دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Russell J. Branaghan, Joseph S. O’Brian, Emily A. Hildebrand, L. Bryant Foster سری: ISBN (شابک) : 9783030644321, 9783030644338 ناشر: Springer Nature Switzerland سال نشر: 2021 تعداد صفحات: 411 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Humanizing Healthcare – Human Factors for Medical Device Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انسانی کردن مراقبت های بهداشتی - عوامل انسانی برای طراحی تجهیزات پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب اصول، رهنمودها و روش های طراحی مهندسی عوامل انسانی (HFE) را برای طراحی تجهیزات پزشکی معرفی می کند. با مروری بر توانایی ها و محدودیت های فیزیکی، ادراکی و شناختی و پیامدهای آنها برای طراحی شروع می شود. این تجزیه و تحلیل مجموعهای از اصول عوامل انسانی را تولید میکند که میتواند در بسیاری از چالشهای طراحی اعمال شود، که سپس در دستورالعملهایی برای طراحی کنترلهای ورودی، نمایشگرهای بصری، نمایشگرهای شنیداری (هشدارها، آلارمها، هشدارها) و تعامل انسان و رایانه اعمال میشوند. چالشها و راهحلهای خاص برای حوزههای مختلف دستگاههای پزشکی، مانند جراحی رباتیک، جراحی لاپاراسکوپی، اندامهای مصنوعی، پوشیدنیها، مانیتورهای مداوم گلوکز و پمپهای انسولین، و پردازش مجدد، مورد بحث قرار میگیرند. روشهای تحقیق و طراحی عوامل انسانی ارائه شده و در چرخه عمر طراحی عوامل انسانی ادغام میشوند، و بحثی در مورد الزامات و رویههای نظارتی ارائه میشود، از جمله راهنمایی در مورد اینکه چه فعالیتهای عوامل انسانی باید در چه زمانی انجام شوند و چگونه باید مستند شوند. این مرجع حرفه ای عملی یک مقدمه و منبع ضروری برای دانشجویان و پزشکان در HFE، مهندسی پزشکی، طراحی صنعتی، طراحی گرافیک، طراحی تجربه کاربر، مهندسی کیفیت، مدیریت محصول، و امور نظارتی است. به خوانندگان می آموزد که دستگاه های پزشکی ایمن تر، مؤثرتر و کمتر مستعد خطا طراحی کنند. نقش و مسئولیت های سازمان های نظارتی در طراحی تجهیزات پزشکی را توضیح می دهد. روش های تجزیه و تحلیل و تحقیق مانند UFMEA، تجزیه و تحلیل کار، ارزیابی اکتشافی و تست قابلیت استفاده را معرفی می کند.
This book introduces human factors engineering (HFE) principles, guidelines, and design methods for medical device design. It starts with an overview of physical, perceptual, and cognitive abilities and limitations, and their implications for design. This analysis produces a set of human factors principles that can be applied across many design challenges, which are then applied to guidelines for designing input controls, visual displays, auditory displays (alerts, alarms, warnings), and human-computer interaction. Specific challenges and solutions for various medical device domains, such as robotic surgery, laparoscopic surgery, artificial organs, wearables, continuous glucose monitors and insulin pumps, and reprocessing, are discussed. Human factors research and design methods are provided and integrated into a human factors design lifecycle, and a discussion of regulatory requirements and procedures is provided, including guidance on what human factors activities should be conducted when and how they should be documented. This hands-on professional reference is an essential introduction and resource for students and practitioners in HFE, biomedical engineering, industrial design, graphic design, user-experience design, quality engineering, product management, and regulatory affairs. Teaches readers to design medical devices that are safer, more effective, and less error prone; Explains the role and responsibilities of regulatory agencies in medical device design; Introduces analysis and research methods such as UFMEA, task analysis, heuristic evaluation, and usability testing.
Preface References Acknowledgments Abbreviations Contents About the Authors Chapter 1: Introduction 1.1 Medical Error 1.2 Medical Devices 1.3 What Is Human Factors Engineering? Goals of Human Factors Engineering What Human Factors Engineering Is Not Benefits of Human Factors Engineering Resources References Chapter 2: Qualitative Human Factors Research Methods 2.1 Human-Centered Design 2.2 Human Factors Research 2.3 Reliability and Validity 2.4 Selecting Research Participants 2.5 Ethical Standards 2.6 Literature Review 2.7 Case Study 2.8 Naturalistic Observation 2.9 Design Ethnography 2.10 Interviewing Structured Interview Semi-Structured Interview Unstructured Interviews Interview Questions Ensuring Interviews Are Productive 2.11 Focus Groups In-Person Focus Groups (Synchronous, Co-Located) Remote (Online) Focus Groups (Synchronous, Distributed) Bulletin Board (Online) Focus Groups (Asynchronous, Distributed) 2.12 Diary Studies 2.13 Critical Incident Technique 2.14 Participatory Design 2.15 Contextual Inquiry 2.16 Analyzing Qualitative Data Overview Task Analysis Swimlanes Journey Maps Scenarios User Profile Prototyping Resources References Chapter 3: Quantitative Human Factors Research 3.1 Questionnaires Likert Scale Semantic Differential Ranking Constant Sum 3.2 Biometric Research Eye Tracking Facial Expression Analysis (FEA) Galvanic Skin Response (GSR) Electroencephalography (EEG) Electrocardiography (ECG) 3.3 Correlational Research 3.4 Experiments The Two-Condition Experimental Design Multiple Condition Design Factorial Design Between Subjects and Within Subjects Designs 3.5 Analyzing Quantitative Data Central Tendency Dispersion Resources References Chapter 4: Usability Evaluation 4.1 Introduction 4.2 Usability Inspection Heuristic Evaluation Cognitive Walkthrough 4.3 Usability Testing What Is Usability Testing? Usability Study Tips and Pitfalls Seven Tips for a Successful Usability Test Top Seven Mistakes in Usability Test Categories of Usability Tests Components of a Usability Test Scenarios Tasks Subtasks What Is Measured in a Usability Test? How Many Participants Do You Need for a (Formative) Usability Test? Training Prior to Usability Testing Estimating Time Needs for a Usability Test Internal Pilot Testing Plan for Extra Time During Remote Usability Testing “It’s an Easy to Use System (I Swear)” Complicated Scenario Setups True Pilot Test Plan for the Worst, Hope for the Best The Iceberg Paradox Counterproductive Outlooks About Formative Usability Testing Resources References Chapter 5: Visual Perception 5.1 Information Processing 5.2 Bottom-Up and Top-Down Processes 5.3 Light Energy and the Eye 5.4 Rods, Cones, and Color Perception 5.5 Color Deficiency 5.6 Contrast 5.7 Image Size and Visual Angle 5.8 Visual Accommodation 5.9 Vision Problems 5.10 Aging and Vision 5.11 Central and Peripheral Vision 5.12 How Visual Perception Works 5.13 Attention’s Role in Visual Perception 5.14 Conspicuity 5.15 Context 5.16 Gestalt Psychology Figure-Ground Law of Pragnanz Proximity Continuity Closure Symmetry Similarity Common Region Familiarity 5.17 Information Structure Visual Hierarchies 5.18 Design Advice Based on Visual Perception Item Placement and Grouping Consistency Adhere to User Expectancies Redundant Coding Make Text Legible Contrast Make Sure Errors Capture the User’s Attention Color Resources References Chapter 6: Hearing 6.1 Introduction 6.2 What Is Sound? The Building Blocks of Sound Intensity Intensity vs. Loudness Decibels vs. Loudness Equal-Loudness Contour Sound Duration and Complexity Frequency and Pitch Frequency vs. Pitch Sound Intensity and Pitch The Doppler Effect Noisy Signals Timbre 6.3 How Do We Hear Sound? Outer Ear Middle Ear Inner Ear 6.4 Sound Localization 6.5 Hearing Impairments and Disorders Sensorineural Hearing Loss (SNHL) Conductive Hearing Loss (CHL) Auditory Processing Disorder (APD) Resources References Chapter 7: Cognition 7.1 Cognitive Resources 7.2 Attention Focused Attention Multitasking Sustained Attention 7.3 Memory Working Memory Capacity of WM Duration of WM WM and Attention Phonological Similarity Effect Serial Position Effect Prospective Memory Long-Term Memory Contextual Memory, Recognition and Recall Structure of Long-Term Memory Declarative vs. Procedural Knowledge Organization of Semantic Memory Categorization Knowledge in the World vs. Knowledge in the Head 7.4 Tips for Designers Resources References Chapter 8: Use-Error 8.1 Introduction 8.2 What Is the Cause of All of These Use-Errors? Size and Complexity Emphasizing Technology Over the User Feature Creep Assuming Users Will Become Experts Relying on Training Underestimating Environmental Challenges Failing to Design for the “Worst Case Scenario” Failing to Expect Use-Errors Underestimating User Diversity Expecting People to Multitask Overestimating User Capabilities and Motivation Failing to Involve Users Early in Design Excessive Reliance on Thought Leaders Lack of Focus on Human Factors 8.3 Slips Capture Slip Description Similarity Slip Mode Error Slip 8.4 Lapses 8.5 Mistakes 8.6 Root Cause Analysis 8.7 Hindsight Bias 8.8 Designing for Error Swiss Cheese Model Constraints Undo Sensibility Checks 8.9 Regulatory Considerations Resources References Chapter 9: Human Factors Regulations for Medical Devices 9.1 Human Factors Regulatory Guidelines 9.2 Human Factors Process for Medical Devices Step 1: Identify Users, Environments, and Critical Tasks Identify Device Users Device Use-Environment Device User Interfaces Known Use-Related Issues Critical Tasks Step 2: Formative Research and Design Process Formative Generative Research Formative Usability Research Step 3: Validation/Summative Usability Testing Preparing for Validation/Summative Usability Testing Participant Criteria for Validation/Summative Usability Testing Simulated Use-Environment Market-Ready Devices Participant Training Tasks Included in Validation Testing Data Collected Observational Data Knowledge Task Data Open-Ended Interview Data Analysis of Validation/Summative Usability Test Results How Many Use-Errors Will the FDA/Regulatory Agency Accept? Do We Have to Evaluate Tasks That Aren’t Critical? If So, Should Noncritical Task Results Be Included in the Report? How Do We Define Critical Tasks? How Realistic Does the Simulated-Use Environment Need to Be? Can We Make Changes to the Device or Instructions After the Validation Usability Study? What Is the Purpose of Identifying Known Issues and How Do We Identify Them? What Characteristics Can Be Used to Define a “User Group”? Can Nurses and Physicians Be Included in One User Group? How Do You Recommend That We Incorporate User Research into Our Design Process? How Often and When Should We Conduct User Research? What Are the Best Strategies? Is There a Fast and Effective Way to Get Feedback on the Usability of My Device Without Having to Do an Actual Study with Users? Resources References Chapter 10: Controls: Designing Physical and Digital Controls 10.1 Introduction 10.2 Control Coding Guidelines Color Coding Size Coding Location Coding Shape Coding Label Coding Mode of Operation 10.3 Control Movement Considerations Directionality Considerations Control Travel Considerations Control Gain 10.4 Control Size and Shape Considerations The Size of a Control(s) Should Be Comfortable, Accurate, and Consistent Use Surface Area Is King When Possible, Reduce, or Eliminate the Need for Fine Motor Control Finger-Operated Controls Should Support Multifinger Use Textures Help Improve Suboptimal Control Shapes Size and Shape Should Be Scaled to Match Effort, Duration of Use, and Accuracy Requirements Be Mindful of Control Resolution in Multistate Controls Avoid Sharp Edges Along Control Surfaces 10.5 Control Feedback Considerations Visual Feedback Account for Environmental Luminance and Color Spectrum Factors Use Icons When Possible Use Appropriately Colored Text Select Appropriate Font Types Choose Appropriate Text Size Make Labels Durable Present Visual Feedback in Close Proximity to the Control Use Backlighting on Nonalphanumeric Keys Only Use Color Sparingly Auditory Feedback Pair Auditory and Visual Feedback Together on Tasks with Low Cognitive Workload Demands (Avoid It on High-Demand Tasks) Minimize Auditory Feedback Duration and Intensity for Frequently Used Controls Avoid “Pure Tones” When Presenting Auditory Control Feedback Avoid Using Sound as the Only Mechanism for Control Location Feedback 10.6 Activation Force Considerations 10.7 Control Placement Considerations Mind the User’s Reach Envelope Dead Space Between Neighboring Controls Limit Accidental Activation Controls Placed Together Naturally Suggest a “Familial” Relationship 10.8 Touchscreen Considerations Types of Touchscreens Capacitive Touchscreens Resistive Touchscreens Surface Acoustic Wave (SAW) Touchscreens Size Considerations Embrace Existing Gestures and Shortcuts Activate Controls on “Up” Triggers Resources References Chapter 11: Displays 11.1 Introduction to Displays 11.2 Visual Displays Common Types of Visual Display Technologies Luminance Considerations Contrast Use-Environment User Needs Viewing Angle Hardware Considerations Color Considerations Resolution and Clarity Considerations Task Demands Shape and Size User Considerations Placement Considerations User Considerations Use-Environments 11.3 Auditory Displays and Alarms Overview of Auditory Displays and Alarms Fundamentals of Auditory Displays Creating Discoverable Sounds Localization of Sounds Giving “Meaning” to Sounds Nonspeech Sounds Speech-Based Sounds Benefits of Speech-Based Sounds Drawbacks of Speech-Based Sounds Human-Generated Speech vs. Computer-Generated Speech Rate of Speech Vowel Spacing Spearcons Creating a Sense of Urgency Alarm-Specific Considerations Alarm Fatigue Category-Specific Alarm Sounds Dismissing and Delaying Alarms Resources References Chapter 12: Human–Computer Interaction 12.1 Introduction 12.2 User Experience (UX) 12.3 Design Principles Support Mental Models Allocate Tasks Wisely Consistency Minimize Memory Load Provide Informative Feedback Make Tasks Efficient Utilitarian/Minimalist Design Error Prevention and Error Handling 12.4 Interaction Styles Form Fill-in Menus Direct Manipulation Command Line Gestures and Multitouch Dialog Boxes 12.5 Information Architecture Depth vs. Breadth Serial Choice Branching Networked 12.6 Screen Layout Grid Columns Blank Space Gutters, Margins, and Padding Grouping 12.7 Legibility Text Size All Capitals Contrast Text Justification 12.8 Color Color Guidelines Data Visualization and Graphics Table Design Small Displays Resources References Chapter 13: Designing Instructions for Use(rs) 13.1 Definitions 13.2 Do We Need Instructions for Use? 13.3 No Respect IFU as User Interface IFUs as Checking a Box IFUs as an Afterthought But Nobody Uses the IFU Anyway Rewriting IFU into Standard Operating Procedures (SOP) Ease of Use vs. Regulatory Standards 13.4 Developing Instructions for Use(rs) Start Designing Early Develop User Profile Develop Environmental Profile Consider the User’s Tasks Determine the Appropriate Format Identify Appropriate Authors Consider the Regulatory Requirements 13.5 A Framework for Developing Good IFUs and a Model of IFU Use Finding Information Signal vs. Noise Organization Comprehending Information Cognitive Load Theory Chunking Meaning Familiarity Conciseness Facilitating Learning 13.6 Applying Information Sequencing Help Readers Save Their Place Provide Feedback 13.7 IFU Iteration and Evaluation Resources References Chapter 14: Reusable Medical Devices, Reprocessing, and Design for Maintenance 14.1 Introduction 14.2 Reusable Medical Devices and Designing for Maintenance 14.3 Reprocessing and Designing for Maintenance What Is Reprocessing? Why Is Reprocessing a Human Factors Engineering Issue? 14.4 Designing Reusable Medical Devices to Optimize Reprocessing Interface 1: Reusable Medical Device Interface 2: Reprocessing Instructions for Use Interface 3: Training 14.5 Conclusion Resources References Chapter 15: Home Healthcare 15.1 Introduction 15.2 Challenges of Home Use Medical Device Design 15.3 Users of Home-Use Devices 15.4 Physical Size, Strength, and Stamina 15.5 Dexterity, Flexibility, and Coordination 15.6 Sensory Capabilities (Vision, Hearing, Tactile Sensitivity) 15.7 Cognitive Abilities 15.8 Literacy and Language Skills 15.9 Emotions and Motivation 15.10 Environment 15.11 Design Considerations References Index