phase Mobile registration Log-in phase Authentication and key agreement phase Password update phase Analysis of proposed work Security analysis using AVISPA Security proof using Burrows-Adabi-Needham logic Computation cost estimation and comparison with other works Conclusion References Index_2020_Intelligent-Data-Security-Solutions-for-e-Health-Applications Index A B C D E F G H I J K L M N O P R S T U W X Z