ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Industrial Energy Systems Handbook

دانلود کتاب کتاب راهنمای سیستم های انرژی صنعتی

Industrial Energy Systems Handbook

مشخصات کتاب

Industrial Energy Systems Handbook

ویرایش:  
نویسندگان:   
سری: River Publishers Series in Energy Engineering and Systems 
ISBN (شابک) : 8770226601, 9788770226608 
ناشر: River Publishers 
سال نشر: 2022 
تعداد صفحات: 501
[502] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 56 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Industrial Energy Systems Handbook به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای سیستم های انرژی صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب راهنمای سیستم های انرژی صنعتی



سیستم‌های انرژی صنعتی Handbook یک منبع مطالعه تکمیلی برای داوطلبانی است که برنامه حرفه‌ای انرژی صنعتی (CIEP) دارای گواهی انجمن مهندسین انرژی (AEE) را انجام می‌دهند.

درک نحوه عملکرد سیستم های صنعتی مختلف برای شناسایی فرصت های پس انداز کلیدی است. یک مرور کلی از وضعیت انرژی جهانی در زمان انتشار ارائه شده است که ضرورت بهبود فرآیندهای انرژی بر برای بهینه‌سازی بیشتر را نشان می‌دهد.

درک فرصت‌ها برای بهینه‌سازی یک صنعتی سیستم انرژی با مبانی انرژی، انرژی الکتریکی و انرژی حرارتی و اهمیت سیستم های مدیریت انرژی و ممیزی انرژی صنعتی شروع می شود.

سیستم‌های اصلی مصرف کننده انرژی در صنعت شامل بخار، هوای فشرده، موتورها، درایوها، فن‌ها، پمپ‌ها، روشنایی، کوره‌ها، سیستم‌های تبادل حرارت و سرمایش در مقیاس بزرگ می‌باشند. و تبرید صنعتی ابزار دقیق و کنترل و همچنین ابزارهای موجود موضوعات کتاب راهنما را کامل می کند.


توضیحاتی درمورد کتاب به خارجی

Industrial Energy Systems Handbook is a supplementary reading resource for candidates undertaking the Association of Energy Engineers (AEE) Certified Industrial Energy Professional (CIEP) program.

Understanding how the various industrial systems work is key to identifying savings opportunities. An overview is given of the global energy situation as at the time of publication which cements the necessity to improve energy intensive processes to become more optimized.

Comprehension of opportunities to optimize an industrial energy system starts with the fundamentals of energy, electrical energy and thermal energy, and the importance of energy management systems and industrial energy audits.

The main energy consuming systems in industry are covered such as steam, compressed air, motors, drives, fans, pumps, lighting, furnaces, heat exchange systems, and large scale cooling and industrial refrigeration. The instrumentation and control as well as toolkits available rounds off the handbook topics.



فهرست مطالب

Cover
Half-Title
RIVER PUBLISHERS SERIES IN ENERGY ENGINEERING AND SYSTEMS
Title
Copyrights
Contents
List of Contributors
List of Figures
List of Tables
Chapter 1 Global Energy Situation on Climate Change
	1.1 The Negative Impacts and Forecasts of Climate Change
		1.1.1 Sea levels
		1.1.2 Ocean currents
		1.1.3 Coral reefs
		1.1.4 Ocean acidity
		1.1.5 Wildlife
		1.1.6 Hurricanes
		1.1.7 Floods
		1.1.8 Fires
		1.1.9 Forests
		1.1.10 Droughts
		1.1.11 Human health
		1.1.12 Social cost
	1.2 The Positive Global Trends to meet the Goals of the Paris Agreement
		1.2.1 Coal
		1.2.2 Wind
		1.2.3 Solar
		1.2.4 Employment
		1.2.5 Industrial energy efficiency
	1.3 International Protocols and Conventions
		1.3.1 Paris agreement
		1.3.2 Kyoto protocol
Chapter 2 Fundamental Principles of Energy
	2.1 Forms of Energy
		2.1.1 Definition of energy
		2.1.2 Different forms of energy and energy flowimportant to energy audits
	2.2 Definition of Energy Efficiency
	2.3 Definition of Energy Density
	2.4 Units of Energy
		2.4.1 Calorie
		2.4.2 Joule
		2.4.3 Pascal
		2.4.4 Ampere
		2.4.5 Ampere-hour
		2.4.6 Volt-Ampere
		2.4.7 kiloVolt-Ampere reactive
		2.4.8 Watt
		2.4.9 Watt-hour
	2.4.10 kiloWatt and gigaWatt
Chapter 3Energy Conversion and EfficiencyLouis Lagrange
	3.1 Energy Conversion, Electricity and Energy Efficiency
		3.1.1 Total energy, useful and not useful energy
	3.2 The Four Thermodynamic Laws
		3.2.1 Definition and interpretation of thermodynamic law nr 0
		3.2.2 Definition and interpretation of thermodynamic law nr 1
		3.2.3 Definition and interpretation of thermodynamic law nr 2
		3.2.4 Definition and interpretation of thermodynamic law nr 3
	3.3 Energy Performance Criteria
	3.4 Calculation of Energy Efficiency Performance
		3.4.1 High level benchmarking metrics
		3.4.2 Energy use index
		3.4.3 Energy cost index
		3.4.4 Productivity metrics
		3.4.5 Energy efficiency rating, seasonal and integrated
		3.4.6 System performance metrics
		3.4.7 Typical system performance indexes
	3.5 Calculation of Point of Use (PoU) costs
		3.5.1 Energy conservation and energy conversion (energy flow)
		3.5.2 Heat flow and heat loss
		3.5.3 Mass- and energy-balance
		3.5.4 Energy demand
Chapter 4Fundamentals of Electrical EnergyLouis Lagrange
	4.1 Electrical Power and Electrical Power Quality
	4.2 Electrical Voltage
	4.3 Electrical Current
	4.4 Electrical Power
	4.5 Demand
	4.6 Types of Current Flow
	4.7 Direct Current
	4.8 Batteries
	4.9 Alternating Current
	4.10 The Different Types of Loads
		4.10.1 Electrical circuitry
		4.10.2 Resistive loads
		4.10.3 Inductive loads
		4.10.4 Capacitive loads
	4.11 Electrical Power Factor
		4.11.1 Lower utility fees
		4.11.2 Power factor penalty is eliminated
		4.11.3 Increase voltage levels in the electric system and distribution system
		4.11.4 Power factor correction in linear loads
		4.11.5 Power factor correction in non-linear loads
		4.11.6 Passive power factor correction (PFC)
		4.11.7 Active power factor correction
		4.11.8 Dynamic power factor correction
	4.12 Demand Management
	4.13 Load Factor
	4.14 Load Shifting
		4.14.1 Demand response
		4.14.2 Dynamic demand
	4.15 Load Shedding
	4.16 Total Harmonic Distortion (THD)
		4.16.1 THD voltage
		4.16.2 Harmonic voltage distortions
		4.16.3 Harmonic current distortion
	4.17 Problems with Harmonics
	4.18 Measuring Electrical Energy Consumption
		4.18.1 Calculating power, energy and power factor inalternating current circuits
		4.18.2 Calculate power, voltage, current andpower factor in AC circuits
		4.18.3 Voltage
		4.18.4 Current
		4.18.5 Power
	4.19 Methods to Correct the Power Factor
	4.20 Calculating Energy Efficiency forElectrical Equipment
	4.21 Uninterruptible Power Supply
Chapter 5Fundamentals of Thermal EnergyAlbert Williams
	5.1 Types of Thermal Energy: Sensible and Latent
	5.2 Concept of Useful Thermal Energy
	5.3 Temperature
	5.4 Pressure
	5.5 Phase Changes
		5.5.1 Evaporation
		5.5.2 Condensation
		5.5.3 Steam
		5.5.4 Moist air and humidity
	5.6 Psychrometric Charts
		5.6.1 Air temperature
		5.6.2 Relative humidity
		5.6.3 Mean radiant temperature
		5.6.4 Air flow movement
		5.6.5 Infiltration loads in buildings
	5.7 Calculating Thermal Energy
		5.7.1 Heat loss calculations
	5.8 Energy Efficiency Measures in Thermal Processes
Chapter 6Energy Management Systems andIndustrial Energy AuditsAlbert Williams1 & Yolanda de Lange1
	6.1 Energy Management Systems (EnMS)
		6.1.1 Overview
		6.1.2 Energy performance indicators
		6.1.3 Calculation of energy efficiency performance
		6.1.4 High level benchmarking metrics
	6.2 Industrial Energy Audits
		6.2.1 The types of energy audits
		6.2.2 The energy audit process
Chapter 7Instrumentation and ControlAlbert Williams
	7.1 The Need for Automated Control
	7.2 Control Components
		7.2.1 Switches
		7.2.2 Sensors
		7.2.3 Transducers
		7.2.4 Controllers
		7.2.5 Control loops
		7.2.6 Control devices
	7.3 Control Modes
		7.3.1 On/Off control
		7.3.2 Floating control
		7.3.3 Proportional only control (P)
		7.3.4 Proportional-plus-integral control (PI)
		7.3.5 Proportional-integral-derivative control (PID)
	7.4 Sensor Types
		7.4.1 Thermostats
		7.4.2 Electric meter
		7.4.3 Smoke sensors/detectors
		7.4.4 Light sensors
		7.4.5 Occupancy sensors
	7.4.6 Carbon dioxide sensors
	7.4.7 Carbon monoxide sensors
	7.5 The Principles of Efficiency with Control andControl Applications
		7.5.1 Efficiency through control
		7.5.2 Efficiency through control applications
Chapter 8Energy Investigation Support ToolsAlbert Williams
	8.1 Measurement of Power
	8.2 Measurement of Temperature
	8.3 Measurement of Pressure
	8.4 Measurement of Humidity
	8.5 Measurement of Heat Capacity and Heat Storage
	8.6 Combustion Measurement
	8.7 Measurements of Air Velocity
	8.8 Measurements of Flow
	8.9 Measurements of Compressed Air Systems
		8.9.1 Compressed air flow measurements
		8.9.2 Leak detection in compressed air system
Chapter 9Fuels, Furnaces, and Fired EquipmentAlbert Williams
	9.1 Fuel Fired Systems
	9.2 Fuels
		9.2.1 Properties of solid fuels
		9.2.2 Properties of liquid fuels (Oil)
		9.2.1 Properties of gaseous fuels
	9.3 Combustion
		9.3.1 Combustion of carbon
		9.3.2 Combustion air requirement
	9.4 Optimizing Combustion Conditions
	9.5 Fuel Fired Equipment and Applications
		9.5.1 Furnaces
		9.5.2 Dryers
		9.5.3 Kilns
	9.6 Flue Gas and Other Losses in Process Furnaces, Dryers and Kilns
	9.7 Burners
		9.7.1 Liquid fuel combustion
		9.7.2 Pressure jet burners
		9.7.3 Rotary cup burners
		9.7.4 Air blast burners
		9.7.5 Common problems in burners
	9.8 Thermal Efficiencies
	9.9 Air Pollution Control - Process and Equipment
		9.9.1 Greenhouse gas effect
		9.9.2 Acid rain
		9.9.3 Ground level ozone
		9.9.4 Reduction of pollutant emissions fromcombustion process
		9.9.5 Energy efficiency improvements
		9.9.6 Refinement to the combustion process
		9.9.7 Flue gas treatment
		9.9.8 Fuel switching
	9.10 Energy Efficiency Measures
		9.10.1 Maintain proper burner adjustment
		9.10.2 Check excess air and combustibles in the flue gas
		9.10.3 Keep heat exchange surfaces clean
		9.10.4 Replace/Repair missing and damaged insulation
		9.10.5 Check furnace pressure regularly
		9.10.6 Schedule production to operate furnaces at ornear maximum output
		9.10.7 Replace damaged furnace doors or covers
		9.10.8 Install adequate monitoring instrumentation
		9.10.9 Recover heat from equipment cooling water
		9.10.10 Install a heat exchanger in the flue gas outlet
Chapter 10Heat Exchange SystemsAlbert Williams
	10.1 Concepts of Conduction, Convection and Radiation
		10.1.1 Conduction
		10.1.2 Convection
		10.1.3 Thermal radiation
	10.2 Specific Heat Capacity
	10.3 Insulation
		10.3.1 Heat loss through a wall
		10.3.2 Heat loss from a pipe
		10.3.3 Heat loss from an industrial freezer
		10.3.4 Insulating materials
		10.3.5 Protective coverings and finishes
		10.3.6 Accessories
		10.3.7 Insulation energy efficiency measures
		10.3.8 Vapor loss from open processing tanks
	10.4 Heat Recovery with Heat Exchangers
		10.4.1 Shell and tube
		10.4.3 Heat wheel
		10.4.4 Heat pipes
		10.4.5 Run around system
		10.4.6 Plate or Baffle type heat exchanger
		10.4.7 Heat pumps
		10.4.8 Waste heat boilers
		10.4.9 Recuperators
		10.4.10 Heat recovery ventilation systems
		10.4.11 Mechanical and natural ventilation
Chapter 11Steam SystemsAlbert Williams
	11.1 Generation
		11.1.1 Steam
		11.1.2 Sensible heat and latent heat
		11.1.3 Steam quality
		11.1.4 Superheated steam
		11.1.5 Example of the effects of increasing surface area
		11.1.7 Combustion losses
		11.1.8 Blowdown losses
		11.1.9 Feedwater treatment
		11.1.10 Condensate tanks
		11.1.11 Flash tanks
		11.1.12 Flash steam heat recovery
	11.2 Distribution
		11.2.1 Condensate return
		11.2.2 Steam leaks
		11.2.3 Insulation
		11.2.4 Steam pressure
		11.2.5 Steam pipes
		11.2.6 Heat transfer from steam
		11.2.7 Steam traps
		11.2.8 Routine maintenance of traps
	11.3 End-Use
	11.4 Energy Efficiency Measures
		11.4.1 Boiler house – Operation opportunities
		11.4.2 Boiler house – Maintenance opportunities
		11.4.3 Boiler house – Retrofit opportunities
		11.4.4 Steam distribution system opportunities
		11.4.5 End-use equipment opportunities
Chapter 12Motors and DrivesAlbert Williams1 & Eustace Njeru2
	12.1 Electric Motor Types
		12.1.1 Direct-Current motors (DC)
		12.1.2 Synchronous motors
		12.1.3 Induction motors
	12.2 Motor Nameplate Data
		12.2.1 kW or HP
		12.2.2 Service factor
		12.2.3 Efficiency
		12.2.4 Amps
		12.2.5 Volts
		12.2.6 Slip
		12.2.7 RPM motor speed
		12.2.8 Motor pole
		12.2.9 Hertz
		12.2.10 Duty
		12.2.11 Bearings
		12.2.12 Temperature
	12.3 Torque
	12.4 Power
	12.5 Motor Losses
		12.5.1 Core loss
		12.5.2 Stator and rotor resistance (I2R) Loss
		12.5.3 Friction and windage loss
		12.5.4 Stray load loss
	12.6 Motor Efficiency
		12.6.1 Energy efficient motors
	12.7 Motor Loads
	12.8 Motor Rewinding
	12.9 Motor Protection
		12.9.1 Overcurrent protection
		12.9.2 Overload protection
		12.9.3 Other protection
	12.10 Electric Motor Standards Compared to Actual Measurement
	12.11 Energy Efficiency Measures
		12.11.1 Motor load scheduling
		12.11.2 Motor drive maintenance and alignment
		12.11.3 Motor power factor correction
		12.11.4 Balance motor phase voltages
		12.11.5 Energy efficient motors
		12.11.6 Cost implications of motor replacement versus maintenance
Chapter 13Fan SystemsAlbert Williams
	13.1 Fan Types
		13.1.1 Centrifugal fans
		13.1.2 Axial fans
	13.2 Fan Performance
		13.2.1 Airflow measurement
		13.2.2 Pressure measurements
		13.2.3 Fan power requirement
		13.2.4 Fan performance curves
		13.2.5 Density consideration
		13.2.6 Fan laws
	13.3 Flow Control
		13.3.1 System effect factors
	13.4 Energy Efficiency Opportunities
		13.4.1 Maintenance opportunities
		13.4.2 Low cost opportunities
		13.4.3 Retrofit opportunities
Chapter 14Pump SystemsAlbert Williams
	14.1 Pump Types
		14.1.1 Centrifugal pumps
		14.1.2 Positive Displacement Pumps
	14.2 Pump System Fluid Relationships
		14.2.1 Friction head
		14.2.2 Velocity head
		14.2.3 Static head
	14.3 Pump Performance Characteristics
		14.3.1 Pump and system performance curves
		14.3.2 Pump power requirements
		14.3.3 Multiple pump systems
		14.3.4 Cavitation and NPSH
	14.4 Pump Maintenance
		14.4.1 Packing glands
		14.4.2 Mechanical seals
	14.5 Energy Efficiency Measures
		14.5.1 Housekeeping - Maintenance
		14.5.2 Retrofit opportunities
Chapter 15Compressed Air SystemsAlbert Williams
	15.1 Supply Side
		15.1.1 Specific power for various compressor types
		15.1.2 Positive displacement compressors
		15.1.3 Dynamic compressors
		15.1.4 Compressor lubrication
		15.1.5 Inlet air temperature
		15.1.6 Inlet air pressure
		15.1.7 Compressor control
		15.1.8 Individual compressor control
		15.1.9 Multiple compressor control
		15.1.10 Sizing
		15.1.11 Compressor scheduling
		15.1.12 Heat recovery
		15.1.13 Maintenance
		15.1.14 Compressor package
		15.1.15 Supply side energy efficiency measures
	15.2 Distribution and Treatment
		15.2.1 Distribution main
		15.2.2 Condensate drain traps
		15.2.3 Air quality
		15.2.4 Condensate
		15.2.5 Distribution piping
		15.2.6 Desiccant dryers
		15.2.7 Heat of compression dryers
		15.2.8 Deliquescent (Absorption) dryers
		15.2.9 Refrigeration dryers
		15.2.10 Dryer installation
		15.2.11 Dryer sizing
		15.2.12 Filters
		15.2.13 Storage
		15.2.14 System isolation
		15.2.15 Distribution and treatment energy efficiency measures
	15.3 Demand Side
		15.3.1 Leakages
		15.3.2 Inappropriate use
		15.3.3 System operating pressure
		15.3.4 Artificial demand
		15.3.5 Perceived high pressure demands
		15.3.6 High volume intermittent demand events
		15.3.7 Demand side energy efficiency measures
	15.4 Compressed Air Systems Assessments
		15.4.1 Leakage assessment
		15.4.2 End users assessment
		15.4.3 Distribution assessment
		15.4.4 Air treatment assessment
		15.4.5 Compressor room assessment
		15.4.6 Demand profile
		15.4.7 Pressure profile
Chapter 16Large Scale Cooling and Industrial Refrigeration SystemsAlbert Williams
	16.1 Refrigerants
		16.1.1 Desirable refrigerant characteristics
	16.2 Vapor Compression Refrigeration Cycle
		16.2.2 Practical considerations for vapor compression refrigeration systems
	16.3 Absorption Cycle
	16.4 Refrigeration System Components
		16.4.1 Refrigerant compressors
		16.4.2 Evaporators
		16.4.3 Throttling devices
		16.4.4 Condensers
		16.4.5 Heat rejection equipment
	16.5 Industrial Refrigeration Applications in Food Industry
		16.5.1 Still air or blast freezing
		16.5.2 Cryogenic freezing
		16.5.3 Plate freezing
		16.5.4 Scraped surface freezing
	16.6 Energy Efficiency Ratios
	16.7 Sensible and Latent Heat
		16.7.1 Sensible heat
		16.7.2 Latent heat
	16.8 Energy Efficiency Measures for CR Systems
List of Abbreviations
Definitions
Resources
Index
About the Author
Back Cover




نظرات کاربران