ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Inorganic Materials for Energy, Medicine and Environmental Remediation

دانلود کتاب مواد معدنی برای انرژی، دارو و اصلاح محیط زیست

Inorganic Materials for Energy, Medicine and Environmental Remediation

مشخصات کتاب

Inorganic Materials for Energy, Medicine and Environmental Remediation

ویرایش: [69, 1 ed.] 
نویسندگان: , , ,   
سری: Environmental Chemistry for a Sustainable World 
ISBN (شابک) : 3030798984, 9783030798987 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 273
[269] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 Mb 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Inorganic Materials for Energy, Medicine and Environmental Remediation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد معدنی برای انرژی، دارو و اصلاح محیط زیست نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد معدنی برای انرژی، دارو و اصلاح محیط زیست

این کتاب مفاهیم، ​​روش‌ها و کاربردهای نانومواد معدنی را برای کاربردهای انرژی مانند سلول‌های سوختی و باتری‌ها، برای کاربردهای زیست محیطی مانند تصفیه آب و کاربردهای دارویی مانند درمان سرطان ارائه می‌کند. بنیانگذار فناوری نانو، اریک درکسلر، همواره دیدگاهی منحصر به فرد را در کاوش مواد جدید و ایجاد پیشرفت در نانوتکنولوژی مولکولی بیان می کرد. وی بر مزایای بالقوه اندازه کوچکتر، راندمان بالاتر و منابع کمتر مورد نیاز برای کاربرد در انرژی، محیط زیست و پزشکی تاکید کرد. نسبت سطح به حجم بالاتر نانومواد معدنی یک ویژگی کلیدی است.


توضیحاتی درمورد کتاب به خارجی

This book presents concepts, methods and applications of inorganic nanomaterials for energy applications such as fuel cells and batteries, for environmental applications such as water purification, and for medicinal applications such as cancer treatments. The founding father of nanotechnology, Eric Drexler, always communicated a unique vision in exploring new materials and creating advancements in molecular nanotechnology. He emphasized the potential advantages of smaller size, higher efficiency and less needed resources for applications in energy, environment and medicine. A higher surface to volume ratio of inorganic nanomaterials is a key property.



فهرست مطالب

Preface
Acknowledgments
Contents
About the Editors and Contributors
Editors
Contributors
Chapter 1: Localized Surface Plasmon Resonance in Colloidal Copper Sulphide (Cu2-xS, x = 0 ≤ x < 1) Nanocrystals and Its Applications
	1.1 Introduction
	1.2 Colloidal Copper Sulphide (Cu2-xS) Nanomaterials – An Introduction
	1.3 Localized Surface Plasmon Resonance in Nanocrystals – A Nutshell
	1.4 Localized Surface Plasmon Resonance in Copper Sulphide (Cu2-xS) Nanocrystals
	1.5 Applications of Localized Surface Plasmon Resonance in Copper Sulphide Nanocrystals
	References
Chapter 2: Titanium Dioxide/Graphene Nanocomposites as High-Performance Anode Material for Lithium Ion Batteries
	2.1 Introduction
	2.2 Graphene Synthesis
		2.2.1 Exfoliation of Graphite
		2.2.2 Deposition on Targets
	2.3 Graphene for Energy Applications
		2.3.1 Graphene as Active Electrode Material in Lithium Ion Batteries
	2.4 Lithium ion Batteries
	2.5 Graphene-Based Anodes for LIBs
		2.5.1 Anode Materials and Their Properties
		2.5.2 Graphene Anodes for Lithium Ion Batteries
		2.5.3 Graphene Metal Oxide Composite Anode for Lithium Ion Batteries
		2.5.4 Titanium Oxide/Graphene Binary Composite Anodes
		2.5.5 Ternary Titanium Dioxide/Graphene Composite Electrodes
	2.6 Lithium Storage Mechanism in Titanium Dioxide/Graphene Nanocomposite
	2.7 Conclusion and Future Outlook
	References
Chapter 3: Design and Fabrication of Nano-Structured Materials for Fuel Cell Application
	3.1 Overview of Fuel Cell
	3.2 Working Principle of a Fuel Cell
	3.3 Types of Fuel Cell
	3.4 Nanostructures Materials and Recent Development in Fuel Cell Application
		3.4.1 Nano-engineered Catalysts in the Fuel Cell
		3.4.2 Recent Development in the Fuel Cell
		3.4.3 Future Technical Developments in the Fuel Cell
	3.5 Effective Role of Fuel Cell in Energy Issues
		3.5.1 Fuel Cell in Transport
		3.5.2 Fuel Cell as Heat Source
		3.5.3 Fuel Cell in Electricity
	3.6 Conclusion
	References
Chapter 4: Synthesis of Nano-Particles and Its Applications in Heavy Metal Removal from Wastewater
	4.1 Introduction
	4.2 Types of Nano-Materials
	4.3 Synthesis of Nano-Adsorbents
		4.3.1 Bottom Up Process
			4.3.1.1 Sol Gel Method
			4.3.1.2 Chemical Vapour Deposition
			4.3.1.3 Biosynthesis
			4.3.1.4 Pyrolysis Method
		4.3.2 Top Down Process
			4.3.2.1 Mechanical Milling
			4.3.2.2 Laser Ablation Process
			4.3.2.3 Thermal Decomposition Process
	4.4 Applications of Nano-Materials in Wastewater Treatment
		4.4.1 Graphene Oxide Nano-Particles
		4.4.2 Iron-Oxide Nano-Particles
		4.4.3 Titanium Di-Oxide Nano-Particles
		4.4.4 Carbon Nano-Tubes
		4.4.5 Zinc Oxides
	4.5 Conclusion
	References
Chapter 5: Role of Metal and Metal Oxides for the Removal of Water Pollutants
	5.1 Introduction
	5.2 Water Pollution
		5.2.1 Type of Pollutants in Wastewater from Various Sources
		5.2.2 Methods Used to Treat Polluted Water
	5.3 Role of Metals and Metal Oxides for Wastewater Treatment
		5.3.1 Metals
			5.3.1.1 Silver
			5.3.1.2 Gold
			5.3.1.3 Iron
		5.3.2 Metal Oxides
			5.3.2.1 Zinc Oxide
			5.3.2.2 Iron Oxide
			5.3.2.3 Titanium Dioxide
			5.3.2.4 Cerium Oxide
			5.3.2.5 Zirconium Oxide
			5.3.2.6 Manganese Oxide
	5.4 Conclusions
	References
Chapter 6: Magnetic Nanomaterials for Energy Storage Applications
	6.1 Introduction
	6.2 Experimental Methods
		6.2.1 Co-precipitation Method
		6.2.2 Chemical Oxidation Method
		6.2.3 Polyol Process
		6.2.4 Hydrothermal Process
	6.3 Surface Modification
	6.4 Characterization
	6.5 Magnetic Nanoparticles for Energy Storage Applications
		6.5.1 Fe3O4
		6.5.2 Fe2O3
		6.5.3 MnFe2O4 and NiFe2O4
	6.6 Effect of Magnetic Field
	6.7 Summary and Future Directions
	References
Chapter 7: Emerging Nano-Structured Metal Oxides for Detoxification of Organic Pollutants Towards Environmental Remediation: Overview and Future Aspects
	7.1 Introduction
		7.1.1 Methods for Treatment of Waste Waters
		7.1.2 Evolution of Metal Oxides for Detoxification of Pollutants
	7.2 Background of Study
		7.2.1 Sustainability and Green Remediation
	7.3 Technological Approaches Towards Removal of Organic Pollutants
		7.3.1 Adsorption Process
			7.3.1.1 Adsorption of Organic Pollutants by Activated Carbon
			7.3.1.2 Adsorption of Organic Pollutants by Carbon Nanotube (CNT)
		7.3.2 Fenton Process
			7.3.2.1 Electro-Fenton
			7.3.2.2 Photo-Fenton
			7.3.2.3 Sono-Electro-Fenton (SEF)
		7.3.3 Advanced Oxidation Process
			7.3.3.1 Advanced Oxidation Technology (AOT)
			7.3.3.2 AOTs using Hydrogen Peroxide
			7.3.3.3 OP using Ozonation
		7.3.4 Photocatalytic Process
	7.4 Metal Oxide Based Nanomaterials for Environmental Remediation
		7.4.1 Pure/Bare Metal Oxides Based Nanomaterials
		7.4.2 Doped Metal Oxides Based Nanomaterials
		7.4.3 Graphene/Graphene Oxide Based Metal Oxide Nanomaterials
		7.4.4 Hybrid Materials (Core-Shell) Based Metal Oxide Nanomaterials
	7.5 Summary and Conclusion
	References
Chapter 8: Metal Nanostructures Derived Composites for Catalytic Conversion of Organic Contaminants in Wastewater
	8.1 Introduction
	8.2 Conversion of Nitrophenol to Aminophenol
	8.3 Dye Degradation Over Metal Nanocomposites
	8.4 Removal of Toxic Chromium by Metal Oxide Nanostructure
	8.5 Conclusions
	References
Chapter 9: Removal of Persistent Organic Pollutants Using Redox Active Metal Oxide Nanocatalysts via Advanced Oxidation Process
	9.1 General Introduction
	9.2 Background
	9.3 Redox Active Metal Oxide Nanocatalysts for Advanced Oxidation Processes
	9.4 Copper Oxide Nanocatalysts
	9.5 Cerium Oxide Nanocatalysts
	9.6 Iron Oxide Nanocatalysts
	9.7 Cobalt Oxide Nanocatalysts
	9.8 Conclusions
	References
Chapter 10: Metal-Based Particles as a Catalyst for Proton Exchange Membrane Fuel Cells
	10.1 Introduction
	10.2 Introduction of Direct-Methanol Fuel Cells
	10.3 Introduction of Direct-Ethanol Fuel Cells
	10.4 Introduction of Formic Acid Fuel Cells
	10.5 Metal Catalysts for Methanol Fuel Cell
	10.6 Metal Catalysts for Ethanol Fuel Cell
	10.7 Metal Catalysts for Formic Acid Fuel Cell Application
	10.8 Conclusion
	References




نظرات کاربران