ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Hands-On Artificial Intelligence for Banking: A practical guide to building intelligent financial applications using machine learning techniques

دانلود کتاب هوش مصنوعی عملی برای امور بانکی: راهنمای عملی ساخت برنامه های مالی هوشمند با استفاده از تکنیک های یادگیری ماشین

Hands-On Artificial Intelligence for Banking: A practical guide to building intelligent financial applications using machine learning techniques

مشخصات کتاب

Hands-On Artificial Intelligence for Banking: A practical guide to building intelligent financial applications using machine learning techniques

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1788830784, 9781788830782 
ناشر: Packt Publishing 
سال نشر: 2020 
تعداد صفحات: 232 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Hands-On Artificial Intelligence for Banking: A practical guide to building intelligent financial applications using machine learning techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب هوش مصنوعی عملی برای امور بانکی: راهنمای عملی ساخت برنامه های مالی هوشمند با استفاده از تکنیک های یادگیری ماشین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب هوش مصنوعی عملی برای امور بانکی: راهنمای عملی ساخت برنامه های مالی هوشمند با استفاده از تکنیک های یادگیری ماشین



توضیحاتی درمورد کتاب به خارجی

Delve into the world of real-world financial applications using deep learning, artificial intelligence, and production-grade data feeds and technology with Python

Key Features

  • Understand how to obtain financial data via Quandl or internal systems
  • Automate commercial banking using artificial intelligence and Python programs
  • Implement various artificial intelligence models to make personal banking easy

Book Description

Remodeling your outlook on banking begins with keeping up-to-date with the latest and most effective approaches, such as artificial intelligence (AI). Hands-On Artificial Intelligence for Banking is a practical guide that will help you advance in your career in the banking domain. The book will demonstrate AI implementation to make your banking services smoother, more cost-efficient and accessible to clients, focusing on both the client and server-side uses of AI.

You'll begin by understanding the importance of artificial intelligence, while also gaining insights into the recent AI revolution in the banking industry. Next, you'll get hands-on machine learning experience, exploring how to use time series analysis and reinforcement learning to automate client procurements and banking and finance decisions. After this, you'll progress to learning about mechanizing capital market decisions, using automated portfolio management systems and predicting the future of investment banking. In addition to this, you'll explore concepts such as building personal wealth advisors and mass customization of client lifetime wealth. Finally, you'll get to grips with some real-world AI considerations in the field of banking.

By the end of this book, you'll be equipped with the skills you need to navigate the finance domain by leveraging the power of AI.

What you will learn

  • Automate commercial bank pricing with reinforcement learning
  • Perform technical analysis using convolutional layers on Keras
  • Use natural language processing (NLP) for predicting market responses and visualizing them using graph databases
  • Deploy a robot advisor to manage your personal finances via Openbank
  • Sense market needs using sentiment analysis for algorithmic marketing
  • Explore AI adoption in banking using practical examples
  • Understand how to obtain financial data from commercial, open, and internal sources

Who This Book Is For

This is one of the most useful artificial intelligence books for machine learning engineers, data engineers, and data scientists working in the finance industry who are looking to implement AI in their business applications. The book will also help entrepreneurs, venture capitalists, investment bankers, and wealth managers who want to understand the importance of AI in finance and banking and how it can help them solve different problems related to these domains. Prior experience in the financial markets or banking domain, and working knowledge of the Python programming language are a must.



فهرست مطالب

Cover
Title Page
Copyright and Credits
Contributors
Table of Contents
Preface
Section 1: Quick Review of AI in the Finance Industry
Chapter 01: The Importance of AI in Banking
	What is AI?
		How does a machine learn?
		Software requirements for the implementation of AI
			Neural networks and deep learning
		Hardware requirements for the implementation of AI
			Graphics processing units
			Solid-state drives
		Modeling approach—CRISP-DM
	Understanding the banking sector
		The size of banking relative to the world's economies
		Customers in banking
	Importance of accessible banking
		Open source software and data
		Why do we need AI if a good banker can do the job?
	Applications of AI in banking
		Impact of AI on a bank's profitability
	Summary
Section 2: Machine Learning Algorithms and Hands-on Examples
Chapter 02: Time Series Analysis
	Understanding time series analysis
	M2M communication
		The role of M2M communication in commercial banking
	The basic concepts of financial banking
		The functions of financial markets – spot and future pricing
			Choosing between a physical delivery and cash settlement
			Options to hedge price risk
	AI modeling techniques
		Introducing the time series model – ARIMA
		Introducing neural networks – the secret sauce for accurately predicting demand
			Backpropagation
			Neural network architecture
			Using epochs for neural network training
			Scaling
			Sampling
	Demand forecasting using time series analysis
		Downloading the data
		Preprocessing the data
		Model fitting the data
	Procuring commodities using neural networks on Keras
		Data flow
			Preprocessing the data (in the SQL database)
			Importing libraries and defining variables
			Reading in data
			Preprocessing the data (in Python)
			Training and validating the model
			Testing the model
			Visualizing the test result
			Generating the model for production
	Summary
Chapter 03: Using Features and Reinforcement Learning to Automate Bank Financing
	Breaking down the functions of a bank
		Major risk types
		Asset liability management
		Interest rate calculation
		Credit rating
	AI modeling techniques
		Monte Carlo simulation
		The logistic regression model
		Decision trees
		Neural networks
		Reinforcement learning
		Deep learning
	Metrics of model performance
		Metric 1 – ROC curve
		Metric 2 – confusion matrix
		Metric 3 – classification report
	Building a bankruptcy risk prediction model
		Obtaining the data
		Building the model
	Funding a loan using reinforcement learning
		Understanding the stakeholders
		Arriving at the solution
	Summary
Chapter 04: Mechanizing Capital Market Decisions
	Understanding the vision of investment banking
		Performance of investment banking-based businesses
	Basic concepts of the finance domain
		Financial statements
			Real-time financial reporting
		Theories for optimizing the best structure of the firm
			What decisions need to be made?
			Financial theories on capital structure
		Total factor productivity to measure project values
		The cash flow pattern of a project
		Forecasting financial statement items
	AI modeling techniques
		Linear optimization
		The linear regression model
	Finding the optimal capital structure
		Implementation steps
			Downloading the data and loading it into the model
			Preparing the parameters and models
			Projections
			Calculating the weighted average cost of capital
			Constraints used in optimization
	Providing a financial performance forecast using macroeconomic scenarios
		Implementation steps
	Summary
Chapter 05: Predicting the Future of Investment Bankers
	Basics of investment banking
		The job of investment bankers in IPOs
		Stock classification – style
		Investor classification
		Mergers and acquisitions
		Application of AI in M&A
		Filing obligations of listing companies
	Understanding data technologies
	Clustering models
	Auto syndication for new issues
		Solving the problem
			Building similarity models
			Building the investor clustering model
			Building the stock-clustering model
	Identifying acquirers and targets
	Summary
Chapter 06: Automated Portfolio Management Using Treynor-Black Model and ResNet
	Financial concepts
		Alpha and beta returns in the capital asset pricing model
		Realized and unrealized investment returns
		Investment policy statements
		Asset class
		Players in the investment industry
		Benchmark – the baseline of comparison
		Investors are return-seeking
		Trend following fund
			Using technical analysis as a means to generate alpha
		Trading decisions – strategy
	Understanding the Markowitz mean-variance model
	Exploring the Treynor-Black model
		Introducing ResNet – the convolutional neural network for pattern recognition
			Pooling layer
			ReLU activation layer
			Softmax
	Portfolio construction using the Treynor-Black model
		Solution
			Downloading price data on an asset in scope
			Calculating the risk-free rate and defining the market
			Calculating the alpha, beta, and variance of error of each asset type
			Calculating the optimal portfolio allocation
	Predicting the trend of a security
		Solution
			Loading, converting, and storing data
			Setting up the neural network
			Loading the data to the neural network for training
			Saving and fine-tuning the neural network
			Loading the runtime data and running through the neural network
			Generating a trading strategy from the result and performing performance analysis
	Summary
Chapter 07: Sensing Market Sentiment for Algorithmic Marketing at Sell Side
	Understanding sentiment analysis
	Sensing market requirements using sentiment analysis
		Solution and steps
			Downloading the data from Twitter
			Converting the downloaded tweets into records
			Performing sentiment analysis
			Comparing the daily sentiment against the daily price
	Network building and analysis using Neo4j
		Solution
			Using PDFMiner to extract text from a PDF
			Entity extractions
			Using NetworkX to store the network structure
			Using Neo4j for graph visualization and querying
	Summary
Chapter 08: Building Personal Wealth Advisers with Bank APIs
	Managing customer's digital data
	The Open Bank Project
		Smart devices – using APIs with Flask and MongoDB as storage
			Understanding IPS
		Behavioral Analyzer – expenditure analyzers
		Exposing AI services as APIs
	Performing document layout analysis
		Steps for document layout analysis
		Using Gensim for topic modeling
		Vector dimensions of Word2vec
	Cash flow projection using the Open Bank API
		Steps involved
			Registering to use Open Bank API
			Creating and downloading demo data
			Creating a NoSQL database to store the data locally
			Setting up the API for forecasting
	Using invoice entity recognition to track daily expenses
		Steps involved
	Summary
Chapter 09: Mass Customization of Client Lifetime Wealth
	Financial concepts of wealth instruments
		Sources of wealth: asset, income, and gifted
			Customer life cycle
	Ensemble learning
		Knowledge retrieval via graph databases
	Predict customer responses
		Solution
	Building a chatbot to service customers 24/7
	Knowledge management using NLP and graphs
		Practical implementation
			Cross-checking and further requesting missing information
			Extracting the answer
			Sample script of interactions
	Summary
Chapter 10: Real-World Considerations
	Summary of techniques covered
		AI modeling techniques
	Impact on banking professionals, regulators, and government
		Implications for banking professionals
		Implications for regulators
		Implications for government
	How to come up with features and acquire the domain knowledge
	IT production considerations in connection with AI deployment
	Where to look for more use cases
	Which areas require more practical research?
	Summary
Other Books You May Enjoy
Index




نظرات کاربران