ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Heat Transfer Engineering: Fundamentals and Techniques

دانلود کتاب مهندسی انتقال حرارت: مبانی و تکنیک ها

Heat Transfer Engineering: Fundamentals and Techniques

مشخصات کتاب

Heat Transfer Engineering: Fundamentals and Techniques

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9780128185032, 0128185032 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 424 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Heat Transfer Engineering: Fundamentals and Techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی انتقال حرارت: مبانی و تکنیک ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مهندسی انتقال حرارت: مبانی و تکنیک ها




توضیحاتی درمورد کتاب به خارجی

Heat Transfer Engineering: Fundamentals and Techniques reviews the core mechanisms of heat transfer and provides modern methods to solve practical problems encountered by working practitioners, with a particular focus on developing engagement and motivation. The book reviews fundamental concepts in conduction, forced convection, free convection, boiling, condensation, heat exchangers and mass transfer succinctly and without unnecessary exposition. Throughout, copious examples drawn from current industrial practice are examined with an emphasis on problem-solving for interest and insight rather than the procedural approaches often adopted in courses. The book contains numerous important solved and unsolved problems, utilizing modern tools and computational sources wherever relevant. A subsection on common issues and recent advances is presented in each chapter, encouraging the reader to explore a greater diversity of problems.



فهرست مطالب

1 - Introduction
	1.1 - Thermodynamics and heat transfer
	1.2 - Heat transfer and its applications
	1.3 - Modes of heat transfer
	1.4 - Conduction
	1.5 - Convection
		1.5.1 - Mechanism of convection
	1.6 - Thermal radiation
	1.7 - Combined modes of heat transfer
	1.8 - Phase-change heat transfer
	1.9 - Concept of continuum
		Problems
	References
Chapter 2 - One-dimensional, steady state heat conduction
	2.1 - Introduction
	2.2 - Three-dimensional conduction equation
		2.2.1 - Boundary conditions
	2.3 - Steady state, one-dimensional conduction in a few commonly encountered systems
		2.3.1 - Heat transfer in a plane wall
	2.4 - Electrical analogy and thermal resistance
	2.5 - Heat transfer in cylindrical coordinates
		2.5.1 - Critical radius of insulation for cylinder
	2.6 - Steady state conduction in a spherical shell
	2.7 - Steady state conduction in a composite wall, cylinder and sphere
		2.7.1 - Composite wall
			2.7.1.1 - Parallel connection
			2.7.1.2 - Series-parallel connection
			2.7.1.3 - Thermal contact resistance
		2.7.2 - Composite cylinder
		2.7.3 - Composite sphere
	2.8 - One-dimensional, steady state heat conduction with heat generation
		2.8.1 - Plane wall with heat generation
	2.9 - Fin heat transfer
	2.10 - Analysis of fin heat transfer
		2.10.1 - Case 1: Insulated tip
	Fin efficiency
		Effectiveness of the fin
		Rectangular fin
		2.10.2 - Case 2: Long fin
		2.10.3 - Case 3: Convecting tip
		2.10.4 - Variable area fins
	References
3 - Conduction: One-dimensional transient and two-dimensional steady state
	3.1 - Introduction
	3.2 - Lumped capacitance method
	3.3 - Semi-infinite approximation
	3.4 - The method of separation of variables
	3.5 - Analysis of two-dimensional, steady state systems
	References
4 - Fundamentals of convection
	4.1 - Introduction
	4.2 - Fundamentals of convective heat transfer
		4.2.1 - Conduction, advection, and convection
		4.2.2 - The microscopic picture
		4.2.3 - Fundamental definition of convection
	4.3 - The heat transfer coefficient
		4.3.1 - Newton’s law vs. the fundamental definition
		4.3.2 - Average heat transfer coefficient
		4.3.3 - Methods of estimating the heat transfer coefficient
	4.4 - Governing equations
		4.4.1 - General approach to conservation laws
		4.4.2 - Law of conservation of mass
		4.4.3 - Momentum equations
		4.4.4 - Energy equation
		4.4.5 - Summary of equations
	4.5 - Summary
	References
Chapter 5 - Forced convection
	5.1 - Introduction
	5.2 - Approximation using order of magnitude analysis
	5.3 - Nondimensionalization of the governing equations
	5.4 - Approximate solution to the boundary layer equations
		Solution to integral momentum and energy equations with trial velocity and temperature profiles
		Integral method for fluids with 
		Flow over a cylinder
		Flow over a sphere
		Heat transfer in flows across a bank of tubes
	5.5 - Turbulent flow
		Reynolds analogy
	5.6 - Internal flows
		5.6.1 - Governing equations and the quest for an analytical solution
		Noncircular ducts
		Thermal considerations
		The mean temperature
		Newton’s law of cooling
		Fully developed conditions
			Internal flow with constant heat flux, 
			Internal flow with constant wall temperature, 
		Analytical solution for Nusselt number for a fully developed flow
			Correlation for turbulent flow inside tubes and ducts
	Problems
	References
Chapter 6 - Natural convection
	6.1 - Introduction
	6.2 - Natural convection over a flat plate
	6.3 - Boundary layer equations and nondimensional numbers
	6.4 - Empirical correlations for natural convection
	References
Chapter 7 - Heat exchangers
	7.1 - Introduction
	7.2 - Classification of heat exchangers
		Based on the nature of the heat exchange process
		Based on the direction of fluid flow
		Based on the mechanical design
		Based on the physical state of working fluid
		Based on the compactness
	7.3 - Heat exchanger analysis
	7.4 - The LMTD method
		7.4.1 - The parallel-flow heat exchanger
		7.4.2 - The counterflow heat exchanger
		7.4.3 - Heat exchangers with phase change
		7.4.4 - When is LMTD not applicable?
		7.4.5 - Shell and tube heat exchanger
		7.4.6 - Cross-flow heat exchanger
		7.5 - The effectiveness-NTU method
		7.5.1 - Effectiveness of a parallel-flow heat exchanger
		7.5.2 - Effectiveness of a counterflow heat exchanger
		7.5.3 - Comparison between parallel-flow and counterflow heat exchangers
		7.6 - Comparison between the LMTD and effectiveness-NTU methods
		7.7 - Other considerations in the design of a heat exchanger
	References
Chapter 8 - Thermal radiation
	8.1 - Introduction
	8.2 - Concepts and definitions in radiation
	8.3 - Black body and laws of black body radiation
		8.3.1 - Black body
		8.3.2 - Spectral directional intensity
		8.3.3 - Planck’s distribution
		8.3.4 - Wien’s displacement law
		8.3.5 - Stefan-Boltzmann law
		8.3.6 - Universal black body curve
	8.4 - Properties of real surfaces
	8.4.1 Emissivity (ε)
		8.4.2 - Apportioning of radiation falling on a surface
		8.4.3 - Spectral directional absorptivity
	8.5 - Kirchoff’s law
	8.6 - Net radiative heat transfer from a surface
	8.7 - Radiation heat transfer between surfaces
	8.8 - Radiation view factor and its determination
		8.8.1 - View factor algebra
	8.9 - The radiosity-irradiation method
	8.10 - Introduction to gas radiation
	8.11 - Equation of transfer or radiative transfer equation (RTE)
		8.11.1 - Determination of heat fluxes
		8.11.2 - Enclosure analysis in the presence of an absorbing or emitting gas
		8.11.3 - Calculation of emissivities and absorptivities for a mixture of gases
	References
Chapter Numerical heat transfer
	9.1 - Introduction
	9.2 - Three broad approaches to numerical methods
	9.3 - Equations and their classification
		9.3.1 - Classification based on linearity and order
		9.3.2 - Classification based on information propagation
	9.4 - Basics of the finite difference method
		9.4.1 - Taylor series and finite difference formulae
		9.4.2 - Overall process for the finite difference method
	9.5 - Steady conduction
	9.6 - Unsteady conduction
	9.7 - Introduction to methods for convection
	9.8 - Practical considerations in engineering problems
Chapter 10 - Machine learning in heat transfer
	10.1 - Introduction
	10.2 - Physics versus data methods
		10.2.1 - Physics and data in heat transfer
		10.2.2 - Artificial intelligence and machine learning
		10.2.3 - Common algorithms in machine learning
	10.3 - Neural networks for heat transfer
		10.3.1 - The learning paradigm
		10.3.2 - Linear regression
		10.3.3 - Neural networks
	10.4 - Practical considerations in engineering problems
	10.5 - Applications in heat transfer
	10.6 - Summary
	References
Chapter 11 - Boiling and condensation
	11.1 - Introduction
	11.2 - Boiling
	11.3 - Pool boiling
		11.3.1 - Pool boiling curve
		11.3.2 - Nucleation
		11.3.3 - Nucleate boiling
		11.3.4 - Critical heat flux
		11.3.5 - Film boiling
	11.4 - Flow boiling
		11.4.1 - Flow boiling regimes
		11.4.2 - The Chen correlation
		11.4.3 - Critical heat flux in flow boiling
		11.4.4 - A brief overview of flow boiling in micro-channels
	11.5 - Condensation
	11.6 - Film condensation on a vertical plate
	11.7 - Condensation on horizontal tubes
	11.8 - Two-phase pressure drop
		11.8.1 - Total pressure drop
		Problems
	References
Chapter 12 - Introduction to convective mass transfer
	12.1 - Introduction
	12.2 - Fick’s law of diffusion
	12.3 - The convective mass transfer coefficient
	12.4 - The velocity, thermal, and concentration boundary layers
	12.5 - Analogy between momentum, heat transfer, and mass transfer
		12.5.1 - The Reynolds analogy
		12.5.2 - The Chilton-Colburn analogy
	12.6 - Convective mass transfer relations
		12.6.1 - Flow over a flat plate
		12.6.2 - Internal flow
	12.7 - A note on the convective heat and mass analogy
	12.8 - Simultaneous heat and mass transfer
	References




نظرات کاربران