ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Innovations in Graphene-Based Polymer Composites

دانلود کتاب نوآوری در کامپوزیت های پلیمری مبتنی بر گرافن

Innovations in Graphene-Based Polymer Composites

مشخصات کتاب

Innovations in Graphene-Based Polymer Composites

ویرایش:  
نویسندگان: , , ,   
سری: Woodhead Publishing Series in Composites Science and Engineering 
ISBN (شابک) : 9780128237892 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 637
[639] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 29 Mb 

قیمت کتاب (تومان) : 56,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Innovations in Graphene-Based Polymer Composites به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نوآوری در کامپوزیت های پلیمری مبتنی بر گرافن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Innovations in Graphene-Based Polymer Composites
Copyright
Contents
Contributors
Chapter 1: Introduction to graphene-based materials and their composites
	1.1. Introduction
	1.2. Graphene and graphene oxide
		1.2.1. Graphene
		1.2.2. Graphene oxide (GO)
		1.2.3. Synthesis and functionalization
			1.2.3.1. Synthesis approaches
				Bottom-up approaches
				Top-down approaches
			1.2.3.2. Liquid-phase exfoliation
			1.2.3.3. Chemical vapor deposition
			1.2.3.4. Reduction
				Chemical reduction
				Thermal reduction
				UV light reduction
				Electrochemical reduction
			1.2.3.5. Functionalization
				Van der Waals forces
				Electrostatic interaction
				Hydrogen bonding
				π-π Stacking interaction
				Covalent interactions
	1.3. Preparation of graphene-containing polymeric composites
		1.3.1. Solution mixing
		1.3.2. Melt blending
		1.3.3. In situ polymerization
		1.3.4. Coating fabrication
	1.4. Graphene/polymer composite properties
		1.4.1. Mechanical properties
		1.4.2. Electrical conductivity
		1.4.3. Thermal conductivity
		1.4.4. Thermocalorimetric transitions
		1.4.5. Thermal stability
		1.4.6. Dimensional stability
	1.5. Conclusion
	References
Chapter 2: Synthesis of graphene polymer composites having high filler content
	2.1. Introduction
	2.2. One-dimensional fiber
	2.3. Two-dimensional film
	2.4. Three-dimensional foam
	2.5. Conclusions
	References
Chapter 3: Graphene-based polymer composites for flame-retardant application
	3.1. Introduction
	3.2. Flame-retardant property of graphene
	3.3. Preparation of graphene-based flame retardants
		3.3.1. Covalent modification of graphene by flame retardants
		3.3.2. Noncovalent modification of graphene by flame retardants
	3.4. Application of graphene-based flame retardants in polymer composites
		3.4.1. Pristine graphene
		3.4.2. Organic flame-retardants-modified graphene
		3.4.3. Inorganic flame-retardants-modified graphene
		3.4.4. Dual modification of graphene with both organic and inorganic flame retardants
		3.4.5. Physical mixture of graphene with other flame retardants
		3.4.6. Graphene-based flame-retardant coatings
	3.5. Flame-retardant mechanism of graphene
	3.6. Summary
	References
Chapter 4: Structural analysis of graphene-based composites
	4.1. Introduction
	4.2. Static analysis
	4.3. Transient/dynamic analysis
	4.4. Vibration analysis
		4.4.1. Free vibration analysis
		4.4.2. Forced vibration analysis
	4.5. Buckling and postbuckling analysis
		4.5.1. Buckling analysis
		4.5.2. Postbuckling analysis
	4.6. Effect of environmental variables and postprocessing parameters
	4.7. Conclusions and future prospects
	Acknowledgments
	References
Chapter 5: Graphene-based polymer coatings
	5.1. Introduction
	5.2. Graphite/graphene-based polymer coatings
	5.3. Graphene oxide-based polymer coatings
	5.4. Conclusion and future outlook
	References
Chapter 6: Graphene-reinforced polymeric membranes for water desalination and gas separation/barrier applications
	6.1. Introduction
	6.2. 2D nanomaterials
	6.3. Ionized polymers
	6.4. Conclusions
	Acknowledgments
	References
Chapter 7: Modeling and simulation of graphene-based composites
	7.1. Introduction
	7.2. Characterizing techniques
		7.2.1. Experimental approach
		7.2.2. Structural mechanics-based approach
		7.2.3. Quantum mechanics-based approach
		7.2.4. Molecular dynamics-based approach
	7.3. Atomistic simulations to characterize the graphene-polymer nanocomposites
		7.3.1. Mechanical and fracture properties
			7.3.1.1. Polyethylene-based graphene nanocomposites
			7.3.1.2. Epoxy-based graphene nanocomposites
			7.3.1.3. Polymethyl methacrylate-based graphene nanocomposites
			7.3.1.4. Other polymers-based graphene nanocomposites
		7.3.2. Thermal properties
	7.4. Conclusion and future prospects
	Acknowledgments
	References
Chapter 8: Graphene-based polymer nanocomposites in biomedical applications
	8.1. Introduction
	8.2. Fabrication of polymer-graphene nanocomposites
		8.2.1. Solution intercalation
		8.2.2. Melt blending
		8.2.3. In situ polymerization
		8.2.4. Surface grafting
	8.3. Properties of polymer-graphene nanocomposites
		8.3.1. Natural polymers
		8.3.2. Synthetic polymers
	8.4. Biomedical applications of polymer-graphene nanocomposites
		8.4.1. Biosensors
		8.4.2. Antimicrobial applications
		8.4.3. Drug delivery
		8.4.4. Tissue engineering
		8.4.5. Other applications
	8.5. Future perspective
	8.6. Conclusions
	References
Chapter 9: 3D printing of graphene polymer composites
	9.1. Introduction
	9.2. 3D printing methods for graphene-based composites
		9.2.1. Fused deposition modeling (FDM)
		9.2.2. Direct ink writing (DIW)
		9.2.3. Stereolithography (SLA)
		9.2.4. Selective laser sintering (SLS)
	9.3. Printable graphene-based polymeric nanocomposite
		9.3.1. Graphene family
		9.3.2. Printable polymers
		9.3.3. Nanocomposite preparation methods
		9.3.4. Properties of 3D printed graphene-based nanocomposites
	9.4. Applications
		9.4.1. Biomedical application
			9.4.1.1. Tissue engineering
			9.4.1.2. Drug delivery
		9.4.2. Energy storage application
			9.4.2.1. Lithium-ion batteries
			9.4.2.2. Solar conversion devices
		9.4.3. Sensors
			9.4.3.1. Biosensors
			9.4.3.2. Gas sensors
			9.4.3.3. Mechanical and chemical sensors
		9.4.4. Other applications
	9.5. Conclusions and prospects
	References
Chapter 10: Dielectric properties of graphene polymer blends
	10.1. Introduction
	10.2. Materials and preparation method
		10.2.1. Materials
		10.2.2. Film preparation method
	10.3. Dielectric properties and AC conductivity
		10.3.1. Dielectric properties and AC conductivity
		10.3.2. Modeling of dielectric constant of two-phase composites
			10.3.2.1. Wiener bounds
			10.3.2.2. Lichtenecker logarithmic rule
			10.3.2.3. Bruggeman model
			10.3.2.4. Jaysundere-Smith model
			10.3.2.5. Maxwell-Wagner model
			10.3.2.6. Yamada model
	10.4. Enhanced dielectric properties of graphene composite films by electron beam irradiation
	10.5. P-E loop/energy efficiency
	10.6. Electrical breakdown strength (Eb)
	10.7. Conclusion
	Acknowledgments
	References
Chapter 11: Graphene-based polymer composite films
	11.1. Introduction
	11.2. Different types of graphene-based composite membranes
		11.2.1. Application research of graphene-based LB films
		11.2.2. Application research of graphene-based electrospinning films
		11.2.3. Application research of other types of graphene-based composite films
	11.3. Conclusion and comment
	11.4. Future perspectives
	Acknowledgments
	References
Chapter 12: Modeling and prediction of tribological properties of polyetheretherketone composite reinforced with graphene ...
	12.1. Introduction
	12.2. Experimental procedure
	12.3. Configuration of artificial neural network
	12.4. Structure of database
	12.5. ANN evaluation and optimization
		12.5.1. Influence of learning rules
		12.5.2. Influence of ANN structure
	12.6. Results and discussion
		12.6.1. Prediction by ANN
	12.7. Conclusions
	References
Chapter 13: Graphene polymer foams and sponges preparation and applications
	13.1. Introduction
		13.1.1. Processes based on polymer foaming
		13.1.2. Processes based on graphene framework precursor
	13.2. Applications
	13.3. Conclusion
	References
Chapter 14: Graphene-based polymer composites for photocatalytic applications
	14.1. Introduction
	14.2. Principle of photocatalysis
		14.2.1. Photocatalysis process
		14.2.2. The four steps of the degradation of pollutants
		14.2.3. Environmental remediation by photocatalysis
			14.2.3.1. Water treatment
			14.2.3.2. Air treatments
		14.2.4. Photocatalytic measurements
	14.3. Titanium dioxide semiconductors
		14.3.1. Short review of the principal photocatalytic properties of TiO2
		14.3.2. Strategies for enhancing the photocatalytic performance of TiO2
		14.3.3. Bandgap engineering of TiO2 by doping
			14.3.3.1. Metal doping
			14.3.3.2. Nonmetal doping
		14.3.4. Bandgap engineering of TiO2 by heterostructures
			14.3.4.1. Metal-semiconductor heterostructures
			14.3.4.2. Semiconductor-semiconductor heterostructures
	14.4. Conjugated systems
		14.4.1. Graphene-based composites
			14.4.1.1. Synthesis of graphene
			14.4.1.2. Synthesis of graphene-based composites
				Graphene/inorganic semiconductor composites
				Graphene/organic semiconductor composites
				Graphene/P3HT composites
		14.4.2. Conjugated polymer-based composites
			14.4.2.1. Principal conjugated polymers used in composites for photocatalysts
			14.4.2.2. Synthesis of TiO2/conjugated polymer composites
		14.4.3. Characterization of composites
			14.4.3.1. Photoluminescence (PL)
			14.4.3.2. Infrared spectroscopy
			14.4.3.3. Raman spectroscopy
			14.4.3.4. X-ray photoelectron spectroscopy (XPS)
	14.5. Graphene in photocatalysis
		14.5.1. Photocatalytic activity in GO
		14.5.2. Photocatalytic activity in TiO2/graphene hybrid materials
			14.5.2.1. Global description of photocatalytic process
			14.5.2.2. Degradation of pollutants
			14.5.2.3. CO2 reduction
		14.5.3. Photocatalytic activity in conjugated polymers/graphene hybrid materials
			14.5.3.1. RGO(GO)/P3HT photocatalysts
				Global description of photocatalytic process
				Degradation of pollutants
			14.5.3.2. g-C3N4/graphene photocatalysts
				Global description of photocatalytic process
				Degradation of pollutants
				Hydrogen evolution reactions
				CO2 reduction
	14.6. Conclusion
	References
Chapter 15: Effect of graphene structure, processing method, and polyethylene type on the thermal conductivity of pol
	15.1. Introduction
	15.2. Experimental
		15.2.1. Materials
	15.3. Methodology
	15.4. Characterization
	15.5. Results and discussion
	15.6. Effect of melt blending extrusion speed
	15.7. Effect of graphene loading and PE type
	15.8. Effect of processing method
	15.9. Effect of solution processing technique
	15.10. Effect of C/O ratio and surface area of graphene
		15.10.1. Effect of polyethylene blending
	15.11. Conclusions
	Acknowledgment
	References
Chapter 16: Functionalization of graphene composites using ionic liquids and applications
	16.1. Introduction
		16.1.1. Graphene
		16.1.2. Ionic liquids
	16.2. Functionalization of graphene composites with IL-based materials
	16.3. Various applications of IL-GO composites in energy storage devices
		16.3.1. Supercapacitors
		16.3.2. Solar cells
		16.3.3. Rechargeable batteries
		16.3.4. Hydrogen production and fuel cells
	16.4. Other applications
	16.5. Conclusions
	Acknowledgment
	References
Chapter 17: 3D printing of graphene-based composites and their applications in medicine and health care
	17.1. Introduction
	17.2. Graphene-based composites
	17.3. 3D printing
		17.3.1. 3D bioprinting
			17.3.1.1. Droplet-based bioprinting
			17.3.1.2. Extrusion-based bioprinting
			17.3.1.3. Stereolithography
	17.4. Applications in medicine and health care
		17.4.1. Tissue engineering
			17.4.1.1. Hard-tissue engineering (bones and teeth)
				Bone tissue engineering
			17.4.1.2. Soft-tissue engineering
				Wound healing and skin tissue engineering
				Neural tissue engineering
				Scaffold
	17.5. Conclusion
	References
Chapter 18: Graphene/polymer composite membranes for vanadium redox flow battery applications
	18.1. Introduction
	18.2. Functionalized GO derivatives
		18.2.1. Sulfonated graphene oxide
		18.2.2. Amine-functionalized graphene oxide
		18.2.3. Zwitterion-functionalized graphene oxide
	18.3. Properties of graphene/polymer composite membranes
		18.3.1. Mechanical properties
		18.3.2. Physicochemical properties
		18.3.3. VRFB performance
	18.4. Conclusion
	References
Chapter 19: Free vibration analysis of microplates reinforced with functionally graded graphene nanoplatelets
	19.1. Introduction
	19.2. Modified strain gradient formulation
	19.3. Kinematic and constitutive relations
	19.4. Solution procedure
	19.5. Results and discussion
		19.5.1. Validation
		19.5.2. Free vibration characteristics of composite microplate reinforced with graphene nanoplatelets
	19.6. Conclusions
	Acknowledgments
	References
Chapter 20: Graphene-based polymer composites in corrosion protection applications
	20.1. Introduction
	20.2. Carbon-based nanofillers
		20.2.1. Graphite
		20.2.2. Graphene
		20.2.3. Graphite oxide and GO
	20.3. GO modification
		20.3.1. Covalent modification of graphene oxide
		20.3.2. Noncovalent modification of graphene oxide
	20.4. Graphene in corrosion science
		20.4.1. Graphene films
		20.4.2. Graphene-modified polymeric coatings
	20.5. Utilization of graphene and derivate in polymeric composites
		20.5.1. Barrier properties and impermeability of GO
		20.5.2. Surface modification of graphene oxide with inhibitors
		20.5.3. Use of graphene oxide as a nanocarrier for corrosion inhibitors
	20.6. Conclusion
	References
Chapter 21: Graphene/polymer composite application on supercapacitors
	21.1. Introduction
	21.2. Graphene/conducting polymer composites as electrode materials
		21.2.1. Properties of graphene
			21.2.1.1. Advantages of graphene over other carbon-based materials
			21.2.1.2. Utilization of graphene/conducting polymer as a suitable electrode
		21.2.2. Graphene/polyaniline composites
			21.2.2.1. Properties of PANi
			21.2.2.2. Functionalized graphene/PANi composite
			21.2.2.3. Flexible graphene/PANi composite
			21.2.2.4. Graphene-PANi/PANi composite on a stainless steel fabric electrode
		21.2.3. Graphene/polypyrrole composites
			21.2.3.1. Properties of polypyrrole
			21.2.3.2. 3-D interconnected graphene/PPy composite
			21.2.3.3. Stretchable and bendable graphene/PPy composite
			21.2.3.4. Graphene/PPy composite on carbon cloth
			21.2.3.5. Melamine-modified graphene/PPy composite
		21.2.4. Graphene/poly (3,4-ethylenedioxythiophene) composites
			21.2.4.1. Properties of PEDOT
			21.2.4.2. Graphene/PEDOT nanocomposite using pen lithography
			21.2.4.3. Hydrothermal approach for the graphene/PEDOT composite
			21.2.4.4. Porous three-dimensional graphene/PEDOT composite
	21.3. Comparison of graphene/conducting polymers composites
	21.4. Effect of electrolyte on the performance of the graphene/polymer-based supercapacitor
		21.4.1. Aqueous electrolytes
		21.4.2. Gel polymer electrolytes
	21.5. Graphene/nonconducting polymer composites as binders
		21.5.1. Graphene/polyvinylidene fluoride composites
		21.5.2. Graphene/polytetrafluoroethylene composites
	21.6. Conclusion and future outlook
	References
Index
Back Cover




نظرات کاربران