دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 15
نویسندگان: Darren George. Paul Mallery
سری:
ISBN (شابک) : 1138491047, 9781138491045
ناشر: Routledge
سال نشر: 2018
تعداد صفحات: 705
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 48 مگابایت
در صورت تبدیل فایل کتاب IBM SPSS Statistics 25 Step by Step: A Simple Guide and Reference به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب IBM SPSS Statistics 25 گام به گام: راهنمای و مرجع ساده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آمار 25 گام به گام IBM SPSS: یک راهنمای ساده و مرجع، ویرایش پانزدهم، رویکردی ساده و گام به گام دارد که نرمافزار SPSS را برای مبتدیان و محققان باتجربه روشن میکند. استفاده گسترده از اسکرین شات های چهار رنگ، نوشتن واضح و کادرهای گام به گام، خوانندگان را در برنامه راهنمایی می کند. تمرینهای پایان هر فصل با ارائه فرصتهای اضافی برای تمرین با استفاده از SPSS، دانشآموزان را پشتیبانی میکند.
این کتاب هم مبانی تحلیل آماری توصیفی با استفاده از SPSS تا موضوعات پیشرفتهتر مانند رگرسیون چند بعدی، مقیاسگذاری چند بعدی و MANOVA، از جمله دستورالعمل برای ویندوز و مک. این باعث میشود هم برای دورههای آمار مقطع کارشناسی و هم برای فارغالتحصیلانی که به دنبال توسعه بیشتر آمار و دانش SPSS خود هستند، ایدهآل باشد.
جدید در این نسخه:
IBM SPSS Statistics 25 Step by Step: A Simple Guide and Reference, fifteenth edition, takes a straightforward, step-by-step approach that makes SPSS software clear to beginners and experienced researchers alike. Extensive use of four-color screen shots, clear writing, and step-by-step boxes guide readers through the program. Exercises at the end of each chapter support students by providing additional opportunities to practice using SPSS.
This book covers both the basics of descriptive statistical analysis using SPSS through to more advanced topics such as multiple regression, multidimensional scaling and MANOVA, including instructions for Windows and Mac. This makes it ideal for both undergraduate statistics courses and for postgraduates looking to further develop their statistics and SPSS knowledge.
New to this edition:
Cover Half Title Title Page Copyright Page Dedication Page Table of Contents Preface 1 An Overview of IBM® SPSS® Statistics Introduction: An Overview of IBM SPSS Statistics 25 1.1 Necessary Skills 1.2 Scope of Coverage 1.3 Overview 1.4 This Book’s Organization, by Chapter 1.5 An Introduction to the Example 1.6 Typographical and Formatting Conventions 2A IBM SPSS Statistics Processes for PC 2.1 The Mouse 2.2 The Taskbar and Start Menu 2.3 Common Buttons 2.4 The Data and Other Commonly Used Windows 2.5 The Open Data File Dialog Window 2.6 The Output Window 2.7 Modifying or Rearranging Tables 2.8 Printing or Exporting Output 2.9 The “Options” Option: Changing the Formats 2B IBM SPSS Statistics Processes for Mac 2.1 Selecting 2.2 The Desktop, Dock, and Application Folder 2.3 Common Buttons 2.4 The Data and Other Commonly used Windows 2.5 The Open Data File Dialog Window 2.6 The Output Window 2.7 Modifying or Rearranging Tables 2.8 Printing or Exporting Output 2.9 The “Options&” Option: Changing the Formats 3 Creating and Editing a Data File 3.1 Research Concerns and Structure of the Data File 3.2 Step by Step 3.3 Entering Data 3.4 Editing Data 3.5 Grades.sav: The Sample Data File Exercises 4 Managing Data 4.1 Step By Step: Manipulation of Data 4.2 The Case Summaries Procedure 4.3 The Replace Missing Values Procedure 4.4 The Compute Procedure: Creating New Variables 4.5 Recoding Variables 4.6 The Select Cases Option 4.7 The Sort Cases Procedure 4.8 Merging Files Adding Blocks of Variables or Cases 4.9 Printing Results Exercises 5 Graphs and Charts: Creating and Editing 5.1 Comparison of the Two Graphs Options 5.2 Types of Graphs Described 5.3 The Sample Graph 5.4 Producing Graphs and Charts 5.5 Bugs 5.6 Specific Graphs Summarized 5.7 Printing Results Exercises 6 Frequencies 6.1 Frequencies 6.2 Bar Charts 6.3 Histograms 6.4 Percentiles 6.5 Step by Step 6.6 Printing Results 6.7 Output Exercises 7 Descriptive Statistics 7.1 Statistical Significance 7.2 The Normal Distribution 7.3 Measures of Central Tendency 7.4 Measures of Variability Around the Mean 7.5 Measures of Deviation from Normality 7.6 Measures for Size of the Distribution 7.7 Measures of Stability: Standard Error 7.8 Step by Step 7.9 Printing Results 7.10 Output Exercises 8 Crosstabulation and χ2 Analyses 8.1 Crosstabulation 8.2 Chi-Square (χ2) Tests of Independence 8.3 Step by Step 8.4 Weight Cases Procedure: Simplified Data Setup 8.5 Printing Results 8.6 Output Exercises 9 The Means Procedure 9.1 Step by Step 9.2 Printing Results 9.3 Output Exercises 10 Bivariate Correlation 10.1 What is a Correlation? 10.2 Additional Considerations 10.3 Step by Step 10.4 Printing Results 10.5 Output Exercises 11 The t Test Procedure 11.1 Independent-Samples t Tests 11.2 Paired-Samples t Tests 11.3 One-Sample t Tests 11.4 Significance and Effect Size 11.5 Step by Step 11.6 Printing Results 11.7 Output Exercises 12 The One-Way ANOVA Procedure 12.1 Introduction to One-Way Analysis of Variance 12.2 Step by Step 12.3 Printing Results 12.4 Output Exercises 13 General Linear Model: Two-Way ANOVA 13.1 Statistical Power 13.2 Two-Way Analysis of Variance 13.3 Step by Step 13.4 Printing Results 13.5 Output Exercises 14 General Linear Model: Three-Way ANOVA 14.1 Three-Way Analysis of Variance 14.2 The Influence of Covariates 14.3 Step by Step 14.4 Printing Results 14.5 Output 14.6 A Three-Way Anova that Includes a Covariate Exercises 15 Simple Linear Regression 15.1 Predicted Values and the Regression Equation 15.2 Simple Regression and the Amount of Variance Explained 15.3 Testing for a Curvilinear Relationship 15.4 Step by Step 15.5 Printing Results 15.6 Output 15.7 A Regression Analysis that Tests for a Curvilinear Trend Exercises 16 Multiple Regression Analysis 16.1 The Regression Equation 16.2 Regression And R2: The Amount of Variance Explained 16.3 Curvilinear Trends, Model Building, and References 16.4 Step by Step 16.5 Printing Results 16.6 Output 16.7 Change of Values as Each new Variable is Added Exercises 17 Nonparametric Procedures 17.1 Step by Step 17.2 Are Observed Values Distributed Differently than a Hypothesized Distribution? 17.3 Is the Order of Observed Values Non-Random? 17.4 Is a Continuous Variable Different in Different Groups? 17.5 Are the Medians of a Variable Different for Different Groups? 17.6 Are My Within-Subjects (Dependent Samples or Repeated Measures) Measurements Different? 17.7 Printing Results 18 Reliability Analysis 18.1 Coefficient Alpha (α) 18.2 Split-Half Reliability 18.3 The Example 18.4 Step by Step 18.5 Printing Results 18.6 Output Exercises 19 Multidimensional Scaling 19.1 Square Asymmetrical Matrixes (The Sociogram Example) 19.2 Step by Step 19.3 Printing Results 19.4 Output 20 Factor Analysis 20.1 Create a Correlation Matrix 20.2 Factor Extraction 20.3 Factor Selection and Rotation 20.4 Interpretation 20.5 Step by Step 20.6 Output 21 Cluster Analysis 21.1 Cluster Analysis and Factor Analysis Contrasted 21.2 Procedures for Conducting Cluster Analysis 21.3 Step by Step 21.4 Printing Results 21.5 Output 22 Discriminant Analysis 22.1 The Example: Admission into a Graduate Program 22.2 The Steps Used in Discriminant Analysis 22.3 Step by Step 22.4 Output 23 General Linear Models: MANOVA and MANCOVA 23.1 Step by Step 23.2 Printing Results 23.3 Output Exercises 24 G.L.M.: Repeated-Measures Measures MANOVA 24.1 Step by Step 24.2 Printing Results 24.3 Output Exercises 25 Logistic Regression 25.1 Step by Step 25.2 Printing Results 25.3 Output 26 Hierarchical Log-Linear Models 26.1 Log-Linear Models 26.2 The Model Selection Log-Linear Procedure 26.3 Step by Step 26.4 Printing Results 26.5 Output 27 Nonhierarchical Log-Linear Models 27.1 Models 27.2 A Few Words about Model Selection 27.3 Types of Models Beyond the Scope of This Chapter 27.4 Step by Step 27.5 Printing Results 27.6 Output 28 Residuals: Analyzing Left-Over Variance 28.1 Residuals 28.2 Linear Regression: A Case Study 28.3 General Log-Linear Models: A Case Study 28.4 Accessing Residuals in SPSS Data Files Glossary References Credit Index