دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Michel Brienzo
سری: Clean Energy Production Technologies
ISBN (شابک) : 9811636818, 9789811636813
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 518
[508]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پالایشگاه زیستی همی سلولز: راه حلی پایدار برای ارزش افزوده به محصولات مبتنی بر زیست و انرژی زیستی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب ویرایش شده دانشی را در مورد پالایشگاه زیستی همی سلولز که به چرخه عمر تولید، اقتصاد دایره ای و ارزش گذاری با به دست آوردن محصولات زیستی با ارزش افزوده و انرژی زیستی نزدیک می شود، ارائه می دهد. تمرکز ویژه ای به ترکیبات شیمیایی و بیوشیمیایی تولید شده از پلت فرم مشتقات همی سلولز اختصاص داده شده است. همی سلولزها پلی ساکاریدهایی هستند که در دیواره سلولی گیاه قرار دارند و ساختارها و خواص شیمیایی متنوعی دارند. این دومین پلیمر آلی پراکنده در طبیعت است و در مواد لیگنوسلولزی گسترده از ضایعات کشاورزی و صنعتی یافت می شود، بنابراین همی سلولزها به عنوان مواد خام/خوراکی فراوان و تجدیدپذیر در نظر گرفته می شوند. مفهوم پالایشگاه زیستی به تولید همی سلولز مرتبط با فرآیندهای صنعتی زیست توده کمک می کند. همی سلولزها منابع جایگزین قند برای سوخت های تجدیدپذیر و به عنوان بستری برای تولید مواد شیمیایی هستند. این کتاب به بررسی فرآیندهای شیمیایی برای تولید و تجزیه شکر، به دست آوردن محصولات میانی و نهایی، و چالشهای تخمیر پنتوز میپردازد. جنبههای تغییرات شیمیایی و آنزیمی زنجیره همی سلولز با تمرکز بر بهبود خواص فیزیکوشیمیایی برای رویکردهای بیوپلاستیک و بیومتریال ارائه شدهاند. همی سلولزها به عنوان منابعی برای مواد پیشرفته در مصارف زیست پزشکی و دارویی و به عنوان هیدروژل برای تحویل مواد شیمیایی و دارویی ارائه می شوند. یک رویکرد بین رشته ای برای پوشش تمام فرآیندهای مربوط به همی سلولزها، تبدیل آن به ترکیبات با ارزش افزوده نهایی و میانی و تولید انرژی زیستی مورد نیاز است. با پوشش این زمینه، این کتاب مورد علاقه معلمان، دانش آموزان، محققان و دانشمندانی است که به ارزش گذاری زیست توده اختصاص داده شده اند. این کتاب منبع دانش جنبه های اساسی پردازش پیشرفته و کاربرد برای دانشجویان تحصیلات تکمیلی است. علاوه بر این، این کتاب به عنوان مطالب خواندنی اضافی برای دانشجویان کارشناسی (از دوره های مختلف) با علاقه عمیق به زیست توده و تبدیل زباله، ارزش گذاری، و محصولات شیمیایی از همی سلولزها استفاده می شود
This edited book provides knowledge about hemicelluloses biorefinery approaching production life cycle, circular economy, and valorization by obtaining value-added bioproducts and bioenergy. A special focus is dedicated to chemical and biochemical compounds produced from the hemicelluloses derivatives platform. Hemicelluloses are polysaccharides located into plant cell wall, with diverse chemical structures and properties. It is the second most spread organic polymer on nature and found in vast lignocellulosic materials from agro and industrial wastes, therefore, hemicelluloses are considered as abundant and renewable raw material/feedstock. Biorefinery concept contributes to hemicelluloses production associated with biomass industrial processes. Hemicelluloses are alternative sources of sugars for renewable fuels and as platform for chemicals production. This book reviews chemical processes for sugar production and degradation, obtaining of intermediate and final products, and challenges for pentose fermentation. Aspects of hemicelluloses chain chemical and enzymatic modifications are presented with focus on physicochemical properties improvement for bioplastic and biomaterial approaches. Hemicelluloses are presented as sources for advanced materials in biomedical and pharmaceutical uses, and as hydrogel for chemical and medicine deliveries. An interdisciplinary approach is needed to cover all the processes involving hemicelluloses, its conversion into final and intermediate value-added compounds, and bioenergy production. Covering this context, this book is of interest to teachers, students, researchers, and scientists dedicated to biomass valorization. This book is a knowledge source of basic aspects to advanced processing and application for graduate students, particularly. Besides, the book serves as additional reading material for undergraduate students (from different courses) with a deep interest in biomass and waste conversion, valorization, and chemical products from hemicelluloses
Preface About This Book Contents About the Editor 1: Hemicelluloses Role in Biorefinery Systems of Cellulosic Bioethanol, Particleboard, and Pulp and Paper Industries 1.1 Introduction 1.2 Hemicelluloses Valorization in the Cellulosic Bioethanol Production 1.2.1 Hemicelluloses Recovery in 2G Bioethanol Process 1.3 Hemicelluloses Valorization in the Pulp and Paper Industry 1.4 Hemicelluloses Valorization in Particleboard Fabrication 1.5 Challenges of Biological Aspects of Pentoses Fermentation of Lignocellulosic Hydrolysates Using Saccharomyces cerevisiae 1.5.1 Yeast Engineering For Second Generation Bioethanol 1.5.1.1 Xylose Fermentation 1.5.1.2 Arabinose Fermentation 1.5.1.3 Engineering Pentose Transports in S. cerevisiae Strains 1.6 Yield Loss Through the Formation of Inhibitors During the Hydrolysis of Lignocellulose Materials 1.6.1 Genetic Advances to Improve Yeast Tolerance to Lignocellulosic Hydrolysates 1.7 Concluding Remarks References 2: Sustainable Biorefinery Processing for Hemicellulose Fractionation and Bio-based Products in a Circular Bioeconomy 2.1 Introduction 2.2 Processing and Fractionation of Biomass: Hydrothermal-High Pressure Pretreatment 2.3 High Added Value Products from Hemicellulosic Fraction 2.3.1 Films and Coatings 2.3.2 Xylitol 2.3.3 Xylooligosaccharides: Production and Market Potential 2.3.4 Furfural and Its Derivatives 2.3.5 Ethanol from Hemicelluloses: Fermentation of Hexoses and Pentoses 2.4 Conclusion and Final Remarks References 3: Production of Hemicellulosic Sugars from Residual Lignocellulosic Biomass in an Integrated Small-Scale Biorefinery: Techno-... 3.1 Introduction 3.2 Heuristic Analysis 3.2.1 Feedstock 3.2.2 Biorefinery Design 3.2.3 Preliminary Assessments 3.2.4 Process Scale Selection 3.2.5 Process Technologies Choice 3.2.6 Evaluation of Product Competitors 3.2.7 Process Modelling 3.2.8 Application of the Heuristic Approach to the Case-Study 3.2.8.1 Available Feedstock 3.2.8.2 Biorefinery Design 3.2.8.3 Technology Matureness Level 3.2.8.4 Preliminary Assessments 3.2.8.5 Process Scale and Scenario Selection 3.3 Detailed Process Design and Simulation 3.3.1 Process Modelling 3.3.1.1 Drying and Milling 3.3.1.2 Pre-treatment 3.3.1.3 Enzymatic Hydrolysis 3.3.1.4 Fermentation 3.3.1.5 Ethanol Distillation and Dehydration 3.3.1.6 Xylo-Oligosaccharides Purification 3.3.1.7 Wastewater Treatment 3.3.1.8 Anaerobic Digestion 3.3.1.9 Combined Heat and Power Generation 3.3.2 LCB Only 3.3.3 Results 3.4 Techno-Economic Assessment 3.4.1 Methodology 3.4.2 Results 3.5 Life Cycle Assessment 3.5.1 Goal and Scope 3.5.2 Life Cycle Inventory 3.5.3 Environmental Characterization 3.5.4 Effect of the Use of Swine Manure (Wet Biomass) 3.6 Legal Framework and Implementation Potential for Rural Areas 3.7 Conclusions References 4: Composition and Chemical Structure of Hemicelluloses and Polysaccharides with Capability of Gel Formation 4.1 Introduction 4.2 Hemicelluloses 4.2.1 Supramolecular Structure 4.2.2 Xylans 4.2.3 Glucomannans 4.2.4 Hemicellulose-Lignin Complex 4.3 Polysaccharides Capable of Forming Gels 4.3.1 Pectic Substances and Pectin 4.3.1.1 Pectin Structure 4.3.1.2 Chemical Characteristics and Their Effects on Emulsifying Pectin Capacity 4.3.1.3 Sources of Pectin and Extraction Method 4.3.2 Xyloglucan 4.3.3 Carrageenan 4.3.3.1 Structure 4.4 Conclusion References Analytical Techniques Applied to Hemicellulose Structure and Functional Characterization 5.1 Introduction 5.1.1 Composition of Hemicelluloses 5.2 Physical-Chemical Analytical Methods of Hemicelluloses 5.2.1 Chemical Characterization 5.2.2 High-Performance Liquid Chromatography (HPLC) 5.2.2.1 Liquid-Solid or Adsorption Chromatography 5.2.2.2 Liquid-Liquid or Partition Chromatography 5.2.2.3 Liquid Chromatography with Chemically Bound Phase 5.2.2.4 Ion-Exchange Chromatography 5.2.2.5 Bio-affinity Chromatography 5.2.2.6 Chiral Chromatography 5.2.2.7 Exclusion Chromatography 5.2.3 High-Performance Anion Exchange Chromatography (HPAEC) 5.2.4 Infrared Spectroscopy 5.2.5 X-Ray Techniques 5.2.6 Nuclear Magnetic Resonance (NMR) 5.3 Hemicellulose Bioactivity 5.4 Concluding Remarks References 6: Chemical Modification Strategies for Developing Functionalized Hemicellulose: Advanced Applications of Modified Hemicellulo... 6.1 Introduction 6.2 Solubilization of Hemicellulose 6.2.1 Solubilization of Hemicellulose in the Form of High and Low DP 6.2.1.1 Alkaline Treatment Method 6.2.1.2 Liquid Hot Water Treatment Method 6.2.1.3 Organic Solvent Treatment Method 6.2.1.4 Enzymatic Solubilization Process 6.2.2 Solubilization of Hemicellulose in the Form of Monosaccharides 6.2.2.1 Acid hydrolysis Method 6.2.2.2 Steam Explosion Method 6.3 Chemical Modifications of Hemicellulose 6.3.1 Hemicellulose Esterification 6.3.1.1 Acetylation 6.3.1.2 Oleoylation 6.3.1.3 Lauroylation 6.3.1.4 Fluorination 6.3.1.5 Crosslinking/Graft Copolymerization 6.3.2 Etherification of Hemicellulose 6.3.2.1 Methylation 6.3.2.2 Carboxymethylation 6.3.2.3 Benzylation 6.4 Concluding Remarks References Enzymatic Approach on the Hemicellulose Chain Structural Modification and the Main Enzymes Production and Purification 7.1 Introduction 7.2 Hemicellulose and Other Components in Biomass 7.3 Hemicellulose Bioproducts 7.4 Enzymatic Modifications of Xylan 7.5 Xylanases Production from Fungi and Bacteria 7.6 Improvement of Xylanase Production and Purification 7.7 Biosynthesis of Xylan 7.8 Concluding Remarks References 8: Hemicellulose Application for the Production of Bioplastics and Biomaterials 8.1 Introduction 8.2 Plastic 8.2.1 Origin of Plastics and Their Importance for Society 8.2.2 Negative Impacts Caused by an Irregular Plastics Disposal 8.3 Bioplastics 8.3.1 Origin of Bioplastics 8.3.2 Bioplastic Composition and Structure 8.3.3 The Bioplastics Market 8.3.4 Emerging Technologies for Bioplastics Produced with Hemicellulose 8.3.4.1 Importance of Plasticizer for Hemicellulose Films 8.3.4.2 Development of Biomolecule Blends 8.3.4.2.1 Compatibility and Miscibility 8.3.4.3 Crosslinking Agents in Polymeric Chains 8.3.4.4 Functional Biopackages 8.3.4.5 Other Applications of Hemicellulose as a Biomaterial 8.4 Concluding Remarks References 9: Oligosaccharides from Lignocellulosic Biomass and Their Biological and Physicochemical Properties 9.1 Introduction 9.2 Chemical Structure and Composition 9.3 Properties of Oligosaccharides 9.3.1 Physicochemical Properties 9.3.2 Biological/Physiological Properties 9.4 Production of Prebiotic Oligosaccharides 9.4.1 Chemical Hydrolysis 9.4.1.1 Dilute Acid Hydrolysis 9.4.1.2 Autohydrolysis 9.4.1.3 Alkaline Solubilization 9.4.2 Enzymatic Hydrolysis 9.4.2.1 β-Xylanases 9.4.2.2 β-d-Mannanases 9.4.2.3 Debranching Enzymes (Accessory Enzymes) 9.4.2.3.1 α-Arabinofuranosidase 9.4.2.3.2 α-Glucuronidase 9.4.2.3.3 Galactosidase 9.4.2.4 Synergy and Enzymatic Cocktails for the Production of Xylan/Mannan Oligosaccharides 9.4.3 Industrial Production 9.5 Conclusions and Future Perspectives References Advances and New Perspectives in Prebiotic, Probiotic and Symbiotic Products for Food Nutrition and Feed 10.1 Introduction 10.2 Prebiotics 10.2.1 Definition and Classification 10.2.2 Mechanisms of Action 10.2.3 Main Action Molecules 10.2.3.1 Fructooligosaccharides 10.2.3.2 Xylooligosaccharides 10.2.3.3 Galactooligosaccharides 10.3 Intestinal Microbiota 10.3.1 Composition and Colonization of the Microbiota 10.3.2 Importance of Intestinal Microbiota 10.3.3 Microbiota and Diseases 10.4 Probiotics 10.4.1 Definition and Classification 10.4.2 Mechanisms of Action 10.4.2.1 Modulation of the Immune System 10.4.2.2 Mucosal Barrier 10.4.2.3 Inhibition of Pathogens 10.4.2.3.1 Short-Chain Fatty Acids (SCFAs) 10.4.2.3.2 Bacteriocins 10.4.3 Probiotic Properties of Bifidobacterium and Lactobacillus 10.5 Symbiotics 10.6 Evaluation Models of Prebiotics, Probiotics, and Symbiotics 10.6.1 Prebiotics 10.6.1.1 ``In Vitro´´ Tests 10.6.1.2 ``In Vivo´´ Tests 10.6.2 Probiotics 10.6.2.1 ``In Vitro´´ Tests 10.6.2.2 ``In Vivo´´ Tests 10.6.3 Symbiotics 10.6.3.1 ``In Vitro´´ and ``in Vivo´´ Tests 10.7 Conclusion and Future Perspectives References Hemicellulose Sugar Fermentation: Hydrolysate Challenges, Microorganisms, and Value-Added Products 11.1 Introduction 11.2 Value-Added Products from Hemicellulose 11.3 Biomass Resources of Hemicellulose 11.4 Pretreatment Methods: Hemicellulose Hydrolysis and Degradation Products Formation 11.4.1 Hemicellulose Hydrolysate Detoxification Methods 11.5 Microorganisms Used in Hemicellulose Sugar Fermentation and Xylose Metabolism 11.6 Improved Xylose-Fermenting Microorganisms by DNA Technology 11.7 Conclusion References 12: Production of Platform Chemicals and High Value Products from Hemicellulose 12.1 Introduction 12.2 Furans 12.2.1 Furfural 12.2.2 Furfuryl Alcohol 12.2.2.1 Two-Step Technology 12.2.2.2 Single-Step One-Pot Process 12.3 Polyols 12.3.1 Xylitol 12.3.1.1 Catalyst Precursor Structure 12.3.1.2 Noble Metal-Based Catalysts 12.3.1.3 Bimetallic Catalytic Systems 12.3.2 Ethylene Glycol and Propylene Glycol 12.4 Carboxylic Acids 12.4.1 Levulinic Acid 12.4.1.1 Xylose Direct Conversion 12.4.1.2 Furans Conversion 12.4.2 Lactic Acid 12.4.2.1 Conversion of Trioses 12.4.2.2 Pentoses Conversion 12.5 Summary and Outlook References 13: Synthesis of Furan Compounds from Hemicelluloses 13.1 Introduction 13.2 Properties of Furfural 13.3 Influencing Factors of Furfural Production 13.3.1 Raw Material 13.3.2 Solvent System 13.3.2.1 Monophasic System 13.3.2.2 Biphasic System 13.3.3 Catalyst 13.3.3.1 Homogeneous Catalyst 13.3.3.2 Heterogenous Catalyst 13.3.4 Temperature, Time, Heating Method and Additive 13.4 Furfural Production 13.4.1 Production of Furfural from Xylose 13.4.2 Production of Furfural from Hemicellulose 13.4.3 ``One-Pot´´ Method for Furfural Production from Lignocellulosic Biomass 13.4.4 Two-Step Method for Furfural Production from Lignocellulosic Biomass 13.5 The Formation Mechanism of Furfural 13.5.1 Hydrolysis Mechanism of Hemicellulose 13.5.2 Dehydration Mechanism of Xylose to Furfural 13.5.2.1 Cyclic Mechanism for Furfural Formation from Xylose 13.5.2.2 Acyclic Mechanism for Furfural Formation from Xylose 13.5.2.2.1 Protonation of Ring Oxygen (O5) 13.5.2.2.2 Protonation of C2-OH 13.5.2.3 Mechanism of Furfural Formation from Xylose Catalyzed by Brønsted Acid and Lewis Acid 13.6 Synthesis of 5-Hydroxymethylfurfural (5-HMF) from Hemicellulose 13.6.1 Properties of 5-HMF 13.6.2 Production of 5-HMF from Hemicellulose Derived Sugars 13.6.3 Formation Mechanism of 5-HMF from Hexose 13.6.3.1 Formation Mechanism of 5-HMF from Fructose 13.6.3.2 Formation Mechanism of 5-HMF from Aldose References 14: Biomedical and Pharmaceutical Applications of Xylan and Its Derivatives 14.1 Introduction 14.1.1 Xylan 14.1.1.1 Homoxylan 14.1.1.2 Arabinoxylan 14.1.1.3 Glucuronoxylan 14.1.1.4 Glucuronoarabinoxylan or Arabinoglucuronoxylan 14.2 Extraction of Xylan 14.3 Xylan-Based Biorefineries 14.3.1 Hydrolysis of Xylan 14.3.1.1 Xylooligosaccharides Production by Physicochemical Hydrolysis 14.3.1.2 Xylooligosaccharides Production by Enzymatic Hydrolysis 14.3.2 Xylan Derivatives 14.3.2.1 Xylan Ester 14.3.2.2 Sulfated Xylan 14.3.2.3 Xylan-Based Other Biorefinery Products 14.4 Biomedical and Pharmaceutical Applications of Xylan Derivatives 14.4.1 Xylan-Based Drug Delivery Systems 14.4.1.1 Xylan-Based Films for Drug Delivery 14.4.2 Xylan-Based Hydrogels for Drug Delivery 14.4.3 Xylan-Based Microparticles and Nanoparticles for Drug Delivery 14.5 Conclusions References 15: Hemicellulose-Based Delivery Systems: Focus on Pharmaceutical and Biomedical Applications 15.1 Introduction 15.2 Structure 15.3 Sources 15.4 Biodegradability and Biocompatibility of Hemicelluloses 15.5 Gelation Mechanism of Hemicelluloses 15.6 Applications 15.6.1 Pharmaceutical Applications 15.6.1.1 Hydrogels 15.6.1.1.1 Hydrogels Using Chemically Modified Hemicellulose 15.6.1.1.2 Hemicellulose-Containing Interpenetrating Network (IPN) Hydrogels Temperature-Responsive Hydrogels pH-Responsive Hydrogels Magnetic Field Responsive Hydrogels Photosensitive Hydrogels Electric-Responsive Hydrogels Nanoreinforced Hydrogels Hemicellulose-Reinforced Nanocellulose Hydrogels 15.6.1.2 Films 15.6.1.3 Nanocomposites 15.6.1.4 Microparticles 15.6.2 Biomedical Applications 15.6.2.1 Wound Healing 15.6.2.2 Tissue Engineering 15.7 Conclusion and Future Perspectives References