ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Highway Vehicle-Bridge Coupled Vibrations: Numerical Simulations and Applications

دانلود کتاب ارتعاشات همراه خودرو-پل بزرگراه: شبیه سازی های عددی و کاربردها

Highway Vehicle-Bridge Coupled Vibrations: Numerical Simulations and Applications

مشخصات کتاب

Highway Vehicle-Bridge Coupled Vibrations: Numerical Simulations and Applications

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 981121641X, 9789811216411 
ناشر: World Scientific Publishing 
سال نشر: 2020 
تعداد صفحات: 545
[546] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 27 Mb 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Highway Vehicle-Bridge Coupled Vibrations: Numerical Simulations and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ارتعاشات همراه خودرو-پل بزرگراه: شبیه سازی های عددی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ارتعاشات همراه خودرو-پل بزرگراه: شبیه سازی های عددی و کاربردها

تعامل خودرو-پل همیشه بر روی پل‌های جاده‌ای اتفاق می‌افتد و این عملکرد تعاملی حاوی اطلاعات بسیار مفیدی است. از یک طرف، در حالی که وسایل نقلیه به طور سنتی به عنوان بار برای پل ها در نظر گرفته می شوند، می توانند به عنوان حسگرهایی برای پاسخ ساختاری پل ها نیز در نظر گرفته شوند. از سوی دیگر، در حالی که پل ها به طور سنتی به عنوان حامل وزن وسیله نقلیه در نظر گرفته می شوند، می توانند به عنوان ترازوهایی نیز در نظر گرفته شوند که می توانند بارهای وسیله نقلیه را وزن کنند. بر اساس این مشاهدات، محدوده وسیعی از مطالعات مبتنی بر تعامل وسیله نقلیه-پل در گروه تحقیقاتی نویسندگان انجام شده است. درک تعامل وسیله نقلیه و پل می تواند به توسعه استراتژی هایی برای ارزیابی وضعیت پل، طراحی پل، و نگهداری پل و همچنین ایجاد بینش برای نیازهای تحقیقاتی جدید کمک کند. این کتاب دانش بنیادی، پیشرفت های جدید و کاربردهای پیشرفته را مستند می کند. مربوط به فعل و انفعالات وسیله نقلیه پل. بنابراین اطلاعات مفیدی را برای دانشجویان و محققین فارغ التحصیل فراهم می کند و بنابراین شکاف بین تحقیقات نظری و کاربردهای عملی را ایجاد می کند.


توضیحاتی درمورد کتاب به خارجی

Vehicle-bridge interaction happens all the time on roadway bridges and this interaction performance carries much useful information. On one hand, while vehicles are traditionally viewed as loads for bridges, they can also be deemed as sensors for bridges' structural response. On the other hand, while bridges are traditionally viewed as carriers for vehicle weight, they can also be deemed as scales that can weigh the vehicle loads. Based on these observations, a broad area of studies based on the vehicle-bridge interaction have been conducted in the authors' research group. Understanding the vehicle and bridge interaction can help develop strategies for bridge condition assessment, bridge design, and bridge maintenance, as well as develop insight for new research needs.This book documents fundamental knowledge, new developments, and state-of-the-art applications related to vehicle-bridge interactions. It thus provides useful information for graduate students and researchers and therefore straddles the gap between theoretical research and practical applications.



فهرست مطالب

Contents
PREFACE
Chapter 1 Introduction
	1.1 Background and Thematic Basis
	1.2 Promising Approach to Dealing with Highway Infrastructure Problem
	1.3 Book Organization
Chapter 2 Framework of Vehicle–Bridge Coupled Modeling
	2.1 Introduction
	2.2 Methodology
		2.2.1 Modeling of Vehicle
		2.2.2 Modeling of Bridge
		2.2.3 Road Surface Condition
		2.2.4 Assembling of Bridge–Vehicle Equation of Motion
	2.3 Numerical Demonstration Example
		2.3.1 Impact Factor and Dynamic Load Coefficient
		2.3.2 Effect of Road Roughness
		2.3.3 Effect of Vehicle Damping
		2.3.4 Effect of Vehicle Rigidity
		2.3.5 Effect of Vehicle Weight
		2.3.6 Effect of Vehicle Speed
		2.3.7 Results in Frequency Domain
	2.4 Conclusions
	References
Chapter 3 Vehicle-Induced Impact on Bridges
	3.1 Definition of Impact Factor
	3.2 Bridge Code Provisions Worldwide
		3.2.1 AASHTO Code
		3.2.2 Ontario’s Code and Canadian Code
		3.2.3 Chinese Code
		3.2.4 Zelanian Code
		3.2.5 Australian Code
		3.2.6 European Code
		3.2.7 British Code
		3.2.8 Japanese Code
	3.3 Numerical Simulation of Effect of Approach Span Condition
		3.3.1 Mechanism and Modeling of Bump and Road Roughness
		3.3.2 Selected Vehicle and Bridge Models
	3.4 Dynamic Responses of Slab Bridges under Different Conditions
		3.4.1 Effect of Vehicle Speed
		3.4.2 Effect of Approach Span Condition
		3.4.3 Effect of Bridge Deck Surface Condition
		3.4.4 IMs of Slab Bridges
	3.5 Dynamic Responses of Slab-on-Girder Bridges under Different Conditions
		3.5.1 Effect of Approach Span Condition on the Mid-Span Deflection
		3.5.2 Effect of Approach Span Condition on the Dynamic Tire Force
		3.5.3 IMs of Slab-on-Girder Bridges
		3.5.4 Concluding Remarks
	3.6 Local and Global Impact Factors of Bridges
		3.6.1 Problem Statement
		3.6.2 Dynamic Responses of Bridges
		3.6.3 Effect of Bridge Span Length
		3.6.4 Effect of Road Surface Condition
		3.6.5 Effect of Vehicle Speed
		3.6.6 Discussion on Code Provisions
	3.7 Influence of Damaged Expansion Joint on Impact Factors
		3.7.1 Effect of Bridge Span Length
		3.7.2 Effect of Road Surface Condition
		3.7.3 Effect of Vehicle Speed
		3.7.4 Concluding Remarks
	3.8 Impact Factors for Assessment of Existing Bridges
		3.8.1 Analytical Bridges
		3.8.2 Analytical Vehicle
		3.8.3 Road Surface Condition
		3.8.4 Numerical Simulations
		3.8.5 Load Case I
		3.8.6 Load Case II
		3.8.7 Suggested Impact Factors
		3.8.8 Concluding Remarks
	3.9 Impact on Fiber-Reinforced Polymer Bridges
		3.9.1 Bridge and Vehicle Model
			3.9.1.1 Bridge description
			3.9.1.2 Equivalent orthotropic solid plate model
			3.9.1.3 Modal analysis
			3.9.1.4 Vehicle model
		3.9.2 Effects of Parameters
			3.9.2.1 Dynamic impact factor
			3.9.2.2 Influence of road roughness
			3.9.2.3 Influence of vehicle velocity
			3.9.2.4 Influence of vehicle rigidity
			3.9.2.5 Influence of bridge damping
		3.9.3 Discussion of Results
		3.9.4 Concluding Remarks
	References
Chapter 4 Vibration-Based Damage Detection and Characterization of Bridges
	4.1 Introduction
	4.2 Bridge Modal Properties Extraction Using Vehicle Responses
		4.2.1 Theoretical Derivation and Demonstrations
		4.2.2 Numerical Study
		4.2.3 Effects of Road Surface Conditions
		4.2.4 Parametric Study
			4.2.4.1 Trailer parameters
			4.2.4.2 Trailer spacings
			4.2.4.3 Trailer speeds
		4.2.5 Case Study on a Field Bridge
		4.2.6 Concluding Remarks
	4.3 Bridge Damage Detection Using Vehicle Responses
		4.3.1 Theoretical Derivation of Transmissibility in VBC System
		4.3.2 Numerical Study on Transmissibility-Based Damage Detection
		4.3.3 Parametric Study
			4.3.3.1 Effect of road surface roughness
			4.3.3.2 Effect of vehicle speeds
			4.3.3.3 Effect of number of vehicles
		4.3.4 Method I: One Reference Vehicle and One Moving Vehicle
		4.3.5 Method II: Two Vehicles at a Constant Distant
		4.3.6 Concluding Remarks
	4.4 Scour Damage Detection Using Vehicle Responses
		4.4.1 Vehicle–Bridge–Wave Interaction
		4.4.2 Bridge Description
		4.4.3 Scour Models
		4.4.4 Wave Loads
		4.4.5 Scour Effects on Bridge and Vehicle Responses
		4.4.6 Concluding Remarks
	References
Chapter 5 Assessment of Vehicle-Induced Fatigue of Bridges
	5.1 Introduction
	5.2 Fatigue Reliability Assessment of Existing BridgeS
		5.2.1 Modeling of Vehicle–Bridge Dynamic System
		5.2.2 Modeling of Progressive Deterioration for Road Surface
			5.2.2.1 Generation of road surface roughness spectra
			5.2.2.2 Road roughness index
			5.2.2.3 Progressive deterioration model for road roughness
		5.2.3 Prototypes of Bridge and Vehicle
			5.2.3.1 Prototype of the bridge
			5.2.3.2 Prototype of the vehicle
			5.2.3.3 Modeling of vehicle speed
			5.2.3.4 Modeling of road roughness
		5.2.4 Fatigue Reliability Assessment
			5.2.4.1 Equivalent stress range
			5.2.4.2 Limit state function
			5.2.4.3 Parameter database
		5.2.5 Results and Discussions
			5.2.5.1 Cycles per truck passage
			5.2.5.2 Distributions of Sw
			5.2.5.3 Fatigue reliability assessment and prediction
	5.3 New Dynamic Amplification Factor for Fatigue Design
		5.3.1 Introduction of Dynamic Amplification Factor
		5.3.2 Stress Range Acquisition
		5.3.3 Dynamic Amplification Factor on Stress Ranges
			5.3.3.1 Revised equivalent stress range
			5.3.3.2 Nominal live load stress range
			5.3.3.3 DAFS for various cases
			5.3.3.4 Parametric study of DAFS in life cycle
		5.3.4 Fatigue Life Estimation
			5.3.4.1 Various approaches for fatigue life estimation
			5.3.4.2 Deterministic approach
			5.3.4.3 Probabilistic approach
			5.3.4.4 Comparisons of different approaches
		5.3.5 Concluding Remarks
	References
Chapter 6 Vehicle-Induced Vibrations of High-Pier Bridges
	6.1 Introduction
		6.1.1 Lateral Vibration of High-Pier Bridges under Moving Vehicles
		6.1.2 Non-Stationary Random Vibrations for a High-Pier Bridge
	6.2 Lateral Vibration of High-Pier Bridges under Moving Vehicles
	6.3 Verification of the Vehicle–Bridge Model Based on Previous Studies
		6.3.1 Effect of Patch Contact
		6.3.2 Effect of Tire Stiffness and Damping
	6.4 Verification of the Vehicle–Bridge Model Based on the Field Test Results
		6.4.1 Field Test Results
		6.4.2 Bridge Model Updating
		6.4.3 Road Surface Condition
		6.4.4 The Test Vehicle Parameters
	6.5 Comparison of the Numerical Simulations and Measurements
		6.5.1 Comparison of Lateral Displacement and Acceleration
		6.5.2 Effect of Different Faulting Conditions
	6.6 Parametric Analysis
		6.6.1 Effect of the Length of Patch Contact on Lateral Response
		6.6.2 Effect of components of Lateral Force on Lateral Displacement
		6.6.3 Longitudinal Force Study of High-Pier Bridge
	6.7 Non-Stationary Random Vibrations for a High-Pier Bridge
		6.7.1 Simulation of Non-Stationary Random Response Induced by the Road Roughness
			6.7.1.1 Non-stationary random response of left front wheel
			6.7.1.2 Non-stationary random response of the left rear wheel
			6.7.1.3 Non-stationary random response of the right front and right rear wheels
		6.7.2 Comparison of the Numerical Simulations andMeasurements
			6.7.2.1 Comparison of vertical displacement under vehicle moving with acceleration and deceleration
			6.7.2.2 Comparison of lateral displacement under vehicle moving with acceleration
		6.7.3 Ride Comfort Analysis
	6.8 Summary
	References
Chapter 7 Vehicle Characterization Based on Vehicle–Bridge Interaction
	7.1 Introduction
	7.2 BWIM Algorithms
		7.2.1 Moses’s Algorithm
		7.2.2 Orthotropic BWIM Algorithm
		7.2.3 Influence Area Method
		7.2.4 Reaction Force Method
		7.2.5 Moving Force Identification
	7.3 Instrumentation of BWIM Systems
		7.3.1 Strain Measurement
		7.3.2 Axle Detection
		7.3.3 Installation Location of Sensors
		7.3.4 Data Acquisition and Storage
	7.4 NOR BWIM Considering the Transverse Position of Vehicle
		7.4.1 Identification Methodology
		7.4.2 Numerical Simulation
		7.4.3 Parametric Study
		7.4.4 Verification by a Field Study
		7.4.5 Concluding Remarks
	7.5 Vehicle Axle Identification Using Wavelet Analysis of Bridge Global Responses
		7.5.1 Wavelet Theory
		7.5.2 Numerical Simulations
		7.5.3 Parametric Study
		7.5.4 Concluding Remarks
	7.6 Detecting Vehicle Speed and Axles
		7.6.1 Methodology for Detecting Vehicle Speed and Axles
		7.6.2 Numerical Simulations
		7.6.3 Experimental Validation
		7.6.4 Concluding Remarks
	7.7 Identification of Parameters of Vehicles Moving on Bridges
		7.7.1 Parameter Identification Using Genetic Algorithm
		7.7.2 Numerical Simulations
		7.7.3 Field Test
		7.7.4 Concluding Remarks
	References
Chapter 8 Energy Harvesting on Vehicle-Induced Vibrations of Bridges
	8.1 Introduction
		8.1.1 Piezoelectric Energy Harvester Modeling
		8.1.2 Applications of Piezoelectric Energy Harvesting in Civil Infrastructures
		8.1.3 Piezoelectric Energy Harvesting Aimed on Low Frequency Vibration
		8.1.4 Piezoelectric Energy Harvesting with Large Bandwidth
		8.1.5 Overview of This Chapter
	8.2 Distributed ParameterModel for Piezoelectric Beam Based Harvesters
		8.2.1 Fundamentals of Distributed Parameter Beam Model
		8.2.2 Fundamentals of Piezoelectric Material Modeling
			8.2.2.1 Constitution equation using piezoelectric strain coefficient
			8.2.2.2 Constitutive equation using piezoelectric stress constant
		8.2.3 Model of Bimorph Piezoelectric Cantilever Energy Harvester
		8.2.4 Model of Single Piezoelectric Layer Cantilever Energy Harvester
		8.2.5 Model of Doubly Clamped Piezoelectric Beam Energy Harvester
	8.3 Piezoelectric-Based Energy Harvesting on Bridge Structures
		8.3.1 Bridge–Vehicle System Model
		8.3.2 Piezoelectric Cantilever Beam Harvester Model
		8.3.3 Energy Harvesting for Bridges with One Vehicle Passing Through
		8.3.4 Energy Harvesting for Bridges with Continuous Vehicles Passing Through
		8.3.5 Concluding Remarks
	8.4 Multi-Impact Energy Harvester Aimed on Low Frequency Vibrations
		8.4.1 Introduction
		8.4.2 Concept and Design of Multi-Impact Harvester
			8.4.2.1 Concept for cantilever beam based harvester design
			8.4.2.2 Introduction to impact-based harvester
		8.4.3 Energy Harvesting System Modeling
			8.4.3.1 Model of bimorph cantilever beam
			8.4.3.2 Vibration modeling for multi-impact harvester
			8.4.3.3 Electromechanical coupling effect and modeling of energy output
		8.4.4 Results and Discussion
			8.4.4.1 General observations
			8.4.4.2 Effect of external resistance
			8.4.4.3 Effect of hung mass
			8.4.4.4 Effect of the thickness of cantilever beam
			8.4.4.5 Effect of excitation frequency
			8.4.4.6 Comparison with conventional cantilever beam-based harvester
			8.4.4.7 Comparison with single impact harvester
		8.4.5 Concluding Remarks
	8.5 Experimental Study of theMulti-Impact Energy Harvester under Low Frequency Excitations
		8.5.1 Introduction
		8.5.2 Design of the Multi-Impact Energy Harvester and Experiment Setup
		8.5.3 Energy Harvesting under Sinusoidal Wave Excitations
			8.5.3.1 Free vibration without piezoelectric cantilever beams
			8.5.3.2 Forced vibration with piezoelectric cantilever beams
			8.5.3.3 Energy harvesting under excitation of bridge–vehicle coupled vibration
		8.5.4 Comparison with a Traditional Cantilever based Energy Harvester
		8.5.5 Concluding Remarks
	8.6 Low Frequency Nonlinear Energy Harvester with Large Band Width Utilizing Magnet Levitation
		8.6.1 Introduction
		8.6.2 Design of the Nonlinear Harvester
		8.6.3 Modeling of the Nonlinear Harvester
			8.6.3.1 System modeling for no contact situation
			8.6.3.2 System modeling for contact situation
		8.6.4 Case Study
			8.6.4.1 Sinusoidal excitation
			8.6.4.2 Bridge vibration
		8.6.5 Concluding Remarks
	References
Appendix
Index




نظرات کاربران