ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Hybrid Perovskite Solar Cells: Characteristics and Operation

دانلود کتاب سلول های خورشیدی پروسکایت هیبریدی: ویژگی ها و عملکرد

Hybrid Perovskite Solar Cells: Characteristics and Operation

مشخصات کتاب

Hybrid Perovskite Solar Cells: Characteristics and Operation

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 3527347291, 9783527347292 
ناشر: Wiley-VCH 
سال نشر: 2021 
تعداد صفحات: 606 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 مگابایت 

قیمت کتاب (تومان) : 38,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Hybrid Perovskite Solar Cells: Characteristics and Operation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سلول های خورشیدی پروسکایت هیبریدی: ویژگی ها و عملکرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright
Contents
Preface
About the Editor
Chapter 1 Introduction
	1.1 Hybrid Perovskite Solar Cells
	1.2 Unique Natures of Hybrid Perovskites
		1.2.1 Notable Characteristics of Hybrid Perovskites
		1.2.2 Fundamental Properties of MAPbI3
		1.2.3 Why Hybrid Perovskite Solar Cells Show High Efficiency?
	1.3 Advantages of Hybrid Perovskite Solar Cells
		1.3.1 Band Gap Tunability
		1.3.2 High Voc
		1.3.3 Low Temperature Coefficient
	1.4 Challenges for Hybrid Perovskites
		1.4.1 Requirement of Improved Stability
		1.4.2 Large‐Area Solar Cells
		1.4.3 Toxicity of Pb and Sn Compounds
	1.5 Overview of this Book
	Acknowledgment
	References
Chapter 2 Overview of Hybrid Perovskite Solar Cells
	2.1 Introduction
	2.2 Historical Backgrounds of Halide Perovskite Photovoltaics
	2.3 Semiconductor Properties of Organo Lead Halide Perovskites
	2.4 Working Principle of Perovskite Photovoltaics
	2.5 Compositional Design of the Halide Perovskite Absorbers
	2.6 Strategy for Stabilizing Perovskite Solar Cells
	2.7 All Inorganic and Lead‐Free Perovskites
	2.8 Development of High‐Efficiency Tandem Solar Cells
	2.9 Conclusion and Perspectives
	References
Part I Characteristics of Hybrid Perovskites
	Chapter 3 Crystal Structures
		3.1 What Is Hybrid Perovskite?
		3.2 Structures of Hybrid Perovskite Crystals
			3.2.1 Crystal Structure of MAPbI3
			3.2.2 Lattice Parameters of Hybrid Perovskites
			3.2.3 Secondary Phase Materials
		3.3 Tolerance Factor
			3.3.1 Tolerance Factor of Hybrid Perovskites
			3.3.2 Tolerance Factor of Mixed‐Cation Perovskites
		3.4 Phase Change by Temperature
		3.5 Refined Structures of Hybrid Perovskites
			3.5.1 Orientation of Center Cations
			3.5.2 Relaxation of Center Cations
		Acknowledgment
		References
	Chapter 4 Optical Properties
		4.1 Introduction
		4.2 Light Absorption in MAPbI3
			4.2.1 Visible/UV Region
			4.2.2 IR Region
			4.2.3 THz Region
		4.3 Band Gap of Hybrid Perovskites
			4.3.1 Band Gap Analysis of MAPbI3
			4.3.2 Band Gap of Basic Perovskites
			4.3.3 Band Gap Variation in Perovskite Alloys
		4.4 True Absorption Coefficient of MAPbI3
			4.4.1 Principles of Optical Measurements
			4.4.2 Interpretation of α Variation
		4.5 Universal Rules for Hybrid Perovskite Optical Properties
			4.5.1 Variation with Center Cation
			4.5.2 Variation with Halide Anion
		4.6 Subgap Absorption Characteristics
		4.7 Temperature Effect on Absorption Properties
		4.8 Excitonic Properties of Hybrid Perovskites
		References
	Chapter 5 Physical Properties Determined by Density Functional Theory
		5.1 Introduction
		5.2 What Is DFT?
			5.2.1 Basic Principles
			5.2.2 Assumptions and Limitations
		5.3 Crystal Structures Determined by DFT
			5.3.1 Hybrid Perovskite Structures
			5.3.2 Organic‐Center Cations
		5.4 Band Structures
			5.4.1 Band Structures of Hybrid Perovskites
			5.4.2 Direct–Indirect Issue of Hybrid Perovskite
			5.4.3 Density of States
			5.4.4 Effective Mass
		5.5 Band Gap
			5.5.1 What Determines Band Gap?
			5.5.2 Effect of Center Cation
			5.5.3 Effect of Halide Anion
		5.6 Defect Physics
		Acknowledgment
		References
	Chapter 6 Carrier Transport Properties
		6.1 Introduction
		6.2 Carrier Properties of Hybrid Perovskites
			6.2.1 Self‐Doping in Hybrid Perovskites
			6.2.2 Effect of Carrier Concentration on Mobility
		6.3 Carrier Mobility of MAPbI3
			6.3.1 Variation of Mobility with Characterization Method
			6.3.2 Temperature Dependence
			6.3.3 Effect of Effective Mass
			6.3.4 What Determines Maximum Mobility of MAPbI3?
		6.4 Diffusion Length
		6.5 Carrier Transport in Various Hybrid Perovskites
		References
	Chapter 7 Ferroelectric Properties
		7.1 On the Importance of Ferroelectricity in Hybrid Perovskite Solar Cells
		7.2 Ferroelectricity
			7.2.1 Crystallographic Considerations
			7.2.2 Ferroelectricity in Thin Films
			7.2.3 Crystallography of MAPbI3 Thin Films
		7.3 Probing Ferroelectricity on the Microscale
			7.3.1 Atomic Force Microscopy
			7.3.2 Piezoresponse Force Microscopy
			7.3.3 Characterization of MAPbI3 Thin Films with sf‐PFM
			7.3.4 Correlative Domain Characterization
				7.3.4.1 Transmission Electron Microscopy
				7.3.4.2 X‐ray Diffraction
				7.3.4.3 Electron Backscatter Diffraction
				7.3.4.4 Kelvin Probe Force Microscopy
			7.3.5 Polarization Orientation
			7.3.6 Ferroelastic Effects in MAPbI3 Thin Films
		7.4 Ferroelectric Poling of MAPbI3
			7.4.1 AC Poling of MAPbI3
			7.4.2 Creeping Poling and Switching Events on the Microscopic Scale
			7.4.3 Macroscopic Effects of Poling
		7.5 Impact of Ferroelectricity on the Performance of Solar Cells
			7.5.1 Pitfalls During Sample Measurements
			7.5.2 Charge Carrier Dynamics in Solar Cells
		References
	Chapter 8 Photoluminescence Properties
		8.1 Introduction
		8.2 Overview of Luminescent Properties
		8.3 Room‐Temperature PL Spectra of a Hybrid Perovskite Thin Film
		8.4 Time‐Resolved PL of a Hybrid Perovskite
		8.5 PL Quantum Efficiency
		8.6 Temperature‐Dependent PL
		8.7 Material and Device Characterization by PL Spectroscopy
			8.7.1 Degradation and Healing of Hybrid Perovskites
			8.7.2 Charge Transfer Mechanism in Perovskite Solar Cell
		8.8 Conclusion
		Acknowledgment
		References
	Chapter 9 Role of Grain Boundaries
		9.1 Introduction
		9.2 Role of Grain Boundaries in Device Performance
			9.2.1 Potential Barrier at GBs and Charge Transport
			9.2.2 Engineering of GB Properties
		9.3 Ion Migration Through Grain Boundaries
			9.3.1 Enhanced Ion Transport at Grain Boundaries
			9.3.2 Role of GBs for Ion Migration
		9.4 Role of Grain Boundaries in Stability
			9.4.1 MAPbI3 Hydrated Phase at GBs
			9.4.2 Formation of Non‐perovskite Phase at GBs of FAPbI3
		References
	Chapter 10 Roles of Center Cations
		10.1 Introduction
		10.2 Cubic Perovskite Phase Tolerance Factor
		10.3 Thin Film Stability
		10.4 Optoelectronic Property Variations
		10.5 Solar Cell Performance
		References
Part II Hybrid Perovskite Solar Cells
	Chapter 11 Operational Principles of Hybrid Perovskite Solar Cells
		11.1 Introduction
		11.2 Operation of Hybrid Perovskite Solar Cells
			11.2.1 Operational Principle and Basic Structures
			11.2.2 Band Alignment
		11.3 Band Diagram of Hybrid Perovskite Solar Cells
			11.3.1 Device Simulation
			11.3.2 Experimental Observation
		11.4 Refined Analyses of Hybrid Perovskite Solar Cells
			11.4.1 Carrier Generation and Loss
			11.4.2 Power Loss Mechanism
			11.4.3 e‐ARC Software
		11.5 What Determines Voc?
			11.5.1 Effect of Interface
			11.5.2 Effect of Passivation
			11.5.3 Effect of Grain Boundary
		References
	Chapter 12 Efficiency Limits of Single and Tandem Solar Cells
		12.1 Introduction
		12.2 What Is the SQ Limit?
			12.2.1 Physical Model
			12.2.2 Blackbody Radiation
			12.2.3 SQ Limit
		12.3 Maximum Efficiencies of Perovskite Single Cells
			12.3.1 Concept of Thin‐Film Limit
			12.3.2 EQE Calculation Method
			12.3.3 Maximum Efficiencies of Single Solar Cells
			12.3.4 Performance‐Limiting Factors of Hybrid Perovskite Devices
		12.4 Maximum Efficiency of Tandem Cells
			12.4.1 Optical Model and Assumptions
			12.4.2 Calculation of Tandem‐Cell EQE Spectra
			12.4.3 Maximum Efficiencies of Tandem Devices
			12.4.4 Realistic Maximum Efficiency of Tandem Cell
		12.5 Free Software for Efficiency Limit Calculation
		References
	Chapter 13 Multi‐cation Hybrid Perovskite Solar Cells
		13.1 Introduction
		13.2 Types of A‐Site Multi‐cation Hybrid Perovskite Solar Cells
			13.2.1 Pb‐Based Multi‐cation Hybrid Perovskite Solar Cells
			13.2.2 Sn‐Based Multi‐cation Hybrid Perovskite Solar Cells
		13.3 Cation Selection in Mixed‐Cation Hybrid Perovskite Solar Cells
			13.3.1 Organic A‐Cations
			13.3.2 Inorganic A‐Cations
		13.4 Fabrication of Mixed‐Cation Hybrid Perovskite Solar Cells
			13.4.1 Traditional Fabrication Approach
			13.4.2 Emerging Fabrication Technologies
		13.5 Charge Transport Materials
		13.6 Surface Passivation
		13.7 Mixed B‐Cation Hybrid Organic–Inorganic Perovskite Solar Cells
		13.8 Basic Characterization of Mixed‐Cation Hybrid Perovskite Solar Cells
		References
	Chapter 14 Tin Halide Perovskite Solar Cells
		14.1 Introduction
			14.1.1 Device Structure and Operating Principle
			14.1.2 Crystal Structure
		14.2 Tin Perovskite Solar Cells
			14.2.1 Intrinsic Properties
			14.2.2 Carrier Lifetime and Diffusion Length
		14.3 The Status of Sn Perovskite Solar Cells
			14.3.1 Different Type of Sn Perovskite Solar Cells
				14.3.1.1 CsSnI3
				14.3.1.2 MASnI3
				14.3.1.3 FASnI3
				14.3.1.4 FAxMA1−xSnI3
				14.3.1.5 2D/3D FASnI3
				14.3.1.6 Sn–Ge mixed PSCs
			14.3.2 Strategies to Improve the Efficiency
				14.3.2.1 Film Fabrication Methods
				14.3.2.2 Use of Reducing Agents
				14.3.2.3 Doping Effect of Large Organic Cations
				14.3.2.4 Device Engineering and Lattice Relaxation
		14.4 Sn–Pb Perovskite Solar Cells
			14.4.1 Anomalous Bandgap of SnPb (The Bowing Effect)
			14.4.2 Physical Properties
				14.4.2.1 Intrinsic Carrier Concentration
				14.4.2.2 Carrier Lifetime and Diffusion Length
		14.5 The Status of Sn–Pb Perovskite Solar Cells
			14.5.1 Different Types of Sn–Pb Perovskite Solar Cells
				14.5.1.1 First Kind of Sn–Pb PSC absorber: MASnxPb1−xI3
				14.5.1.2 Multi Cation Sn–Pb Perovskites: (FA, MA, Cs) (Sn, Pb) (I, Br, Cl)3
			14.5.2 Strategies to Improve the Efficiency
				14.5.2.1 Use of Additives
				14.5.2.2 Device Engineering
		14.6 Conclusion and Outlook
		References
	Chapter 15 Stability of Hybrid Perovskite Solar Cells
		15.1 Introduction: Trigger of the Degradation
		15.2 Crystal Quality for Stable Perovskite Solar Cells
		15.3 Water‐Stable and MA‐Free Perovskites
		15.4 Defects and Grain‐Surface Ion Migration, and Passivation (Including 2‐D Crystal)
		15.5 Degradation at Interface with Metal Oxides
		15.6 Porous Carbon Electrode to Be Very Stable Multiporous‐Layered‐Electrode Perovskite Solar Cells (MPLE‐PSC)
		15.7 Damp Heat Tests
		15.8 Conclusion
		References
	Chapter 16 Hysteresis in J–V Characteristics
		16.1 Introduction and Definitions: What Do We Mean by Hysteresis?
		16.2 The JV Curve of a Solar Cell: What Does It Tell?
		16.3 Characteristics of Hysteresis: What Does It Depend on?
		16.4 Mechanistic and Microscopic Origin of Hysteresis: What Changes Slowly?
		16.5 Issues with Hysteresis: How to Tune/Avoid/Suppress?
		16.6 Conclusion and Open Questions
		References
	Chapter 17 Perovskite‐Based Tandem Solar Cells
		17.1 Introduction
		17.2 Architectures of Tandem Solar Cells
			17.2.1 Monolithic Two‐Terminal Solar Cells
			17.2.2 Four‐Terminal Tandem Solar Cells
			17.2.3 Other Concepts
			17.2.4 Bifacial Solar Cells
		17.3 Efficiency Limits of Multi‐Junction Solar Cells
			17.3.1 Efficiency Limit for Four‐Terminal Tandem Solar Cells
			17.3.2 Efficiency Limit for Two‐Terminal Tandem Solar Cells
			17.3.3 Efficiency Limit for Cells with More Junctions
		17.4 Perovskites as Tandem Solar Cell Materials
		17.5 Experimental Results on Perovskite‐Based Tandem Solar Cells
			17.5.1 Perovskite/Silicon Tandem Solar Cells
			17.5.2 Perovskite‐Chalcogenide Tandem Solar Cells
		17.6 Energy Yield Calculations
			17.6.1 Illumination Model
			17.6.2 Optical Model
			17.6.3 Electrical Model
			17.6.4 Temperature Model
			17.6.5 Energy Yield Calculation
		17.7 Conclusions and Outlook
		Acknowledgments
		References
	Chapter 18 All Perovskite Tandem Solar Cells
		18.1 Introduction
		18.2 Working Principles of Tandem Solar Cells
			18.2.1 Why to Use Tandem Solar Cells
			18.2.2 Tandem Device Architectures
			18.2.3 PCE of Tandem Solar Cells
		18.3 Wide‐Bandgap Perovskite Solar Cells
			18.3.1 Wide‐Bandgap Mixed I‐Br Perovskites
			18.3.2 Current State of Wide‐Bandgap Perovskite Solar Cells
			18.3.3 Critical Issues of Wide‐Bandgap Perovskite Cells
		18.4 Low‐Bandgap Perovskite Solar Cells
			18.4.1 Low‐Bandgap Mixed Sn‐Pb Perovskites
			18.4.2 Current State of Low‐Bandgap Perovskite Solar Cells
			18.4.3 Critical Issues of Low‐Bandgap Perovskite Cells
		18.5 All‐Perovskite Tandem Solar Cells
			18.5.1 4‐T All‐Perovskite Tandem Solar Cells
			18.5.2 2‐T All‐Perovskite Tandem Solar Cells
			18.5.3 Limitations and Challenges of All‐Perovskite Tandem Solar Cells
		18.6 Conclusion and Outlooks
		Acknowledgments
		References
	A Optical Constants of Hybrid Perovskite Materials
		References
	B Numerical Values of Shockley–Queisser Limit
Index
EULA




نظرات کاربران