دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Dominik T. Matt (editor), Vladimír Modrák (editor), Helmut Zsifkovits (editor) سری: ISBN (شابک) : 3030254240, 9783030254247 ناشر: Palgrave Macmillan سال نشر: 2020 تعداد صفحات: 435 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Industry 4.0 for SMEs: Challenges, Opportunities and Requirements به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب صنعت 4.0 برای SME ها: چالش ها، فرصت ها و الزامات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب دسترسی آزاد به بررسی مفهوم Industry 4.0
میپردازد که چالش قابلتوجهی برای بخشهای تولید و خدمات است.
در حالی که ابتکارات دیجیتالیسازی معمولاً در استراتژی شرکت
مرکزی شرکتهای بزرگتر ادغام میشوند، شرکتهای کوچکتر اغلب
در اجرای پارادایمهای صنعت 4.0 با مشکلاتی مواجه هستند.
شرکتهای کوچک و متوسط (SMEs) نه منابع انسانی و نه منابع
مالی برای بررسی سیستماتیک پتانسیل و ریسکهای معرفی صنعت 4.0
ندارند. با پرداختن به این مانع، تیم بینالمللی نویسندگان بر
توسعه مفاهیم تولید هوشمند، راهحلهای لجستیکی و مدلهای
مدیریتی بهویژه برای SMEها تمرکز میکنند. این کتاب ابتکاری و
به موقع با هدف ارائه چارچوب های روش شناختی و راه حل های
آزمایشی برای SME ها در طول تحول دیجیتال آنها، برای محققانی که
در زمینه مدیریت فناوری، دیجیتالی کردن و کسب و کارهای کوچک
تحقیق می کنند، و همچنین شاغلین در شرکت های تولیدی بسیار مفید
خواهد بود.
This open access book explores the concept of Industry
4.0, which presents a considerable challenge for the
production and service sectors. While digitization
initiatives are usually integrated into the central corporate
strategy of larger companies, smaller firms often have
problems putting Industry 4.0 paradigms into practice. Small
and medium-sized enterprises (SMEs) possess neither the human
nor financial resources to systematically investigate the
potential and risks of introducing Industry 4.0. Addressing
this obstacle, the international team of authors focuses on
the development of smart manufacturing concepts, logistics
solutions and managerial models specifically for SMEs. Aiming
to provide methodological frameworks and pilot solutions for
SMEs during their digital transformation, this innovative and
timely book will be of great use to scholars researching
technology management, digitization and small business, as
well as practitioners within manufacturing
companies.
Preface Contents Notes on Contributors List of Figures List of Tables Part I Introduction to Industry 4.0 for SMEs 1 SME 4.0: The Role of Small- and Medium-Sized Enterprises in the Digital Transformation 1.1 Introduction 1.2 Industry 4.0 as the Fourth Industrial Revolution 1.2.1 Origin and Characterization of Industry 4.0 1.2.2 Industry 4.0—A Challenge for Europe and Beyond 1.3 The Contribution of Small and Medium Enterprises to Economic Development 1.3.1 The Role of SMEs in the European Economy 1.3.2 The Role of SMEs in the United States 1.3.3 The Role of SMEs in Asia 1.3.4 The Role of SMEs in the World 1.4 Current State of the Transition of Industry 4.0 to SMEs 1.4.1 State of the Art of Industry 4.0 for SMEs in Scientific Literature 1.4.2 Current EU Research Initiatives on Industry 4.0 for SMEs 1.4.3 Summary of the State-of-the-Art Analysis 1.5 SME 4.0—Industry 4.0 for SMEs 1.5.1 “SME 4.0” Project Key Data and Objectives 1.5.2 Project Structure 1.5.3 Research Methodology in the First Project Phase 1.6 Conclusion and Structure of the Book References Part II Industry 4.0 Concepts for Smart Manufacturing in SMEs 2 SME Requirements and Guidelines for the Design of Smart and Highly Adaptable Manufacturing Systems 2.1 Introduction 2.2 Background and Literature Review 2.2.1 Industry 4.0—The Fourth Industrial Revolution 2.2.2 State of the Art in the Introduction of Smart and Highly Adaptable Manufacturing Systems in SMEs 2.3 Problem Formulation 2.4 Research Methodology 2.5 Analysis of Requirements for SME 4.0 Manufacturing Systems and Coarse Design Guidelines 2.5.1 Collection of User Needs Through an Explorative Study 2.5.2 Thematic Clustering and Categorization of Inputs 2.5.3 Reverse Engineering of Inputs Categorized as DPs and PVs 2.5.4 Final List of Functional Requirements and Constraints Regarding the Introduction of Industry 4.0 in SMEs 2.5.5 Derivation of Coarse Design Guidelines for Smart Manufacturing in SMEs 2.6 Discussion 2.7 Conclusions References 3 Implementation of Industrial Internet of Things and Cyber-Physical Systems in SMEs for Distributed and Service-Oriented Control 3.1 Introduction 3.2 Fundamentals of Connectivity 3.2.1 The OSI Model 3.2.2 CPS Architecture 3.2.3 The Concept of Interoperability 3.2.4 Loosely Coupled Systems and SOA 3.2.5 The Publish and Subscribe Pattern 3.2.6 Service Discovery, Zero Configuration, and Plug-and-Play/Work Networks 3.2.7 Ethernet-Based Connectivity Technologies for SME 3.3 The Integration Drivers 3.3.1 Organizational Drivers 3.3.2 Technical Drivers 3.4 Connectivity Architecture 3.4.1 Ethernet-Based Automation System 3.4.2 A Layered Design for Manufacturing Service Bus 3.4.3 Physical and Logical Network Topologies of the MSB 3.5 Case Study 3.5.1 The Smart Mini Factory 3.5.2 Design of the Manufacturing Service Bus 3.5.3 Connectivity Framework Gateways 3.5.4 The ROS Protocol 3.6 Conclusions References 4 The Opportunities and Challenges of SME Manufacturing Automation: Safety and Ergonomics in Human–Robot Collaboration 4.1 Introduction 4.1.1 Introduction to Industrial Collaborative Robotics 4.1.2 Main Occupational Health and Safety Concepts 4.1.3 Occupational Health and Safety Standards 4.1.4 Introduction to Industrial Robot Safety 4.2 Fundamentals of Occupational Safety in Industrial Human–Robot Interaction 4.2.1 Mechanical Risk Analysis in Industrial Robotics: Traditional Versus Collaborative Robotics 4.2.2 Main Safety Standards for Industrial Collaborative Robotics 4.2.3 Technical Specification ISO TS 15066 (2016) and Collaborative Operations 4.2.4 Nature of Human–Robot Contacts 4.3 Human-Centric Design and Ergonomics 4.3.1 Risk Factors and Musculoskeletal Disorders 4.3.2 Main Standards on Physical Ergonomics 4.3.3 Ergonomics in Human–Robot Collaboration 4.4 Discussion About Potential and Challenges in Safety and Ergonomics in Human–Robot Collaboration 4.4.1 Main Technological Research Areas of Interest 4.4.2 Main Organizational Research Areas of Interest 4.5 Conclusions References Part III Industry 4.0 Concepts for Smart Logistics in SMEs 5 Requirement Analysis for the Design of Smart Logistics in SMEs 5.1 Introduction 5.2 Problem Formulation 5.3 Related Work 5.4 Research Design/Methodology 5.5 Hypothesis of Requirements for Smart Logistics in SMEs 5.5.1 Lean and Agility 5.5.2 Real-Time Status 5.5.3 Digitization, Connectivity, and Network 5.5.4 Tracking, PPC, and WMS 5.5.5 Culture, People, and Implementation 5.5.6 Security and Safety 5.5.7 Ease of Use 5.5.8 Transportation 5.5.9 Automation 5.6 Creativity and Viability Through Axiomatic Design 5.7 Conclusions and Outlook References 6 Consistent Identification and Traceability of Objects as an Enabler for Automation in the Steel Processing Industry 6.1 Introduction 6.2 Background and Literature Review of Identification and Traceability 6.2.1 Labeling Type and Content 6.2.2 Labeling Method 6.3 Problem Formulation 6.4 Methods/Methodology 6.4.1 Developing a Traceability Model 6.4.2 Traceability Issues in Process Industries 6.5 A Case—Tracing Continuous Flow in Process Industries 6.5.1 Initial Situation and Project Steps 6.5.2 Evaluation of Proposed Solutions 6.6 Discussion and Conclusions References 7 State-of-the-Art Analysis of the Usage and Potential of Automation in Logistics 7.1 Introduction—Automation in Production Logistics 7.2 Problem Formulation and Methods/Methodology 7.3 Enablers of Automation in Logistics 7.3.1 Identification Technologies for Automation 7.3.2 Technological Concepts for Automation 7.4 Discussion of Automation Approaches 7.4.1 Agent-Based Automation Through Enhanced Process Control 7.4.2 Automated Guided Vehicles (AGVs) and Robots in Logistics Systems 7.4.3 Conveyor Belts and Sorting Systems 7.4.4 Automation Through Augmented Reality (AR) 7.4.5 Automation Through Modularization Strategies 7.5 A Case—Conveyor Belts and Sorting Systems Case Study: Medium-Sized Logistics Service Provider in Thailand 7.6 Discussion, Suggestions, and Implications References Part IV Industry 4.0 Managerial, Organizational and Implementation Issues 8 Development of an Organizational Maturity Model in Terms of Mass Customization 8.1 Introduction 8.2 Literature Review 8.3 Problem Description 8.4 Methodology 8.5 Proposed Approaches and Solutions 8.5.1 Development of QMM 8.5.2 Application of the QMM 8.5.3 Identification of the Key Requirement of SMEs 8.6 Maturity Model of Organizational Capabilities for Mass Customized Manufacturing 8.6.1 Additional Requirements of the Maturity Model 8.6.2 Description of the Main Features of the Maturity Model 8.6.2.1 Product Modularity and Process Modularity 8.6.2.2 Integration of Product Configurator into Process Planning 8.7 Future Research Work and Conclusions Appendix 8.1 Appendix 8.2 Appendix 8.3 Appendix 8.4 References 9 Implementing Industry 4.0 in SMEs: A Focus Group Study on Organizational Requirements 9.1 Introduction 9.2 Background 9.2.1 Organizational Barriers to Industry 4.0 Implementation 9.2.2 Barriers to Innovation 9.3 Problem Formulation 9.4 Methodology 9.4.1 Focus Group Method 9.4.2 Sample Selection and Data Collection 9.4.3 Data Analysis 9.5 Results 9.6 Discussion 9.7 Conclusions References 10 Smart SME 4.0 Implementation Toolkit 10.1 Introduction 10.2 Background and Literature Review 10.2.1 Information Technology 10.2.1.1 Equipment Infrastructure 10.2.1.2 IT System 10.2.1.3 Information Sharing 10.2.1.4 Cloud Based 10.2.2 Production and Operations 10.2.2.1 Innovation Management 10.2.2.2 Data Analytics 10.2.2.3 Horizontal/Vertical Data Integration 10.2.2.4 Expert Systems 10.2.3 Automation 10.2.3.1 OEE Equipment Effectiveness 10.2.3.2 Man-Machine Interaction 10.2.3.3 Autonomous Process 10.2.3.4 M2M Machine Connectivity 10.2.4 Human Resource 10.2.4.1 Technical 10.2.4.2 Non-Technical 10.3 Problem Formulation 10.4 Methodology 10.5 Problem Solution 10.5.1 SMEs 4.0 for Make-to-Order Snack Factory 10.5.2 SMEs 4.0 for Service Industry—A Coffee Shop 10.5.3 SMEs 4.0 for Small Fabrication Company 10.5.4 SMEs 4.0 for Multinational SMEs 10.6 Discussion 10.7 Conclusions References Part V Case Studies and Methodical Tools for Implementing Industry 4.0 in SMEs 11 The Digitization of Quality Control Operations with Cloud Platform Computing Technologies 11.1 Introduction 11.2 Background and Literature Review 11.3 Problem Formulation and Methodology 11.4 Problem Solution 11.4.1 Quality Control Objects 11.4.2 Data Acquisition During Quality Control Process 11.4.2.1 Data Extraction from Vision Systems 11.4.2.2 Data Extraction from RFID System 11.4.3 Data Storing and Analyzing Using Cloud Platform 11.4.4 Digital Twin with Simulation and Virtual Reality 11.5 Discussion 11.6 Conclusions References 12 Implementation of a Laboratory Case Study for Intuitive Collaboration Between Man and Machine in SME Assembly 12.1 Introduction 12.2 Theoretical Background 12.3 Methodology for the Evaluation of Human–Robot Task Allocation 12.3.1 Technical Evaluation 12.3.2 Physical Ergonomic Evaluation 12.3.3 Product/Process Quality Evaluation 12.3.4 Economic Evaluation 12.3.5 Final Evaluation 12.4 Application of Intuitive Human–Robot Interaction in the Smart Mini Factory Lab 12.4.1 Introduction to the Smart Mini Factory 12.4.2 Case Study Description 12.4.3 Pneumatic Cylinder Collaborative Assembly 12.4.4 Case Study Evaluation 12.5 Discussion and Hypothesis for Future Work 12.5.1 Task Allocation Methodology: Future Developments 12.5.2 Real-Time Allocation for Assembly 12.5.3 Cell Digitalization 12.5.4 Situational Awareness 12.6 Conclusions References 13 Axiomatic Design for Products, Processes, and Systems 13.1 The Axioms and Engineering Design as a Scientific Discipline 13.1.1 The Axioms 13.1.2 Three Parts and Six Elements 13.1.3 Axiom One: Maintain Independence 13.1.4 Axiom Two: Minimize the Information Content 13.2 Structures 13.2.1 Design Domains and Constraints—Lateral Decompositions 13.2.1.1 Customer Needs (CNs) 13.2.1.2 Functional Requirements (FRs) 13.2.1.3 Design Parameters (DPs) 13.2.1.4 Process Variables (PVs) 13.2.1.5 Constraints (Cs) 13.2.2 Design Hierarchies—Vertical Decomposition 13.3 The Design Process 13.3.1 Zigzagging Decomposition 13.3.1.1 Checking for Independence (Axiom One) 13.3.1.2 Decomposition Themes 13.3.1.3 Metrics and Equations 13.3.2 Physical Integration 13.4 Additional Applications and Industry 4.0 13.4.1 Analyzing Existing Designs 13.4.2 Recognizing Opportunities for Creativity and Innovation 13.4.3 Application for Industry 4.0 13.5 Concluding Remarks References Index