دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: نویسندگان: Maria De Marsico, Michele Nappi, Hugo Pedro Proença سری: ISBN (شابک) : 0081007051, 9780081007051 ناشر: Academic Press سال نشر: 2017 تعداد صفحات: 250 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Human Recognition in Unconstrained Environments: Using Computer Vision, Pattern Recognition and Machine Learning Methods for Biometrics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شناخت انسان در محیط های نامحدود: استفاده از بینایی کامپیوتری، تشخیص الگو و روش های یادگیری ماشین برای بیومتریک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Human Recognition in Unconstrained Environments Copyright Contents Contributors Editor Biographies Foreword 1 Unconstrained Data Acquisition Frameworks and Protocols 1.1 Introduction 1.2 Unconstrained Biometric Data Acquisition Modalities 1.3 Typical Challenges 1.3.1 Optical Constraints 1.3.2 Non-comprehensive View of the Scene 1.3.3 Out-of-Focus 1.3.4 Calibration of Multi-camera Systems 1.4 Unconstrained Biometric Data Acquisition Systems 1.4.1 Low Resolutions Systems 1.4.2 PTZ-Based Systems 1.4.3 Face 1.5 Conclusions References 2 Face Recognition Using an Outdoor Camera Network 2.1 Introduction 2.2 Taxonomy of Camera Networks 2.2.1 Static Camera Networks 2.2.2 Active Camera Networks 2.2.3 Characteristics of Camera Networks 2.3 Face Association in Camera Networks 2.3.1 Face-to-Face Association 2.3.2 Face-to-Person Association 2.4 Face Recognition in Outdoor Environment 2.4.1 Robust Descriptors for Face Recognition 2.4.2 Video-Based Face Recognition 2.4.3 Multi-view and 3D Face Recognition 2.4.4 Face Recognition with Context Information 2.4.5 Incremental Learning of Face Recognition 2.5 Outdoor Camera Systems 2.5.1 Static Camera Approach 2.5.2 Single PTZ Camera Approach 2.5.3 Master and Slave Camera Approach 2.5.4 Distributed Active Camera Networks 2.6 Remaining Challenges and Emerging Techniques 2.7 Conclusions References 3 Real Time 3D Face-Ear Recognition on Mobile Devices: New Scenarios for 3D Biometrics \"in-the-Wild\" 3.1 Introduction 3.2 3D Capture of Face and Ear: CURRENT Methods and Suitable Options 3.2.1 Laser Scanners 3.2.2 Structured Light Scanners 3.2.3 Stereophotogrammetry 3.3 Mobile Devices for Ubiquitous Face-Ear Recognition 3.4 The Next Step: Mobile Devices for 3D Sensing Aiming at 3D Biometric Applications 3.5 Conclusions and Future Scenarios References 4 A Multiscale Sequential Fusion Approach for Handling Pupil Dilation in Iris Recognition 4.1 Introduction 4.1.1 Pupil Dilation 4.1.2 Layout 4.2 Previous Work 4.2.1 Pupil Dilation 4.2.2 Bit Matching 4.3 WVU Pupil Light Reflex (PLR) Dataset 4.4 Impact of Pupil Dilation 4.5 Proposed Method 4.5.1 IrisCode Generation 4.5.2 Typical IrisCode Matcher 4.5.3 Multi-filter Matching Patterns 4.5.4 Proposed IrisCode Matcher 4.6 Experimental Results 4.7 Conclusions and Future Work References 5 Iris Recognition on Mobile Devices Using Near-Infrared Images 5.1 Introduction 5.2 Preprocessing 5.3 Feature Analysis 5.4 Multimodal Biometrics 5.5 Conclusions References 6 Fingerphoto Authentication Using Smartphone Camera Captured Under Varying Environmental Conditions 6.1 Introduction 6.2 Literature Survey 6.3 IIITD SmartPhone Fingerphoto Database v1 6.3.1 Set 1: Background Variation 6.3.2 Set 2: Illumination Variation 6.3.3 Set 3: Live-Scan Fingerprints 6.4 Proposed Fingerphoto Matching Algorithm 6.4.1 Fingerphoto Segmentation 6.4.2 Fingerphoto Enhancement (Enh#1) 6.4.3 LBP Based Enhancement (Enh#2) 6.4.4 Scattering Network Based Feature Representation 6.4.5 Matching Techniques 6.5 Experimental Results 6.5.1 Performance of the Proposed Matching Pipeline 6.5.2 Comparison of Matching Algorithms 6.5.3 Comparison of Distance Metrics 6.5.4 Effect of Enhancement 6.6 Conclusion 6.7 Future Work Acknowledgements References 7 Soft Biometric Attributes in the Wild: Case Study on Gender Classification 7.1 Introduction 7.2 Biometrics in the Wild 7.3 Gender Classification in the Wild 7.3.1 Datasets 7.3.2 Proposals Summary 7.3.3 Discussion 7.4 Conclusions References 8 Gait Recognition: The Wearable Solution 8.1 Machine Vision Approach 8.2 Floor Sensor Approach 8.3 Wearable Sensor Approach 8.3.1 The Accelerometer Sensor 8.4 Datasets Available for Experiments 8.5 An Example of a Complete System for Gait Recognition 8.6 Conclusions References 9 Biometric Authentication to Access Controlled Areas Through Eye Tracking 9.1 Introduction 9.2 ATM-Like Solutions 9.3 Methods Based on Fixation and Scanpath Analysis 9.4 Methods Based on Eye/Gaze Velocity 9.5 Methods Based on Pupil Size 9.6 Methods Based on Oculomotor Features 9.7 Methods Based on Head Orientation 9.8 Conclusions References 10 Noncooperative Biometrics: Cross-Jurisdictional Concerns 10.1 Introduction 10.2 Biometrics for Implementing Biometric Surveillance 10.3 Reaction to Public Opinion 10.3.1 Geopolitical Context 10.3.2 Technological Skills 10.3.3 Proportionality 10.3.4 A Particular Operational Framework 10.4 The Early Days 10.4.1 Commercial Context 10.4.2 Historical Context 10.4.3 Social Context, the Newham and Ybor City Experiments 10.5 An Interesting Clue (2007) 10.6 Biometric Surveillance Today 10.6.1 Increased Perception of Insecurity 10.6.2 Getting Used to the Erosion of Privacy 10.6.3 Increase of Mobility 10.7 Conclusions References Index Back Cover