دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Hiroyuki Fujiwara (editor)
سری:
ISBN (شابک) : 3527347291, 9783527347292
ناشر: Wiley-VCH
سال نشر: 2021
تعداد صفحات: 606
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Hybrid Perovskite Solar Cells: Characteristics and Operation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سلول های خورشیدی پروسکایت هیبریدی: ویژگی ها و عملکرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Contents Preface About the Editor Chapter 1 Introduction 1.1 Hybrid Perovskite Solar Cells 1.2 Unique Natures of Hybrid Perovskites 1.2.1 Notable Characteristics of Hybrid Perovskites 1.2.2 Fundamental Properties of MAPbI3 1.2.3 Why Hybrid Perovskite Solar Cells Show High Efficiency? 1.3 Advantages of Hybrid Perovskite Solar Cells 1.3.1 Band Gap Tunability 1.3.2 High Voc 1.3.3 Low Temperature Coefficient 1.4 Challenges for Hybrid Perovskites 1.4.1 Requirement of Improved Stability 1.4.2 Large‐Area Solar Cells 1.4.3 Toxicity of Pb and Sn Compounds 1.5 Overview of this Book Acknowledgment References Chapter 2 Overview of Hybrid Perovskite Solar Cells 2.1 Introduction 2.2 Historical Backgrounds of Halide Perovskite Photovoltaics 2.3 Semiconductor Properties of Organo Lead Halide Perovskites 2.4 Working Principle of Perovskite Photovoltaics 2.5 Compositional Design of the Halide Perovskite Absorbers 2.6 Strategy for Stabilizing Perovskite Solar Cells 2.7 All Inorganic and Lead‐Free Perovskites 2.8 Development of High‐Efficiency Tandem Solar Cells 2.9 Conclusion and Perspectives References Part I Characteristics of Hybrid Perovskites Chapter 3 Crystal Structures 3.1 What Is Hybrid Perovskite? 3.2 Structures of Hybrid Perovskite Crystals 3.2.1 Crystal Structure of MAPbI3 3.2.2 Lattice Parameters of Hybrid Perovskites 3.2.3 Secondary Phase Materials 3.3 Tolerance Factor 3.3.1 Tolerance Factor of Hybrid Perovskites 3.3.2 Tolerance Factor of Mixed‐Cation Perovskites 3.4 Phase Change by Temperature 3.5 Refined Structures of Hybrid Perovskites 3.5.1 Orientation of Center Cations 3.5.2 Relaxation of Center Cations Acknowledgment References Chapter 4 Optical Properties 4.1 Introduction 4.2 Light Absorption in MAPbI3 4.2.1 Visible/UV Region 4.2.2 IR Region 4.2.3 THz Region 4.3 Band Gap of Hybrid Perovskites 4.3.1 Band Gap Analysis of MAPbI3 4.3.2 Band Gap of Basic Perovskites 4.3.3 Band Gap Variation in Perovskite Alloys 4.4 True Absorption Coefficient of MAPbI3 4.4.1 Principles of Optical Measurements 4.4.2 Interpretation of α Variation 4.5 Universal Rules for Hybrid Perovskite Optical Properties 4.5.1 Variation with Center Cation 4.5.2 Variation with Halide Anion 4.6 Subgap Absorption Characteristics 4.7 Temperature Effect on Absorption Properties 4.8 Excitonic Properties of Hybrid Perovskites References Chapter 5 Physical Properties Determined by Density Functional Theory 5.1 Introduction 5.2 What Is DFT? 5.2.1 Basic Principles 5.2.2 Assumptions and Limitations 5.3 Crystal Structures Determined by DFT 5.3.1 Hybrid Perovskite Structures 5.3.2 Organic‐Center Cations 5.4 Band Structures 5.4.1 Band Structures of Hybrid Perovskites 5.4.2 Direct–Indirect Issue of Hybrid Perovskite 5.4.3 Density of States 5.4.4 Effective Mass 5.5 Band Gap 5.5.1 What Determines Band Gap? 5.5.2 Effect of Center Cation 5.5.3 Effect of Halide Anion 5.6 Defect Physics Acknowledgment References Chapter 6 Carrier Transport Properties 6.1 Introduction 6.2 Carrier Properties of Hybrid Perovskites 6.2.1 Self‐Doping in Hybrid Perovskites 6.2.2 Effect of Carrier Concentration on Mobility 6.3 Carrier Mobility of MAPbI3 6.3.1 Variation of Mobility with Characterization Method 6.3.2 Temperature Dependence 6.3.3 Effect of Effective Mass 6.3.4 What Determines Maximum Mobility of MAPbI3? 6.4 Diffusion Length 6.5 Carrier Transport in Various Hybrid Perovskites References Chapter 7 Ferroelectric Properties 7.1 On the Importance of Ferroelectricity in Hybrid Perovskite Solar Cells 7.2 Ferroelectricity 7.2.1 Crystallographic Considerations 7.2.2 Ferroelectricity in Thin Films 7.2.3 Crystallography of MAPbI3 Thin Films 7.3 Probing Ferroelectricity on the Microscale 7.3.1 Atomic Force Microscopy 7.3.2 Piezoresponse Force Microscopy 7.3.3 Characterization of MAPbI3 Thin Films with sf‐PFM 7.3.4 Correlative Domain Characterization 7.3.4.1 Transmission Electron Microscopy 7.3.4.2 X‐ray Diffraction 7.3.4.3 Electron Backscatter Diffraction 7.3.4.4 Kelvin Probe Force Microscopy 7.3.5 Polarization Orientation 7.3.6 Ferroelastic Effects in MAPbI3 Thin Films 7.4 Ferroelectric Poling of MAPbI3 7.4.1 AC Poling of MAPbI3 7.4.2 Creeping Poling and Switching Events on the Microscopic Scale 7.4.3 Macroscopic Effects of Poling 7.5 Impact of Ferroelectricity on the Performance of Solar Cells 7.5.1 Pitfalls During Sample Measurements 7.5.2 Charge Carrier Dynamics in Solar Cells References Chapter 8 Photoluminescence Properties 8.1 Introduction 8.2 Overview of Luminescent Properties 8.3 Room‐Temperature PL Spectra of a Hybrid Perovskite Thin Film 8.4 Time‐Resolved PL of a Hybrid Perovskite 8.5 PL Quantum Efficiency 8.6 Temperature‐Dependent PL 8.7 Material and Device Characterization by PL Spectroscopy 8.7.1 Degradation and Healing of Hybrid Perovskites 8.7.2 Charge Transfer Mechanism in Perovskite Solar Cell 8.8 Conclusion Acknowledgment References Chapter 9 Role of Grain Boundaries 9.1 Introduction 9.2 Role of Grain Boundaries in Device Performance 9.2.1 Potential Barrier at GBs and Charge Transport 9.2.2 Engineering of GB Properties 9.3 Ion Migration Through Grain Boundaries 9.3.1 Enhanced Ion Transport at Grain Boundaries 9.3.2 Role of GBs for Ion Migration 9.4 Role of Grain Boundaries in Stability 9.4.1 MAPbI3 Hydrated Phase at GBs 9.4.2 Formation of Non‐perovskite Phase at GBs of FAPbI3 References Chapter 10 Roles of Center Cations 10.1 Introduction 10.2 Cubic Perovskite Phase Tolerance Factor 10.3 Thin Film Stability 10.4 Optoelectronic Property Variations 10.5 Solar Cell Performance References Part II Hybrid Perovskite Solar Cells Chapter 11 Operational Principles of Hybrid Perovskite Solar Cells 11.1 Introduction 11.2 Operation of Hybrid Perovskite Solar Cells 11.2.1 Operational Principle and Basic Structures 11.2.2 Band Alignment 11.3 Band Diagram of Hybrid Perovskite Solar Cells 11.3.1 Device Simulation 11.3.2 Experimental Observation 11.4 Refined Analyses of Hybrid Perovskite Solar Cells 11.4.1 Carrier Generation and Loss 11.4.2 Power Loss Mechanism 11.4.3 e‐ARC Software 11.5 What Determines Voc? 11.5.1 Effect of Interface 11.5.2 Effect of Passivation 11.5.3 Effect of Grain Boundary References Chapter 12 Efficiency Limits of Single and Tandem Solar Cells 12.1 Introduction 12.2 What Is the SQ Limit? 12.2.1 Physical Model 12.2.2 Blackbody Radiation 12.2.3 SQ Limit 12.3 Maximum Efficiencies of Perovskite Single Cells 12.3.1 Concept of Thin‐Film Limit 12.3.2 EQE Calculation Method 12.3.3 Maximum Efficiencies of Single Solar Cells 12.3.4 Performance‐Limiting Factors of Hybrid Perovskite Devices 12.4 Maximum Efficiency of Tandem Cells 12.4.1 Optical Model and Assumptions 12.4.2 Calculation of Tandem‐Cell EQE Spectra 12.4.3 Maximum Efficiencies of Tandem Devices 12.4.4 Realistic Maximum Efficiency of Tandem Cell 12.5 Free Software for Efficiency Limit Calculation References Chapter 13 Multi‐cation Hybrid Perovskite Solar Cells 13.1 Introduction 13.2 Types of A‐Site Multi‐cation Hybrid Perovskite Solar Cells 13.2.1 Pb‐Based Multi‐cation Hybrid Perovskite Solar Cells 13.2.2 Sn‐Based Multi‐cation Hybrid Perovskite Solar Cells 13.3 Cation Selection in Mixed‐Cation Hybrid Perovskite Solar Cells 13.3.1 Organic A‐Cations 13.3.2 Inorganic A‐Cations 13.4 Fabrication of Mixed‐Cation Hybrid Perovskite Solar Cells 13.4.1 Traditional Fabrication Approach 13.4.2 Emerging Fabrication Technologies 13.5 Charge Transport Materials 13.6 Surface Passivation 13.7 Mixed B‐Cation Hybrid Organic–Inorganic Perovskite Solar Cells 13.8 Basic Characterization of Mixed‐Cation Hybrid Perovskite Solar Cells References Chapter 14 Tin Halide Perovskite Solar Cells 14.1 Introduction 14.1.1 Device Structure and Operating Principle 14.1.2 Crystal Structure 14.2 Tin Perovskite Solar Cells 14.2.1 Intrinsic Properties 14.2.2 Carrier Lifetime and Diffusion Length 14.3 The Status of Sn Perovskite Solar Cells 14.3.1 Different Type of Sn Perovskite Solar Cells 14.3.1.1 CsSnI3 14.3.1.2 MASnI3 14.3.1.3 FASnI3 14.3.1.4 FAxMA1−xSnI3 14.3.1.5 2D/3D FASnI3 14.3.1.6 Sn–Ge mixed PSCs 14.3.2 Strategies to Improve the Efficiency 14.3.2.1 Film Fabrication Methods 14.3.2.2 Use of Reducing Agents 14.3.2.3 Doping Effect of Large Organic Cations 14.3.2.4 Device Engineering and Lattice Relaxation 14.4 Sn–Pb Perovskite Solar Cells 14.4.1 Anomalous Bandgap of SnPb (The Bowing Effect) 14.4.2 Physical Properties 14.4.2.1 Intrinsic Carrier Concentration 14.4.2.2 Carrier Lifetime and Diffusion Length 14.5 The Status of Sn–Pb Perovskite Solar Cells 14.5.1 Different Types of Sn–Pb Perovskite Solar Cells 14.5.1.1 First Kind of Sn–Pb PSC absorber: MASnxPb1−xI3 14.5.1.2 Multi Cation Sn–Pb Perovskites: (FA, MA, Cs) (Sn, Pb) (I, Br, Cl)3 14.5.2 Strategies to Improve the Efficiency 14.5.2.1 Use of Additives 14.5.2.2 Device Engineering 14.6 Conclusion and Outlook References Chapter 15 Stability of Hybrid Perovskite Solar Cells 15.1 Introduction: Trigger of the Degradation 15.2 Crystal Quality for Stable Perovskite Solar Cells 15.3 Water‐Stable and MA‐Free Perovskites 15.4 Defects and Grain‐Surface Ion Migration, and Passivation (Including 2‐D Crystal) 15.5 Degradation at Interface with Metal Oxides 15.6 Porous Carbon Electrode to Be Very Stable Multiporous‐Layered‐Electrode Perovskite Solar Cells (MPLE‐PSC) 15.7 Damp Heat Tests 15.8 Conclusion References Chapter 16 Hysteresis in J–V Characteristics 16.1 Introduction and Definitions: What Do We Mean by Hysteresis? 16.2 The JV Curve of a Solar Cell: What Does It Tell? 16.3 Characteristics of Hysteresis: What Does It Depend on? 16.4 Mechanistic and Microscopic Origin of Hysteresis: What Changes Slowly? 16.5 Issues with Hysteresis: How to Tune/Avoid/Suppress? 16.6 Conclusion and Open Questions References Chapter 17 Perovskite‐Based Tandem Solar Cells 17.1 Introduction 17.2 Architectures of Tandem Solar Cells 17.2.1 Monolithic Two‐Terminal Solar Cells 17.2.2 Four‐Terminal Tandem Solar Cells 17.2.3 Other Concepts 17.2.4 Bifacial Solar Cells 17.3 Efficiency Limits of Multi‐Junction Solar Cells 17.3.1 Efficiency Limit for Four‐Terminal Tandem Solar Cells 17.3.2 Efficiency Limit for Two‐Terminal Tandem Solar Cells 17.3.3 Efficiency Limit for Cells with More Junctions 17.4 Perovskites as Tandem Solar Cell Materials 17.5 Experimental Results on Perovskite‐Based Tandem Solar Cells 17.5.1 Perovskite/Silicon Tandem Solar Cells 17.5.2 Perovskite‐Chalcogenide Tandem Solar Cells 17.6 Energy Yield Calculations 17.6.1 Illumination Model 17.6.2 Optical Model 17.6.3 Electrical Model 17.6.4 Temperature Model 17.6.5 Energy Yield Calculation 17.7 Conclusions and Outlook Acknowledgments References Chapter 18 All Perovskite Tandem Solar Cells 18.1 Introduction 18.2 Working Principles of Tandem Solar Cells 18.2.1 Why to Use Tandem Solar Cells 18.2.2 Tandem Device Architectures 18.2.3 PCE of Tandem Solar Cells 18.3 Wide‐Bandgap Perovskite Solar Cells 18.3.1 Wide‐Bandgap Mixed I‐Br Perovskites 18.3.2 Current State of Wide‐Bandgap Perovskite Solar Cells 18.3.3 Critical Issues of Wide‐Bandgap Perovskite Cells 18.4 Low‐Bandgap Perovskite Solar Cells 18.4.1 Low‐Bandgap Mixed Sn‐Pb Perovskites 18.4.2 Current State of Low‐Bandgap Perovskite Solar Cells 18.4.3 Critical Issues of Low‐Bandgap Perovskite Cells 18.5 All‐Perovskite Tandem Solar Cells 18.5.1 4‐T All‐Perovskite Tandem Solar Cells 18.5.2 2‐T All‐Perovskite Tandem Solar Cells 18.5.3 Limitations and Challenges of All‐Perovskite Tandem Solar Cells 18.6 Conclusion and Outlooks Acknowledgments References A Optical Constants of Hybrid Perovskite Materials References B Numerical Values of Shockley–Queisser Limit Index EULA