ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Highway Bridge Management

دانلود کتاب مدیریت پل بزرگراه

Highway Bridge Management

مشخصات کتاب

Highway Bridge Management

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 072776554X, 9780727765543 
ناشر: Thomas Telford Ltd 
سال نشر: 2022 
تعداد صفحات: 296
[289] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 40 Mb 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Highway Bridge Management به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدیریت پل بزرگراه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
References
	Chrimes M (1996)
	Concrete Institute (1918)
	Cossons N and Trinder B (1979)
	Cross-Rudkin PSM (2007)
	Dawe P (2003)
	Harvey W (2021)
	Pattison A (2014)
	Pippard AJS (1948)
	Public Works, Roads and Transport Congress (1933)
	Skempton AW (1981)
	Smith A (1985)
	Wooldridge FL, Cuerel J and Hauch KR (1955)
	Wang J and Melbourne C (2010)
2.1. Introduction
2.2. Context
2.3. United Nations Sustainable Development Goals
	Figure 2.1
2.4. Sustainability
	Figure 2.2
2.5. Carbon
2.6. Case study: Rochester Bridges refurbishment
	Figure 2.3
2.7. Climate change impacts on bridge management
2.8. Case study: Koror-Babeltaup Bridge, Palau
	Figure 2.4
2.9. Conclusion
References
	Australian Government (2015)
	Bažant Z, Yu Q and Li G-H (2012)
	Burgoyne C and Scantlebury R (2006)
	Carbon Trust (2022a)
	Carbon Trust (2022b)
	Global Footprint Network (2016)
	Guggenheim D (dir.) (2006)
	Mulhearn O (2020)
	Nasr A, Björnsson I, Honfi D et al. (2019)
	Obama B (2014)
	Steele K, Cole G, Parke G, Clarke B and Harding J (2003)
	Threader S (2021)
	United Nations (2015)
	United Nations (2016)
	United Nations (2018)
	Wood E (2021)
3.1. Context
3.2. Legal framework
3.3. Asset management framework and strategy
3.4. Risk management
	Figure 3.1
3.5. People
3.6. Knowledge management
	Figure 3.2
3.7. Knowledge sharing
References
	Ackoff RL (1989)
	BOF (Bridge Owners’ Forum) (2020)
	BSI (British Standards Institution) (2014)
	Carpenter J (2011)
	Collins J, Ashurst D, Webb J, Ghose A and Sparkes P (2017)
	CSS (County Surveyors’ Society) (2007)
	Fish RJ (2020)
	Hackitt J (2018)
	Hansford P (2018)
	HMG (Her Majesty’s Government) (1974)
	HMG (1980)
	HMG (1984)
	HMG (1990)
	HMG (1991)
	HMG (2004)
	Lantra (2016)
	National Highways (2022)
	Stacy M, Denton S and Pottle S (2019)
	UKRLG (UK Roads Liaison Group) (2005)
	UKRLG (2016)
4.1. Asset management
4.2. Structures asset management information
	4.2.1 Performance indicators
	4.2.2 Valuation
4.3. Maintaining bridge performance
	4.3.1 Condition-triggered maintenance
	4.3.2 Predicting deterioration, future funding needs, and strategy
	4.3.3 Intervention strategy and cost
4.4. Risk-based approach to bridge management
4.5. Value management of the structures workbank
References
	BSI (British Standards Institution) (2014)
	CIPFA (Chartered Institute of Public Finance and Accountancy) (2016)
	Collins J, Ashurst D, Webb J, Ghose A and Sparkes P (2017)
	CSS (County Surveyors’ Society) (2007)
	CSS Bridges Group (2002a)
	CSS Bridges Group (2002b)
	DfT (Department for Transport) (2020)
	Highways Agency (2012)
	Highways England (2020a)
	Highways England (2020b)
	Highways England (2020c)
	Highways England (2020d)
	Highways England (2020e)
	Highways England (2020f)
	Highways England (2020g)
	HMG (Her Majesty’s Government) (2015)
	HM Treasury (2022)
	HSE (Health and Safety Executive) (2002)
	Kirby AM, Roca M, Kitchen A, Escarameia M and Chesterton OJ (2002)
	LoBEG (London Bridges Engineering Group) (2011)
	LoBEG (2018)
	McKibbins L, Spink T and Power C (2019)
	National Highways (2021)
	National Highways (2022)
	Stacy M, Denton S and Pottle S (2019)
	UK Bridges Board (2022)
	UKRLG (UK Roads Liaison Group) (2016)
5.1. Project management and procurement
	5.1.1 Project management skills
	5.1.2 Finance and budgets
	5.1.3 Procurement and contracts
	5.1.4 Regional frameworks
5.2. Project planning and delivery
	5.2.1 Work types
	5.2.2 Planning
	5.2.3 Value engineering
	Figure 5.1
	5.2.4 Whole-life costing
	5.2.5 Forward Work Plan
	5.2.6 Planning inputs: technical approval
	5.2.7 Planning inputs: stakeholder management
	5.2.8 Planning inputs: access to land
	5.2.9 Network management
	5.2.10 Statutory undertakers
	5.2.11 Environmental requirements
	5.2.12 Conservation requirements
	5.2.13 Health and safety
	5.2.14 Risk management
	5.2.15 Emergency response
5.3. Abnormal load management
	5.3.1 Case study: Redbridge Causeway
	Figure 5.2
	Table 5.1
	Figure 5.3
References
	ADEPT National Bridges Group (2017)
	Affleck A and Gibbon J (2016)
	Association for Project Management (2021)
	Chartered Institute of Procurement and Supply (2021)
	Hendy CR, Man LS, Mitchell RP and Takano H (2018)
	Highways Agency (2007)
	Highways England (2020a)
	Highways England (2020b)
	Highways England (2021)
	HMG (His Majesty’s Government) (1946)
	HMG (Her Majesty’s Government) (1974)
	HMG (1980)
	HMG (1991)
	HMG (2002)
	HMG (2004)
	HMG (2006)
	HMG (2015)
	HSE (Health and Safety Executive) (2021)
	LoBEG (London Bridges Engineering Group) (2018)
	MHA+ (Midlands Highway Alliance Plus)&cb0; (2022)
	National Highways (2022)
	NTSB (National Transportation Safety Board) (2008)
	Tilly GP, Frost A and Wallsgrove J (2002)
	UKRLG (UK Roads Liaison Group) (2005)
	UKRLG (2016)
	UKRLG (2022)
6.1. Purpose of bridge inspection
	6.1.1 Structural safety
	6.1.2 Element inventory
	6.1.3 Condition
	Figure 6.1
	Figure 6.2
	6.1.4 Maintenance needs
6.2. Inspection regime
6.3. Planning
	Figure 6.3
6.4. The bridge inspector
6.5. Environmental considerations
6.6. Reporting
6.7. Developing technologies
	Figure 6.4
References
	CITB (Construction Industry Training Board) (2021)
	CSS (County Surveyors’ Society) (2005)
	DEFRA (2022)
	Gordon JE (1978)
	Highways Agency (2007)
	Highways England (2021)
	Historic England (2022)
	HMG (Her Majesty’s Government) (1980)
	Jeffries O, Farrow J and James K (2022)
	Lantra (2022)
	Ministry of War Transport (1945)
	RoSPA (Royal Society for the Prevention of Accidents) (2022)
7.1. Introduction
7.2. Standards and documents for highway bridge assessment
7.3. Overview of the process
	Figure 7.1
7.4. Inspection for assessment
7.5. Technical approval
	7.5.1 Actions
	Figure 7.2
	7.5.2 Material properties
7.6. Qualitative and quantitative assessment of limit states
7.7. Assessment by calculation using the partial factor method
	Figure 7.3
7.8. Assessing the effects of actions
7.9. Assessing structural resistance
	Figure 7.4
	Figure 7.5
	Figure 7.6
7.10. Improving the results of assessments
7.11. Conclusions of the assessment
References
	BSI (British Standards Institution) (1988)
	BSI (2006)
	BSI (2010)
	BSI (2014)
	BSI (2020a)
	BSI (2020b)
	BSI (2021)
	Bussell P (1997)
	Collins J, Ashurst D, Webb J, Ghose A and Sparkes P (2017)
	Concrete Society (2000)
	EC (European Communities) (1985)
	Gent D (2019)
	Hambly EC (1991)
	Hendy CR, Man LS, Mitchell RP and Takano H (2018)
	Highways Agency (1993)
	Highways Agency (2007)
	Highways England (2020a)
	Highways England (2020b)
	Highways England (2020c)
	Highways England (2020d)
	Highways England (2020e)
	Highways England (2020f)
	Highways England (2020g)
	Highways England (2020h)
	Highways England (2020i)
	Highways England (2020j)
	Highways England (2020k)
	Highways England (2021)
	Kühn B, Lukic M, Nussbaumer A et al. (2008)
	McDaid E, Loh GS, Shave J et al. (2021)
	National Highways (2022a)
	National Highways (2022b)
	RAIB (Rail Accident Investigation Branch) (2014)
	Robinson P, Sandberg J, Hendy C and Gallagher J (2021)
	Shave J, Bennetts J, Valerio P and Jackson P (2021b)
	Stacy M, Denton S and Pottle S (2019)
	West R (1973)
8.1. Investigation purposes
	8.1.1 Determine condition
	8.1.2 Inspection for assessment
	8.1.3 Validate or calibrate a theoretical model
8.2. Process for tests and investigations
	8.2.1 The value of conducting tests
	8.2.2 Constraints
	8.2.3 Extents, sample sizes and screening methods
	8.2.4 Planning and sourcing
	8.2.5 Qualifications and competency
	8.2.6 Conducting investigations
	8.2.7 Reporting
	Table 8.1
	8.2.8 Interpretation
	8.2.9 Useful terminology
8.3. Technologies available for investigations
	8.3.1 Visual techniques
	8.3.2 Intrusive and minimally destructive techniques
	8.3.3 Material properties measurement techniques
	8.3.4 Magnetism and eddy current techniques
	8.3.5 Ground penetrating radar (GPR)
	8.3.6 Corrosion measurement
	8.3.7 Ultrasound techniques
	8.3.8 Radiography techniques
	8.3.9 Acoustic emission (AE) techniques
8.4. Case studies
	8.4.1 Bridge bearings
	Figure 8.1
	8.4.2 Corrosion on concrete bridge deck
	8.4.3 Reinforced concrete half-joints
	Figure 8.2
	Figure 8.3
8.5. Future changes
	8.5.1 Techniques
	8.5.2 Data handling
	8.5.3 Applications
References
	ASTM (2015)
	ASTM (2017)
	ASTM (2020)
	Brencich A, Bovolenta R, Ghiggi V, Pera D and Redaelli P (2020)
	BSI (British Standards Institution) (1988)
	BSI (2006)
	BSI (2007)
	BSI (2009)
	BSI (2010)
	BSI (2011)
	BSI (2013a)
	BSI (2013b)
	BSI (2014)
	BSI (2015)
	BSI (2016a)
	BSI (2016b)
	BSI (2017)
	BSI (2018)
	BSI (2019a)
	BSI (2019b)
	BSI (2019c)
	BSI (2020)
	BSI (2021a)
	BSI (2021b)
	BSI (2021c)
	BSI (2021d)
	BSI (2021e)
	BSI (2022)
	Highways England (2019)
	Highways England (2020a)
	Highways England (2020b)
	Highways England (2020c)
	Highways England (2021)
	HSE (Health and Safety Executive) (2015)
	HSE (2018)
	ICE (2017)
	ICE National Steering Committee (Institution of Civil Engineers: National Steering Committee for the Load Testing of Bridges) (1998)
	McKibbins L, Abbott T, Atkins C, Moss E and Wright D (2022)
	Micro-Measurements (2010)
	Owens A (1993)
	Owens A, Beggs DW, Gratton DN and Devane MA (1994)
	TRB (Transportation Research Board) (2019)
9.1. Development of post-tensioned bridges
9.2. Performance of post-tensioned bridges
	Figure 9.1
	Figure 9.2
	Figure 9.3
	Figure 9.4
9.3. Management of post-tensioned bridges: the need for guidance
9.4. Post-tensioned special inspections (PTSIs)
9.5. Case study: PTSI based on 1993 standard and advice note
	Figure 9.5
	Figure 9.6
	Figure 9.7
	Figure 9.8
9.6. Development and trials of BD 54/XX (2012–2014)
9.7. BD 54/15 - Management of post-tensioned concrete bridges
9.8. Case study: PTSI based on BD 54/15
	Figure 9.9
	Figure 9.10
9.9. CS 465 - Management of post-tensioned concrete bridges
9.10. Case study: PTSI based on CS 465
	Figure 9.11
9.11. Summary
Acknowledgements
References
	Collins J, Ashurst D, Webb J, Ghose A and Sparkes P (2017)
	Highways Agency (1993a)
	Highways Agency (1993b)
	Highways Agency (2014)
	Highways Agency (2015)
	Highways Agency and TRL (1999)
	Highways England (2020)
	Leonhardt F (1964)
	McKibbins L, Abbott T, Atkins C, Moss E and Wright D (2022)
	Pearson-Kirk D and Cairns RJM (2007)
	Podolny W (1982)
	Poston RW and Wouters TP (1998)
	Rawlinson J and Stott PF (1963)
	Sparkes P and Webb J (2020)
	Woodward RJ (1981)
	Woodward RJ (2001)
	Woodward RJ and Williams FW (1988)
10.1. SHM objectives
	10.1.1 Existing structures
	10.1.2 New structures
10.2. Planning and using SHM
	10.2.1 General points
	10.2.2 Accuracies and sample rates
	10.2.3 Baselining
	10.2.4 Potential pitfalls
10.3. Technologies available for SHM
	10.3.1 SHM system architecture
	10.3.2 Sensors for environmental actions
	10.3.3 Sensors for operational loads
	10.3.4 Sensors and systems for bridge responses
	10.3.5 Sensors and systems for unplanned events
	10.3.6 Comparison of monitoring system architectures
	Figure 10.1
	Figure 10.2
	Figure 10.3
	10.3.7 Data processing and management
10.4. Example SHM applications
	10.4.1 Bridge articulation
	Figure 10.4
	10.4.2 Reinforced concrete half-joints
	10.4.3 Cracks in metallic bridges
	Figure 10.5
	Figure 10.6
	Figure 10.7
	10.4.4 Fatigue life consumption
	10.4.5 Management of a segmental post-tensioned concrete bridge
	Figure 10.8
	10.4.6 SHM for new bridges
	10.4.7 Bridge deformation monitoring
	Figure 10.9
	Figure 10.10
	Figure 10.11
	10.4.8 Bridge strike detection
References
	Cruddace P and Fane C (2015)
	Highways England (2020)
	Middleton CR, Fidler PRA and Vardanega PJ (2016)
	Sparkes P and Webb J (2020)
11.1. What is scour?
11.2. Types of scour
	Figure 11.1
	11.2.1 Local scour
	Figure 11.2
	11.2.2 Contraction scour
	Figure 11.3
	11.2.3 Natural scour
11.3. Scour management
	11.3.1 Identifying scour by inspection
	Table 11.1
	11.3.2 History of site
	11.3.3 Scour assessments
	11.3.4 Debris-induced scour
	Figure 11.4
	Figure 11.5
	11.3.5 Case study 1: Debris accumulations at Devon bridges
	Figure 11.6
	11.3.6 Case study 2: Level 2 assessment of Steps Bridge, Devon
	Figure 11.7
11.4. Scour prevention
	11.4.1 Risk management
	11.4.2 Engineering interventions
	Figure 11.8
	11.4.3 Case Study 3: Taddiport Bridge, North Devon
	Figure 11.9
11.5. Monitoring of scour
	11.5.1 Underwater sonar
	11.5.2 Monitoring in remote locations
References
	CSS (County Surveyors’ Society) (2007)
	Highways Agency (2012)
	Highways England (2021)
	Panici D and Kripakaran P (2020)
	Panici D, Kripakaran P, Djordjević S and Dentith K (2020)
	RAC Foundation (2021)
	UKRLG (UK Roads Liaison Group) (2016)
Further reading
Figure 11.10
Figure 12.1
12.1. The inspection process
	Figure 12.2
12.2. Typical masonry defects
	12.2.1 Deteriorated pointing and brickwork
	12.2.2 Arch ring separation
	12.2.3 Longitudinal cracks
	12.2.4 Water leaking through the arch ring
	12.2.5 Weak or saturated fill
	12.2.6 Outward movement of spandrel walls
	12.2.7 Scour of foundations
	12.2.8 Foundation movement
12.3. Testing and monitoring techniques
	12.3.1 Crack width measurement
	Figure 12.3
	12.3.2 Digital image correlation
	12.3.3 Schmidt hammer
	12.3.4 Laser scanning
	12.3.5 Ground penetrating radar
	12.3.6 Boroscopy
	Figure 12.4
	12.3.7 Flat jack testing
	12.3.8 Coring and trial pits
	12.3.9 Acoustic emission monitoring
	Figure 12.5
	12.3.10 Dynamic monitoring
12.4. Assessment of load capacity
12.5. Repair techniques
	12.5.1 Routine maintenance
	Figure 12.6
	12.5.2 Repointing
	12.5.3 Grouting
	12.5.4 Anchors
12.6. Strengthening techniques
	12.6.1 Relieving slab
	12.6.2 Saddling
	12.6.3 Embedded reinforcement
	12.6.4 Prefabricated liners
	Figure 12.7
	Figure 12.8
	12.6.5 Spandrel wall reinforcement
	Figure 12.9
	12.6.6 Sprayed concrete
	12.6.7 Partial reconstruction
12.7. Water management
12.8. Viability of new masonry arch bridges
References
	Acikgoz S, DeJong MJ and Soga K (2018a)
	Acikgoz S, DeJong MJ and Soga K (2018b)
	Alani AM, Tosti F, Ciampoli LB, Gagliardi V and Benedetto A (2020)
	Arede A, Costa C, Gomes AT et al. (2017)
	Ataei S, Nouri M and Kazemiashtiani V (2018)
	Baker IO (1890)
	Balogun TB, Tomor A, Lamond J, Gouda H and Booths CA (2019)
	Bergamo O, Campione G, Donadello S and Russo G (2015)
	Bill Harvey Associates (2021a)
	Bill Harvey Associates (2021b)
	Bill Harvey Associates (2022a)
	Bill Harvey Associates (2022b)
	Brencich A, Lątka D, Matysek P, Orban Z and Sterpi E (2021)
	Callaway P, Gilbert M and Smith CC (2012)
	Choo B and Hogg V (1995)
	Cox D and Halsall R (1996)
	Daly A and Cole G (2012)
	Debailleux L (2020)
	De Santis S and Tomor AK (2013)
	Diamanti N, Giannopoulos A and Forde MC (2008)
	Dorji J, Zahra T, Thambiratnam D and Lee D (2021)
	Fairfield C and Ponniah D (1996)
	Gilbert M, Smith CC, Cole G and Melbourne C (2022)
	Harvey WJ (2012)
	Harvey WJ and Harvey H (2017)
	Heyman J (1982)
	Highways Agency (2001)
	Highways Agency (2007)
	Highways Agency (2012)
	Highways England (2020a)
	Highways England (2020b)
	Historic England (2017)
	Howe MA (1915)
	Hulet KM, Smith CC and Gilbert M (2006)
	Jefferies O, Farrow J and James K (2022)
	Kirby AM, Roca M, Kitchen A, Escarameia M, Chesterton OJ (2015)
	L&ahook;tka D&an0; and &an1;Matysek P&an0; (2017)
	Machelski C (2016)
	McCann DM and Forde MC (2001)
	McKibbins LD, Melbourne C, Sawar N and Gaillard CS (2006)
	Melbourne C and Gilbert M (1993)
	Melbourne C, Tomor AK and Wang J (2005)
	Melbourne C, Wang J and Tomor AK (2007)
	Page J (1993)
	Page J (1996)
	Pearson S and Cuninghame J (1998)
	Poling J, Desai N, Fischer G and Georgakis C (2018)
	RILEM TC (2004)
	Riveiro B, DeJong MJ and Conde B (2016)
	Sánchez-Rodríguez A, Riveiro B, Conde B and Soilán M (2017)
	Solla M, Lorenzo H, Riveiro B and Rial FI (2011)
	Solla M, Lorenzo H, Rial FI and Novo A (2012)
	Sowden AM (1990)
	Steele K, Cole G, Parke G, Clarke B and Harding J (2003)
	Sumon S (2005)
	Thompson D (1995)
	Tomor AK and Melbourne C (2007)
	UIC (International Union of Railways) (2008)
	Verstrynge E, Lacidogna G, Accornero F and Tomor AK (2021)
	Voggu S, Sasmal S and Karusala R (2018)
	Wang J and Melbourne C (2010)
	Welch PJ (1995)
	Wilmers W (2012)
13.1. Introduction
13.2. Types of concrete bridge
	13.2.1 Concrete slab
	13.2.2 Beam and slab
	13.2.3 Box beam
	13.2.4 Concrete arches
	Figure 13.1
	Figure 13.2
	Figure 13.3
	13.2.5 Composite steel and reinforced concrete decks
	13.2.6 Box structures and integral bridges
	13.2.7 Substructures and retaining walls
13.3. Material properties and design
	13.3.1 Design codes for concrete highway structures
	13.3.2 Concrete
	13.3.3 Reinforcement
	13.3.4 Concrete additives and cement replacements
13.4. Concrete problems and deterioration processes
	13.4.1 Structural cracking
	Figure 13.4
	13.4.2 Non-structural cracking
	Figure 13.5
	13.4.3 Reinforcement corrosion
	Figure 13.6
	13.4.4 Delamination and spalling
	13.4.5 Construction errors
	Figure 13.7
	13.4.6 Internal deterioration of concrete
	13.4.7 Fire
	13.4.8 Impact
	13.4.9 Other defects
13.5. Repairs and strengthening
	13.5.1 Concrete coatings, impregnations and hydroscopic impregnations
	Table 13.1
	Figure 13.8
	13.5.2 Structural and non-structural concrete repair
	13.5.3 Cathodic protection of reinforcement
	Figure 13.9
	Figure 13.10
	13.5.4 Strengthening methods
13.6. Inspection, testing and assessment
	13.6.1 Inspection of concrete structures
	13.6.2 Testing of concrete structures
	13.6.3 Assessment of concrete structures
References
	Anon (1843)
	Bamforth P (2007)
	Bamforth P (2018)
	BSI (British Standards Institution) (2004)
	BSI (2005a)
	BSI (2005b)
	BSI (2008)
	BSI (2016)
	Calder AJ (1997)
	CARES (2011)
	CBDG (Concrete Bridge Development Group) (2002)
	CBDG (2007)
	CBDG (2022)
	Clarke JL (2009)
	Concrete Society (1990)
	Concrete Society (2011)
	Concrete Society (2012)
	De Mare E (1954)
	Denton S (2011)
	Dodds W, Christodoulou C and Goodier C (2016)
	HCC (Hampshire County Council) (2000)
	Highways England (2020a)
	Highways England (2020b)
	Highways England (2020c)
	Highways England (2020d)
	Highways England (2020e)
	Highways England (2020f)
	Highways England (2022)
	IStructE (Institution of Structural Engineers) (1992)
	Long A, McPolin D, Kirkpatrick J, Gupta A and Courtenay D (2014)
	Magnel G (1949)
	Ministry of War Transport (1945)
	MOT (Ministry of Transport) (1931)
	Simpkins J and Cole G (2019)
	Sutherland R, Humm D and Chrimes M (2001)
	West G (1996)
	Wooldridge L, Cuerel J and Hauch KR (1955)
14.1. Introduction
14.2. Common metal highway bridge types
	14.2.1 Half-through deck
	Figure 14.1
	14.2.2 Underslung girder decks
	14.2.3 Trussed girder
	Figure 14.2
	14.2.4 Bowstring arch
	Figure 14.3
	14.2.5 Metal arch below metal deck
	Figure 14.4
	14.2.6 Composite steel and reinforced concrete deck
	Figure 14.5
	14.2.7 Filler beam deck
	14.2.8 Trough girder decks
14.3. Materials
	14.3.1 Cast iron
	14.3.2 Wrought iron
	14.3.3 Early steel (pre-BS 4360:1968)
	Figure 14.6
	14.3.4 Modern steel to BS EN 10025-2:2019
	Table 14.1
	14.3.5 Weathering steel
	Table 14.2
	14.3.6 Carbon fibre
14.4. Corrosion
	14.4.1 Pitting and crevice corrosion
	14.4.2 Corrosion-prone details
	Figure 14.7
	14.4.3 Bearing flanges and bearing stiffeners
	14.4.4 Web, stiffener and lower flange connections
	14.4.5 Web-flange interface where jack arches are supported on lower flange
	Figure 14.8
	14.4.6 Main girder webs, where buried in fill
	14.4.7 Truss girders: corrosion in single- and double-web bottom chord areas
	14.4.8 Plate and trough decks supporting fill and carriageway
	Figure 14.9
	14.4.9 Tubular structures
	14.4.10 Corrosion of rivets
	Figure 14.10
14.5. Protective coatings
	14.5.1 Health and safety
	14.5.2 Modern paint systems
14.6. Assessment
	14.6.1 Analysis
	14.6.2 Stresses
14.7. Repairs and strengthening
	14.7.1 Safety
	14.7.2 De-stressing the structure
	14.7.3 General plating repairs
	14.7.4 Trough decks
	Figure 14.11
	Figure 14.12
	Figure 14.13
	14.7.5 Strengthening by increasing girder depth.
	14.7.6 Bolted connection issues
	14.7.7 Strengthening cast iron decks
	Figure 14.14
	Figure 14.15
References
	BSI (British Standards Institution) (1906, 1936)
	BSI (1934)
	BSI (1941, 1962)
	BSI (1956)
	BSI (1968)
	BSI (1990)
	BSI (1993)
	BSI (2004)
	BSI (2018)
	BSI (2019)
	BSI (2020)
	Collins J, Ashurst D, Webb J, Sparkes P and Ghose A (2017)
	Highways England (2019a)
	Highways England (2019b)
	Highways England (2019c)
	Highways England (2019d)
	Highways England (2020a)
	Highways England (2020b)
	Highways England (2020c)
	Highways England (2020d)
	Metalock (2022)
	Tilly G, Matthews SJ, Deacon D, De Voy J and Jackson PA (2008)
15.1. Introduction
15.2. Suspension bridges
	Figure 15.1
	15.2.1 Suspension bridge cables
	Figure 15.2
	Figure 15.3
	15.2.2 Hangers
	15.2.3 Anchorages
	15.2.4 Suspension bridge decks
	Figure 15.4
15.3. Cable-stayed bridges
15.4. Cable oscillation and vibration
15.5. Accidental damage to hangers and cables
15.6. Opening bridges
15.7. Travelling gantries
15.8. Footbridges
15.9. Earth-retaining structures
15.10. Other materials
	15.10.1 Timber
	Figure 15.5
	15.10.2 Fibre-reinforced plastic
15.11. Conclusion
References
	Alampalli S and Moreau WJ (2016)
	Anderson JK (1965)
	Billington D (1983)
	Birnstiel C (2008)
	Boxall D (2015)
	Canning L and Hollaway L (2022)
	Clifford N (2020)
	Cocksedge C and Hudson T (2010)
	Fish RJ, Gill JA and Ladd PJ (2000)
	Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017)
	Gimsing NJ and Georgakis CT (2012)
	Gostautas R, Nims D, Tamutus T, Seyedianchoobi R (2012)
	Grewar BG (1991)
	Highways Agency (2007)
	Highways England (2020)
	Horgan R (2021)
	IStructE (Institution of Structural Engineers) (2007)
	Kragh E, Narasimhan H and Jensen JL (2018)
	LePatner BB (2010)
	Mahmoud KM (2011)
	Martin BT (2000)
	Mayrbaurl RM and Camo S (2004)
	McFetrich D (2019)
	NYC DOT (New York City Department of Transportation) (2021)
	NZTA (New Zealand Transport Agency) (2001)
	O’Reilly M and Perry J (2009)
	Pavic A, Armitage T, Reynolds P and Wright J (2002)
	Scheerhout J (2007)
	Scott R (2001)
	Sluszka P (1991)
	Stahl FL and Gagnon CP (1996)
	Structural Timber Association (2022)
	Wells M and Clash P (2008)
16.1. Introduction
16.2. Parapets
	16.2.1 Masonry parapets
	Figure 16.1
	Figure 16.2
	16.2.2 Timber vehicle parapets
	16.2.3 Metal parapets
16.3. Expansion joints
16.4. Bridge bearings
16.5. Waterproofing
16.6. Half-joints
	Figure 16.3
	Figure 16.4
	Figure 16.5
References
	Bridge Joint Association (2022)
	Christodoulou C, Cobbs R and Williams E (2020)
	Highways Agency (2020a)
	Highways Agency (2020b)
	Lee D (1994)
	National Highways (2022)




نظرات کاربران