دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: علوم (عمومی) ویرایش: 1 نویسندگان: L. Alvarez, R. S. Mohan, O. Shoham, L. Gomez (auth.), Christian Constanda, Bardo E.J. Bodmann, Haroldo F. de Campos Velho (eds.) سری: ISBN (شابک) : 9781461478270, 9781461478287 ناشر: Birkhäuser Basel سال نشر: 2013 تعداد صفحات: 409 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب روشهای یکپارچه در علوم و مهندسی: پیشرفت در تکنیکهای عددی و تحلیلی: معادلات انتگرال، ریاضیات کاربردی/روش های محاسباتی مهندسی، معادلات دیفرانسیل معمولی، معادلات دیفرانسیل جزئی، مکانیک پیوسته و مکانیک مواد، ریاضیات محاسباتی و آنالیز عددی
در صورت تبدیل فایل کتاب Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای یکپارچه در علوم و مهندسی: پیشرفت در تکنیکهای عددی و تحلیلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیشرفت در علم و فناوری توسط توسعه مبانی دقیق ریاضی برای مطالعه مدلهای نظری و تجربی انجام میشود. با تغییرات روششناختی خاص، این نوع مطالعه همیشه به استفاده از روشهای یکپارچهسازی تحلیلی یا محاسباتی ختم میشود و چنین ابزارهایی را ضروری میسازد. با انبوهی از تحقیقات پیشرفته در این زمینه، روش های انتگرال در علم و مهندسی: پیشرفت در تکنیک های عددی و تحلیلی تصویری دقیق از ساخت تکنیک های انتگرال نظری و کاربرد آنها برای مسائل خاص ارائه می دهد. در علوم و مهندسی.
فصل های این جلد بر اساس صحبت های محققان مشهور در دوازدهمین کنفرانس بین المللی روش های انتگرال در علوم و مهندسی، 23 ژوئیه - ارائه شده است. 27، 2012، در پورتو آلگره، برزیل. آنها به طیف گسترده ای از موضوعات، از مشکلات وجودی و منحصر به فرد بودن معادلات انتگرال منفرد در مرزهای دامنه گرفته تا ادغام عددی از طریق عناصر محدود و مرزی، قوانین حفاظت، روش های ترکیبی، و سایر رویکردهای مرتبط با ربع می پردازند. نویسندگان مشارکتکننده، تخصص خود را در مورد تعدادی از مشکلات موضعی که تا به امروز در برابر راهحلهایی مقاوم بودهاند، به کار میگیرند و از این طریق به متخصصان همکار در سراسر جهان کمک و راهنمایی میکنند.
< p>روش های انتگرال در علوم و مهندسی: پیشرفت در تکنیک های عددی و تحلیلی منبع ارزشمندی برای محققان در ریاضیات کاربردی، فیزیک و مهندسی مکانیک و برق، برای دانشجویان تحصیلات تکمیلی در این رشته ها خواهد بود. متخصصان مختلف دیگری که از یکپارچه سازی به عنوان یک ابزار ضروری در کار خود استفاده می کنند.Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering.
The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide.
Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.
Preface Contents Contributors 1 Multiphase Flow Splitting in Looped Pipelines 1.1 Introduction 1.2 Experimental Program 1.3 Experimental Results 1.4 Model Development 1.5 Results and Discussion 1.6 Conclusion References 2 Green\'s Function Decomposition Method for Transport Equation 2.1 Introduction 2.2 Reformulation as an Integral Equation 2.3 Methodology 2.3.1 The Isotropic Case 2.3.2 The Anisotropic Case 2.3.3 The Calculation of the Coefficient of Wl,k (and Wσ) 2.4 Numerical Results References 3 Integral Neutron Transport and New Computational Methods: A Review 3.1 Introduction 3.2 The Integral Transport Equation 3.3 The AN Model 3.4 The Boundary Element Approach 3.5 The Spectral Element Approach 3.6 Comparison of Numerical Results 3.7 Conclusions References 4 Scale Invariance and Some Limits in Transport Phenomenology: Existence of a Spontaneous Scale 4.1 Introduction 4.2 A Geometric Invariant 4.3 The Hyperspace Hypothesis 4.4 SO(4,2) Symmetry Breaking 4.5 Conclusions References 5 On Coherent Structures from a Diffusion-Type Model 5.1 Introduction 5.2 Motivation from ``Arm-Waving Arguments\'\' 5.3 A Coherent Constituent–Mediator Model 5.3.1 The Concept of Coherent States 5.3.2 Modeling Coherent Fluid Constituents 5.3.3 Modeling a Coherent Interaction Mediator 5.4 A Simple Model with Coherence Content 5.5 Conclusions References 6 Numerical Simulation of the Dynamics of Molecular Markers Involved in Cell Polarization 6.1 Introduction 6.1.1 One-Dimensional Case 6.1.1.1 Simplified Model Set on the Half Line 6.1.1.2 The Model with Dynamical Exchange of Markers at the Boundary 6.1.2 Two-Dimensional Case: The Model with Dynamical Exchange of Markers at the Boundary 6.1.3 Heuristics 6.2 Numerical Analysis 6.2.1 One-Dimensional Case 6.2.2 Two-Dimensional Case 6.2.2.1 Equation for μ 6.2.2.2 Equation for c 6.2.2.3 Equation for ρ 6.2.3 Graphics 6.3 Conclusion References 7 Analytical Study of Computational Radiative Fluxes in a Heterogeneous Medium 7.1 Introduction 7.2 Radiative-Conductive Transfer 7.3 Solution by Decomposition Method 7.4 Problem Parameter and Numerical Results 7.5 Conclusions References 8 A Novel Approach to the Hankel Transform Inversion of the Neutron Diffusion Problem Using the Parseval Identity 8.1 Introduction 8.2 Multi-group Steady State Neutron Diffusion 8.3 The Hankel-Transformed Problem 8.3.1 Fast Flux Solution 8.3.2 The Thermal Flux Solution 8.4 Multi-regions 8.5 Error Estimates 8.6 Conclusions References 9 What Is Convergence Acceleration Anyway? 9.1 Introduction 9.2 Simulation of Abnormal Protein Growth 9.2.1 Biophysical Setting 9.2.2 Numerical Formulation 9.2.2.1 Convergence Acceleration 9.2.2.2 Application of Richardsons and Wynn-Epsilon Accelerations 9.2.2.3 Dimensional Analysis 9.3 Nuclear Reactor Kinetics 9.3.1 Reactor Transients 9.3.1.1 Reactor Kinetics Equations 9.3.2 Numerical Implementation 9.3.2.1 Application of Richardsons and Wynn-Epsilon Accelerations 9.3.2.2 Demonstration 9.4 Conclusion References 10 On the Fractal Pattern Phenomenology of Geological Fracture Signatures from a Scaling Law 10.1 Introduction 10.2 Geological Setting of the Studied Areas 10.3 The Fractal Dimension and Self-similarity Analysis 10.4 Structural Fracture Analysis 10.5 Fracture Lineament Map Simulation 10.6 Conclusion References 11 Spectral Boundary Homogenization Problems in Perforated Domains with Robin Boundary Conditions and Large Parameters 11.1 Introduction and Formulation of the Problem 11.2 Preliminary Results 11.3 Convergence Results for α=2 and κ>2 11.4 Convergence Results for α[1, 2) and κ=2(α-1) 11.5 Bounds for Other Values of α and κ References 12 A Finite Element Formulation of the Total Variation Method for Denoising a Set of Data 12.1 Introduction 12.2 Formulation of the Nonlinear Differential Equation 12.3 Finite Element Method 12.4 Numerical Results 12.5 Conclusions References 13 On the Convergence of the Multi-group Isotropic Neutron LTSN Nodal Solution in Cartesian Geometry 13.1 Introduction 13.2 The Two-Group Discrete Ordinate (SN) Approximation to the Transport Equation in X,Y Geometry 13.3 The Multigroup Nodal LTSN Formulation in a Rectangle 13.4 Error Bounds for the Discrete Ordinates Nodal Method and Two Energy Groups 13.5 Conclusions References 14 Numerical Integration with Singularity by Taylor Series 14.1 Introduction 14.2 Taylor Series 14.2.1 The Arithmetic of Taylor Series 14.2.2 Basic Functions of Taylor Series 14.2.3 Numerical Example 14.3 Integration of Singular Functions 14.3.1 Integrals with Algebraic and Logarithmic Singularity 14.3.2 Cauchy Principal Value Integral 14.3.3 Hadamard Finite–Part Integral 14.4 Numerical Examples 14.4.1 Integration with Algebraic and LogarithmicSingularity 14.4.2 Cauchy Principal Value Integral 14.4.3 Hadamard Finite Part Integral 14.5 Conclusion References 15 Numerical Solutions of the 1D Convection–Diffusion–Reaction and the Burgers Equation Using Implicit Multi-stage and Finite Element Methods 15.1 Introduction 15.2 Statement of the Problems 15.2.1 1D Convection–Diffusion–Reaction Equation 15.2.2 Burgers Equation 15.3 Numerical Methods 15.3.1 Time Discretization 15.3.2 Spatial Discretization 15.3.3 Finite Element Method via Least Squares 15.3.4 Finite Element Method via Galerkin Procedure 15.3.5 Finite Element Method via Streamline-Upwind Petrov–Galerkin Procedure 15.3.6 Linearization of the Convective Term 15.4 Numerical Results 15.4.1 1D Convection–Diffusion–Reaction Equation 15.4.2 The Burgers Equation 15.5 Conclusions References 16 Analytical Reconstruction of Monoenergetic Neutron Angular Flux in Non-multiplying Slabs Using Diffusion Synthetic Approximation 16.1 Introduction 16.2 The Spatial and the Angular Reconstruction Schemes of the SND Coarse-Mesh Numerical Solution 16.2.1 The Spatial Reconstruction Scheme 16.2.2 The Angular Reconstruction Scheme 16.3 Numerical Results 16.4 Conclusions References 17 On the Fractional Neutron Point Kinetics Equations 17.1 Introduction 17.2 Derivation of the Fractional Neutron Point Kinetics Equations 17.3 The Solution of the FNPK Equations 17.4 Numerical Results 17.4.1 Case A 17.4.2 Case B 17.4.3 Case C 17.5 Concluding Remarks References 18 On a Closed Form Solution of the Point Kinetics Equations with a Modified Temperature Feedback 18.1 Introduction 18.2 The Kinetic Model with Modified Temperature Feedback 18.2.1 Expansions of Pj 18.2.2 Expansion of Aj and Bj in Terms of Adomian Polynomials 18.2.3 Solution Algorithm 18.3 Results 18.4 Conclusions References 19 Eulerian Modeling of Radionuclides in Surficial Waters: The Case of Ilha Grande Bay (RJ, Brazil) 19.1 Introduction 19.2 Methodology and Modeling Approach 19.2.1 Hydrodynamical Modeling Approach 19.2.2 Transport Modeling Approach 19.3 Input Data and Boundary Conditions for Simulations 19.3.1 Bathymetry 19.3.2 Astronomical Tide 19.3.3 Wind Speed and Direction 19.3.4 River Discharge 19.3.5 Hydrodynamic Model Remarks 19.3.5.1 Future Scenario: Angra 1, 2, and 3 Operating with Discharges in Itaorna and Piraquara 19.3.5.2 Present Scenario: Angra 1 and 2 Operating with Discharge in Piraquara Cove 19.4 Transport Model Remarks 19.5 Conclusions References 20 Fractional Calculus: Application in Modeling and Control 20.1 Introduction 20.2 Main Mathematical Aspects of the Theoryof Fractional Calculus 20.3 Approximations to Fractional-Order Derivatives 20.4 Fractional Modeling 20.5 Fractional Control 20.6 Conclusions References 21 Modified Integral Equation Method for Stationary PlateOscillations 21.1 Introduction 21.2 A Modified Matrix of Fundamental Solutions 21.3 Uniquely Solvable Integral Equations 21.4 Modification with a Finite Series References 22 Nonstandard Integral Equations for the Harmonic Oscillations of Thin Plates 22.1 Prerequisites 22.2 Fundamental Solutions 22.3 Modified Fundamental Solutions 22.4 Modified Integral Equations 22.5 Numerical Example References 23 A Genuine Analytical Solution for the SN Multi-group Neutron Equation in Planar Geometry 23.1 Introduction 23.2 Time-Dependent Multi-group Transport Equation for Heterogeneous Domain 23.3 Numerical Results 23.4 Conclusion References 24 Single-Phase Flow Instabilities: Effect of Pressure Waves in a Pump–Pipe–Plenum–Choke System 24.1 Introduction 24.2 Single-Phase Flow Instabilities Criteria 24.2.1 Static Instability 24.2.2 Dynamic Instability 24.3 Single-Phase Flow Models 24.3.1 Incompressible Model 24.3.2 Compressible Model 24.4 Application and Discussion 24.4.1 Example 1: Phase Portrait, Incompressible Model 24.4.2 Example 2: Phase Portrait, Incompressible Model with Check-Valve 24.4.3 Example 3: Incompressible Versus Compressible Model 24.4.4 Example 4: Incompressible Versus Compressible Model 24.5 Conclusions 24.6 Nomenclature References 25 Two-Phase Flow Instabilities in Oil Wells: ESP Oscillatory Behavior and Casing-Heading 25.1 Introduction 25.2 Two-Phase Flow Modeling Overview 25.3 Application and Discussion 25.3.1 Example 1. ESP: Tubing and Annular Space Included in the Solution Domain. Stability Example 25.3.2 Example 2. ESP: Neither Casing nor Annular Space Included in the Solution Domain. Instability Example 25.3.3 Example 3. ESP: Tubing and Annular Space Included in the Solution Domain. Instability Example 25.3.4 Example 4: Natural Flowing Well. Casing Heading 25.4 Conclusions 25.5 Nomenclature References 26 Validating a Closed Form Advection–Diffusion Solution by Experiments: Tritium Dispersion after Emission from the Brazilian Angra Dos Reis Nuclear Power Plant 26.1 Introduction 26.2 The Advection–Diffusion Approach 26.3 A Closed Form Solution 26.3.1 General Procedure 26.3.2 A Specific Case for Application 26.4 Experimental Data and Turbulent Parametrization 26.5 Numerical Results 26.6 Conclusions References Index