ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Heterogeneous catalysis at nanoscale for energy applications

دانلود کتاب کاتالیز ناهمگن در مقیاس نانو برای کاربردهای انرژی

Heterogeneous catalysis at nanoscale for energy applications

مشخصات کتاب

Heterogeneous catalysis at nanoscale for energy applications

دسته بندی: علم شیمی
ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781118843468, 1118843487 
ناشر: Wiley 
سال نشر: 2014 
تعداد صفحات: 361 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 27 مگابایت 

قیمت کتاب (تومان) : 48,000



کلمات کلیدی مربوط به کتاب کاتالیز ناهمگن در مقیاس نانو برای کاربردهای انرژی: شیمی و صنایع شیمیایی، سینتیک و کاتالیز



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Heterogeneous catalysis at nanoscale for energy applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کاتالیز ناهمگن در مقیاس نانو برای کاربردهای انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کاتالیز ناهمگن در مقیاس نانو برای کاربردهای انرژی

یک فناوری کلیدی در صنایع شیمیایی و انرژی، کاتالیز ناهمگن به دلیل پتانسیل آن برای حل مشکلات انرژی جهانی اهمیت پیدا می کند. این جلد هم مفاهیم اساسی و هم پیشرفت های اخیر در این زمینه را پوشش می دهد و نگاهی عمیق به سنتز ارائه می دهد. و خصوصیات نانوکاتالیزورها و همچنین درک مکانیکی از کاتالیز در سطح اتمی برای فرآیندهای مهم تبدیل انرژی. این کتاب جامع و معتبر، به دانشمندان و مهندسان این امکان را می دهد. پایه و اساس برای پیشگامی کاتالیزورهای فنی بعدی برای فناوری های کارآمد انرژی \"--

\" مفاهیم اساسی و پیشرفت های اخیر در زمینه کاتالیز ناهمگن را پوشش می دهد و نگاهی عمیق به سنتز و خصوصیات نانوکاتالیست ها و همچنین ارائه می دهد. درک مکانیکی از کاتالیز در سطح اتمی برای فرآیندهای مهم تبدیل انرژی\"-- بیشتر بخوانید... </ div>
چکیده:

این کتاب مفاهیم اساسی و آخرین دستاوردهای حوزه ای را ارائه می دهد که اهمیت آن در حال افزایش است زیرا راه حلی ممکن برای مشکلات انرژی جهانی را نشان می دهد. این بر درک سطح اتمی از کاتالیز ناهمگن درگیر در فرآیندهای مهم تبدیل انرژی تمرکز دارد. بیشتر بخوانید...

توضیحاتی درمورد کتاب به خارجی

"A key technology in the chemical and energy industries, heterogeneous catalysis is growing in importance owing to its potential for solving global energy problems. This volume covers both fundamental concepts and recent advances in the field, offering an in-depth look at the synthesis and characterization of nanocatalysts as well as a mechanistic understanding of catalysis at atomic level for important processes of energy conversion. Comprehensive and authoritative, the book provides scientists and engineers with a foundation for pioneering the next technical catalysts for energy efficient technologies"--

"Covers both fundamental concepts and recent advances in the field of heterogeneous catalysis, offering an in-depth look at the synthesis and characterization of nanocatalysts as well as a mechanistic understanding of catalysis at the atomic level for important processes of energy conversion"-- Read more...
Abstract:

This book presents both the fundamentals concepts and latest achievements of a field that is growing in importance since it represents a possible solution for global energy problems. It focuses on an atomic-level understanding of heterogeneous catalysis involved in important energy conversion processes. Read more...


فهرست مطالب

Content: Contributors xiii     1 Introduction 1 Franklin (Feng) Tao, William F. Schneider, and Prashant V. Kamat     2 Chemical Synthesis of Nanoscale Heterogeneous Catalysts 9 Jianbo Wu and Hong Yang     2.1 Introduction 9     2.2 Brief Overview of Heterogeneous Catalysts 10     2.3 Chemical Synthetic Approaches 11     2.3.1 Colloidal Synthesis 11     2.3.2 Shape Control of Catalysts in Colloidal Synthesis 12     2.3.3 Control of Crystalline Phase of Intermetallic Nanostructures 14     2.3.4 Other Modes of Formation for Complex Nanostructures 17     2.4 Core-Shell Nanoparticles and Controls of Surface Compositions and Surface Atomic Arrangements 21     2.4.1 New Development on the Preparation of Colloidal Core-Shell Nanoparticles 21     2.4.2 Electrochemical Methods to Core-Shell Nanostructures 22     2.4.3 Control of Surface Composition via Surface Segregation 24     2.5 Summary 25     3 Physical Fabrication of Nanostructured Heterogeneous Catalysts 31 Chunrong Yin, Eric C. Tyo, and Stefan Vajda     3.1 Introduction 31     3.2 Cluster Sources 34     3.2.1 T hermal Vaporization Source 34     3.2.2 Laser Ablation Source 36     3.2.3 Magnetron Cluster Source 37     3.2.4 Arc Cluster Ion Source 38     3.3 Mass Analyzers 39     3.3.1 Neutral Cluster Beams 40     3.3.2 Quadrupole Mass Analyzer 41     3.3.3 Lateral TOF Mass Filter 42     3.3.4 Magnetic Sector Mass Selector 43     3.3.5 Quadrupole Deflector (Bender) 44     3.4 Survey of Cluster Deposition Apparatuses in Catalysis Studies 44     3.4.1 Laser Ablation Source with a Quadrupole Mass Analyzer at Argonne National Lab 44     3.4.2 ACIS with a Quadrupole Deflector at the Universitat Rostock 46     3.4.3 Magnetron Cluster Source with a Lateral TOF Mass Filter at the University of Birmingham 47     3.4.4 Laser Ablation Cluster Source with a Quadrupole Mass Selector at the Technische Universitat Munchen 48     3.4.5 Laser Ablation Cluster Source with a Quadrupole Mass Analyzer at the University of Utah 49     3.4.6 Laser Ablation Cluster Source with a Magnetic Sector Mass Selector at the University of California, Santa Barbara 49     3.4.7 Magnetron Cluster Source with a Quadrupole Mass Filter at the Toyota Technological Institute 51     3.4.8 PACIS with a Magnetic Sector Mass Selector at Universitat Konstanz 52     3.4.9 Magnetron Cluster Source with a Magnetic Sector at Johns Hopkins University 53     3.4.10 Magnetron Cluster Source with a Magnetic Sector at HZB 53     3.4.11 Magnetron Sputtering Source with a Quadrupole Mass Filter at the Technical University of Denmark 54     3.4.12 CORDIS with a Quadrupole Mass Filter at the Lausanne Group 56     3.4.13 Electron Impact Source with a Quadrupole Mass Selector at the Universitat Karlsruhe 56     3.4.14 CORDIS with a Quadrupole Mass Analyzer at the Universitat Ulm 58     3.4.15 Magnetron Cluster Source with a Lateral TOF Mass Filter at the Universitat Dortmund 59     3.4.16 Z-Spray Source with a Quadrupole Mass Filter for Gas-Phase Investigations at FELIX 60     3.4.17 Laser Ablation Source with an Ion Cyclotron Resonance Mass Spectrometer for Gas-Phase Investigations at the Technische Universitat Berlin 61     4 Ex Situ Characterization 69 Minghua Qiao, Songhai Xie, Yan Pei, and Kangnian Fan     4.1 Introduction 69     4.2 Ex Situ Characterization Techniques 70     4.2.1 X-Ray Absorption Spectroscopy 71     4.2.2 Electron Spectroscopy 72     4.2.3 Electron Microscopy 74     4.2.4 Scanning Probe Microscopy 75     4.2.5 Mossbauer Spectroscopy 76     4.3 Some Examples on Ex Situ Characterization of Nanocatalysts for Energy Applications 77     4.3.1 Illustrating Structural and Electronic Properties of Complex Nanocatalysts 77     4.3.2 Elucidating Structural Characteristics of Catalysts at the Nanometer or Atomic Level 81     4.3.3 Pinpointing the Nature of the Active Sites on Nanocatalysts 85     4.4 Conclusions 88     5 Applications of Soft X-Ray Absorption Spectroscopy for In Situ Studies of Catalysts at Nanoscale 93 Xingyi Deng, Xiaoli Gu, and Franklin (Feng) Tao     5.1 Introduction 93     5.2 In Situ SXAS under Reaction Conditions 96     5.3 Examples of In Situ SXAS Studies under Reaction Conditions Using Reaction Cells 99     5.3.1 Atmospheric Corrosion of Metal Films 99     5.3.2 Cobalt Nanoparticles under Reaction Conditions 101     5.3.3 Electrochemical Corrosion of Cu in Aqueous NaHCO3 Solution 108     5.4 Summary 112     6 First-Principles Approaches to Understanding Heterogeneous Catalysis 115 Dorrell C. McCalman and William F. Schneider     6.1 Introduction 115     6.2 Computational Models 116     6.2.1 Electronic Structure Methods 116     6.2.2 System Models 117     6.3 NOx Reduction 118     6.4 Adsorption at Metal Surfaces 119     6.4.1 Neutral Adsorbates 119     6.4.2 Charged Adsorbates 122     6.5 Elementary Surface Reactions Between Adsorbates 125     6.5.1 Reaction Thermodynamics 125     6.5.2 Reaction Kinetics 129     6.6 Coverage Effects on Reaction and Activation Energies at Metal Surfaces 131     6.7 Summary 135     7 Computational Screening for Improved Heterogeneous Catalysts and Electrocatalysts 139 Jeffrey Greeley     7.1 Introduction 139     7.2 T rends-Based Studies in Computational Catalysis 140     7.2.1 Early Groundwork for Computational Catalyst Screening 140     7.2.2 Volcano Plots and Rate Theory Models 141     7.2.3 Scaling Relations, BEP Relations, and Descriptor Determination 144     7.3 Computational Screening of Heterogeneous Catalysts and Electrocatalysts 148     7.3.1 Computational Catalyst Screening Strategies 149     7.4 Challenges and New Frontiers in Computational Catalyst Screening 153     7.5 Conclusions 155     8 Catalytic Kinetics and Dynamics 161 Rafael C. Catapan, Matthew A. Christiansen, Amir A. M. Oliveira, and Dionisios G. Vlachos     8.1 Introduction 161     8.2 Basics of Catalyst Functionality, Mechanisms, and Elementary Reactions on Surfaces 163     8.3 T ransition State Theory, Collision Theory, and Rate Constants 166     8.4 Density Functional Theory Calculations 168     8.4.1 Calculation of Energetics and Coverage Effects 169     8.4.2 Calculation of Vibrational Frequencies 172     8.5 T hermodynamic Consistency of the DFT-Predicted Energetics 172     8.6 State Properties from Statistical Thermodynamics 176     8.6.1 Strongly Bound Adsorbates 177     8.6.2 Weakly Bound Adsorbates 177     8.7 Semiempirical Methods for Predicting Thermodynamic Properties and Kinetic Parameters 178     8.7.1 Linear Scaling Relationships 178     8.7.2 Heat Capacity and Surface Entropy Estimation 179     8.7.3 Bronsted-Evans-Polanyi Relationships 180     8.8 Analysis Tools for Microkinetic Modeling 181     8.8.1 Rates in Microkinetic Modeling 181     8.8.2 Reaction Path Analysis and Partial Equilibrium Analysis 181     8.8.3 Rate-Determining Steps, Most Important Surface Intermediates, and Most Abundant Surface Intermediates 184     8.8.4 Calculation of the Overall Reaction Order and Apparent Activation Energy 186     8.9 Concluding Remarks 187     9 Catalysts for Biofuels 191 Gregory T. Neumann, Danielle Garcia, and Jason C. Hicks     9.1 Introduction 191     9.2 Lignocellulosic Biomass 192     9.2.1 Cellulose 192     9.2.2 Hemicellulose 194     9.2.3 Lignin 195     9.3 Carbohydrate Upgrading 195     9.3.1 Zeolitic Upgrading of Cellulosic Feedstocks 196     9.3.2 Levulinic Acid Upgrading 199     9.3.3 GVL Upgrading 201     9.3.4 Aqueous-Phase Processing 202     9.4 Lignin Conversion 205     9.4.1 Zeolite Upgrading of Lignin Feedstocks 206     9.4.2 Catalysts for Hydrodeoxygenation of Lignin 208     9.4.3 Selective Unsupported Catalyst for Lignin Depolymerization 211     9.5 Continued Efforts for the Development of Robust Catalysts 212     10 Development of New Gold Catalysts for Removing CO from H2 217 Zhen Ma, Franklin (Feng) Tao, and Xiaoli Gu     10.1 Introduction 217     10.2 General Description of Catalyst Development 218     10.3 Development of WGS catalysts 220     10.3.1 Initially Developed Catalysts 220     10.3.2 Fe2O3-Based Gold Catalysts 221     10.3.3 CeO2-Based Gold Catalysts 221     10.3.4 TiO2- or ZrO2-Based Gold Catalysts 223     10.3.5 Mixed-Oxide Supports with 1:1 Composition 223     10.3.6 Bimetallic Catalysts 224     10.4 Development of New Gold Catalysts for PROX 225     10.4.1 General Considerations 225     10.4.2 CeO2-Based Gold Catalysts 226     10.4.3 TiO2-Based Gold Catalysts 227     10.4.4 Al2O3-Based Gold Catalysts 228     10.4.5 Mixed Oxide Supports with 1:1 Composition 228     10.4.6 Other Oxide-Based Gold Catalysts 229     10.4.7 Supported Bimetallic catalysts 229     10.5 Perspectives 229     11 Photocatalysis in Generation of Hydrogen from Water 239 Kazuhiro Takanabe and Kazunari Domen     11.1 Solar Energy Conversion 239     11.1.1 Solar Energy Conversion Technology for Producing Fuels and Chemicals 239     11.1.2 Solar Spectrum and STH Efficiency 242     11.2 Semiconductor Particles: Optical and Electronic Nature 244     11.2.1 Reaction Sequence and Principles of Overall Water Splitting and Reaction Step Timescales 244     11.2.2 Number of Photons Striking a Single Particle 245     11.2.3 Absorption Depth of Light Incident on Powder Photocatalyst 247     11.2.4 Degree of Band Bending in Semiconductor Powder 248     11.2.5 Band Gap and Flat-Band Potential of Semiconductor 250     11.3 Photocatalyst Materials for Overall Water Splitting: UV to Visible Light Response 251     11.3.1 UV Photocatalysts: Oxides 251     11.3.2 Visible-Light Photocatalysts: Band Engineering of Semiconductor Materials Containing Transition Metals 253     11.3.3 Visible-Light Photocatalysts: Organic Semiconductors as Water-Splitting Photocatalysts 255     11.3.4 Z-Scheme Approach: Two-Photon Process 257     11.3.5 Defects and Recombination in Semiconductor Bulk 257     11.4 Cocatalysts for Photocatalytic Overall Water Splitting 259     11.4.1 Metal Nanoparticles as Hydrogen Evolution Cocatalysts: Novel Core/Shell Structure 259     11.4.2 Reaction Rate Expression on Active Catalytic Centers for Redox Reaction in Solution 261     11.4.3 Measurement of Potentials at Semiconductor and Metal Particles Under Irradiation 264     11.4.4 Metal Oxides as Oxygen Evolution Cocatalyst 266     11.5 Concluding Remarks 268     12 Photocatalysis in Conversion of Greenhouse Gases 271 Kentaro Teramura and Tsunehiro Tanaka     12.1 Introduction 271     12.2 Outline of Photocatalytic Conversion of CO2 273     12.3 Reaction Mechanism for the Photocatalytic Conversion of CO2 276     12.3.1 Adsorption of CO2 and H2 276     12.3.2 Assignment of Adsorbed Species by FT-IR Spectroscopy 279     12.3.3 Observation of Photoactive Species by Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) Spectroscopies 281     12.4 Summary 283     13 Electrocatalyst Design in Proton Exchange Membrane Fuel Cells for Automotive Application 285 Anusorn Kongkanand, Wenbin Gu, and Frederick T. Wagner     13.1 Introduction 285     13.2 Advanced Electrocatalysts 288     13.2.1 Pt-Alloy and Dealloyed Catalysts 288     13.2.2 Pt Monolayer Catalysts 290     13.2.3 Continuous-Layer Catalysts 293     13.2.4 Controlled Crystal Face Catalysts 296     13.2.5 Hollow Pt Catalysts 298     13.3 Electrode Designs 299     13.3.1 Dispersed-Catalyst Electrodes 299     13.3.2 NSTF Electrodes 302     13.4 Concluding Remarks 307     Index 315




نظرات کاربران