دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Wagner B.D.
سری: De Gruyter Textbook
ISBN (شابک) : 9783110564365
ناشر: Walter de Gruyter
سال نشر: 2020
تعداد صفحات: 285
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Host-Guest Chemistry: Supramolecular Inclusion in Solution به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی میزبان-مهمان: گنجاندن سوپرامولکولی در محلول نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Also of Interest Host–Guest Chemistry: Supramolecular Inclusion in Solution Copyright Dedication Preface Contents List of Important Abbreviations and Symbols List of Numbered Chemical Structures 1. Introduction 1.1 Supramolecular chemistry 1.2 Host–guest inclusion complexation in solution References 2. Historical aspects 2.1 Early examples of host–guest inclusion compounds 2.2 History of the development of major families of hosts 2.3 Proliferation of host–guest inclusion research 2.4 Current state of solution-phase host–guest inclusion chemistry References 3. Driving forces, thermodynamics, and kinetics of inclusion in aqueous solution 3.1 Preparation, self-assembly, and mechanisms of inclusion complexation in aqueous solution 3.2 Driving forces for inclusion in aqueous solution 3.2.1 Intermolecular forces between host and guest 3.2.2 Expulsion of water molecules from the host cavity 3.2.3 The hydrophobic effect in aqueous solution 3.2.4 Summary of driving forces for host inclusion in aqueous solution 3.3 Thermodynamics of inclusion in solution 3.4 Dynamics of inclusion in solution 3.5 Host selectivity and modes of inclusion in solution References 4. Spectroscopic methods for studying host–guest inclusion in solution 4.1 Quantum mechanics and molecular energy levels 4.2 The nature of light and its interaction with molecules 4.3 Infrared absorption spectroscopy 4.4 UV–vis absorption spectroscopy 4.5 Fluorescence spectroscopy 4.5.1 Steady-state fluorescence spectroscopy 4.5.2 Time-resolved fluorescence spectroscopy 4.6 Phosphorescence spectroscopy 4.7 NMR spectroscopy 4.8 Other spectroscopic methods and conclusion References 5. Other experimental methods for studying host–guest inclusion in solution 5.1 Electrochemical methods 5.2 Calorimetric and other thermal methods 5.3 Chromatographic methods 5.4 Mass spectrometry methods 5.5 Diffraction techniques 5.6 Other miscellaneous methods References 6. Extraction of binding constants from experimental data 6.1 Extraction of binding constants from experimental titration data for 1:1 host:guest complexes 6.1.1 Benesi–Hildebrand analysis 6.1.1.1 Modifications of the Benesi–Hildebrand method for applications to other types of experimental data 6.1.1.2 Accuracy and limitations of the Benesi–Hildebrand method 6.1.2 Nonlinear least-squares analysis of fluorescence titration data 6.2 Experimental determination of host:guest complex stoichiometry 6.3 Extraction of binding constants from experimental data for higher order host:guest complexes 6.4 Error analysis and reproducibility of binding constants extracted from experimental titration data 6.5 Other mathematical and/or experimental approaches References 7. Cyclodextrins as hosts 7.1 Introduction to cyclodextrins 7.2 Physicochemical properties of cyclodextrins 7.3 Modified cyclodextrins 7.3.1 Substitution at the primary hydroxyls 7.3.2 Substitution at the secondary hydroxyls 7.3.3 Specific examples of modified cyclodextrins used as molecular hosts 7.3.4 Monosubstitution of tethered active moieties 7.4 Host properties of native and modified CDs in aqueous solution 7.5 Polymers containing CD host moieties 7.6 Summary of CDs as molecular hosts References 8. Cucurbit[n]urils as hosts 8.1 Introduction to cucurbit[n]urils 8.2 Synthesis of cucurbit[n]urils 8.3 Physicochemical properties of cucurbit[n]urils 8.4 Cucurbit[n]urils as molecular hosts in aqueous solution 8.4.1 Cucurbituril (cucurbit[6]uril) as host 8.4.2 Cucurbit[7]uril as host 8.4.3 Cucurbit[n]urils, n ≥ 8 as hosts 8.5 A Comparison of the aqueous host binding properties of cucurbit[n]urils and CDs 8.6 Cucurbit[n]uril derivatives and analogues as hosts in aqueous solution 8.7 Cucurbit[n]urils as molecular beads in rotaxanes and building blocks for nanodevices 8.8 Summary of cucurbit[n]urils as molecular hosts References 9. Other molecular hosts in aqueous solution 9.1 Calix[n]arenes 9.2 Cavitands 9.3 Cryptands 9.4 Cryptophanes 9.5 Carcerands and hemicarcerands 9.6 Dendrimers 9.7 Pillar[n]arenes 9.8 Bambus[n]urils 9.9 Cyclophanes 9.10 Other miscellaneous molecular hosts References 10. Host–guest inclusion in mixed aqueous and nonaqueous solution 10.1 Introduction 10.2 Host–guest inclusion in mixed aqueous-organic solution 10.3 Host–guest inclusion in pure nonaqueous solution 10.3.1 Cyclodextrin inclusion complexes in nonaqueous solution 10.3.2 Inclusion complexes of other hosts in nonaqueous solution 10.4 Conclusions References 11. Applications of host–guest inclusion in solution 11.1 Analytical applications 11.2 Molecular sensors and molecular recognition 11.3 Control of guest reactivity 11.4 Medicinal and pharmaceutical applications 11.5 Water treatment and environmental remediation 11.6 Industrial applications 11.7 Other applications and summary References 12. Conclusions and summary References Index