ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Retrofitting High Density Residential Buildings: Policy Design and Implications on Domestic Energy Use in the Eastern Mediterranean Climate of Cyprus

دانلود کتاب راهنمای مقاوم سازی ساختمان های مسکونی با تراکم بالا: طراحی سیاست و پیامدهای استفاده از انرژی خانگی در آب و هوای مدیترانه شرقی قبرس

Handbook of Retrofitting High Density Residential Buildings: Policy Design and Implications on Domestic Energy Use in the Eastern Mediterranean Climate of Cyprus

مشخصات کتاب

Handbook of Retrofitting High Density Residential Buildings: Policy Design and Implications on Domestic Energy Use in the Eastern Mediterranean Climate of Cyprus

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3031118537, 9783031118531 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 941
[942] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 34 Mb 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Handbook of Retrofitting High Density Residential Buildings: Policy Design and Implications on Domestic Energy Use in the Eastern Mediterranean Climate of Cyprus به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راهنمای مقاوم سازی ساختمان های مسکونی با تراکم بالا: طراحی سیاست و پیامدهای استفاده از انرژی خانگی در آب و هوای مدیترانه شرقی قبرس نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب راهنمای مقاوم سازی ساختمان های مسکونی با تراکم بالا: طراحی سیاست و پیامدهای استفاده از انرژی خانگی در آب و هوای مدیترانه شرقی قبرس

این کتاب با استفاده از املاک توسعه مسکن اجتماعی پس از جنگ در قبرس به عنوان نمونه، استفاده از انرژی و اقداماتی را برای بهبود بهره وری انرژی مسکن عمومی بررسی می کند. در این جزیره مدیترانه ای که در طول سال دماهای گرم و مرطوب را تجربه می کند، ساختمان های مسکونی برای بهبود آسایش حرارتی ساکنان خود باید با آب و هوا سازگار شوند. این کتاب با در نظر گرفتن تأثیر قابل توجه خطرات گرمای بیش از حد بر مصرف انرژی و آسایش حرارتی و رفاه ساکنان، با هدف ارزیابی عملکرد انرژی فعلی، مصرف انرژی خانگی بلوک‌های برج مسکونی ناکارآمد ساخته شده و آسایش حرارتی ساکنان آنها را ارزیابی می‌کند. بلوک‌های برج مسکونی نماینده پایه (RTBs). به طور خاص، با توجه به تقاضای انرژی خنک کننده در تابستان، استفاده از فاماگوستا، قبرس به عنوان مطالعه موردی. این به دنبال شناسایی تأثیر الگوهای اشغال و رفتار انطباقی معمول خانوارها بر عملکرد انرژی خانه است تا پایگاهی برای اطلاعات مورد نیاز برای کالیبره کردن عملکرد انرژی ساختمان خانوارهای هدف فراهم کند.


توضیحاتی درمورد کتاب به خارجی

This book investigates energy use and measures to improve the energy efficiency of public housing, using post-war social housing development estates in Cyprus as its example. On this Mediterranean island, which experiences hot and humid temperatures throughout the year, residential buildings need to adapt to the climate to improve the thermal comfort of their occupants. The book assesses the domestic energy use of inefficiently built residential tower blocks and their occupants’ thermal comfort by considering the significant impact of overheating risks on energy consumption and occupants’ thermal comfort and well-being, with the intention of evaluating the current energy performance of base-case representative residential tower blocks (RTBs). In particular, considering the cooling energy demand in the summer, using Famagusta, Cyprus as a case study. It seeks to identify the impact of occupancy patterns and habitual adaptive behaviour of households on home energy performance in order to provide bases for the information needed to calibrate building energy performance of targeted households. 



فهرست مطالب

Preface
Acknowledgements
Contribution and Value
Why We Wrote This Handbook?
How to Read This Handbook?
Guide to the Readers
Synopsis
Overview
	Energy Use and Policy Implications in European Union Countries
	Implications of Retrofitting High Density Residential Buildings
	References
Contents
About the Authors
Nomenclature and Abbreviations
	Abbreviations
	Superscripts/Subscripts
	Greek Symbols
	Köppen Climate Classifications
List of Figures
1 Introduction
	1.1 Energy Governance in Europe
	1.2 Setting the Scene: Outlining Energy Efficiency Objectives and Energy Demand Scenarios
		1.2.1 Energy Performance Development
		1.2.2 Highlighting Issues on Energy Governance
		1.2.3 Energy Policy Gap
	1.3 Conceptual Framework
		1.3.1 Socio-Technical-Systems Approach
		1.3.2 Questionnaire Survey
		1.3.3 Environmental Monitoring
		1.3.4 Building Energy Simulation
	1.4 Retrofit Strategies and Energy Policy Design Initiatives in Europe
		1.4.1 Retrofitting the EU Domestic Built Environment
		1.4.2 Retrofit Technology and Energy Efficiency Behaviour Preferences
		1.4.3 Development of Evidence-Based Methodological Framework for Retrofit Delivery
	1.5 State-of-the-Art Review in Retrofit Policy Design
	1.6 Handbook Content
	References
2 State-of-The-Art I: Energy Efficiency Directives and Policy Aspirations in Retrofit Interventions
	2.1 Setting the Scene
		2.1.1 Policy Initiatives for Reducing Energy Use in the Residential Sector
		2.1.2 Overheating Risk in Residential Buildings
		2.1.3 Building Performance Implications in Residential Buildings
	2.2 The Scope of Retrofitting Post-war Social Housing Developments
		2.2.1 Tackling Inefficiently Constructed Residential Buildings to Improve Their Occupants’ Thermal Comfort
		2.2.2 Challenges and Opportunities for Social Housing Retrofitting
		2.2.3 The Significance of Building Envelopes in Retrofit Interventions
	2.3 Post-war Social Housing Development Estates with High Retrofit Potential in Northern Cyprus
		2.3.1 Research Context and the Socio-Political Urban Policy Background
		2.3.2 Urban Sprawl and the Rise of Residential Tower Block Development Estates
		2.3.3 Planning Criteria, Directives for Spatial Structure and Urban Process
		2.3.4 Vulnerable Urban Neighbourhood Selection
		2.3.5 Rationale for Selecting Residential Tower Blocks for the Base-Case Scenario Development Estate
		2.3.6 Building Typology Selection for the Base-Case Scenario Development Estate
	2.4 The Impacts of Climate and Climate Change on Energy Use
		2.4.1 Climate of Cyprus
		2.4.2 The Climate of the Investigated Research Context
		2.4.3 Observed and Projected Climate Change
		2.4.4 Climate Change and Its Effects on Energy Consumption
	Summary
	References
3 State-of-the-Art II: Bibliometric Review of the Last 30 Years Energy Policy in Europe
	3.1 Retrofitting Policy Implications in Europe
		3.1.1 Energy Performance Building Directives in Residential Buildings
		3.1.2 The Energy Issue in the EU: Towards 2020
		3.1.3 The Implementation of Energy Performance of Buildings Directives (EPBD) in Cyprus
	3.2 The Implications of Occupancy Patterns on Energy Use
		3.2.1 Trends in the Research on Housing Energy and Carbon Emissions
		3.2.2 Theoretical Framework that Underpins Energy and Carbon Emissions in the Housing Sector
		3.2.3 Empirical Studies on the Socio-Technical Variables that Influence Household Energy Consumption
		3.2.4 Epistemology of Investigating Occupant Behaviour in Households
	3.3 Overheating Risk Assessment
		3.3.1 Current Review of Overheating Drivers and Definitions
		3.3.2 Overheating Thresholds
		3.3.3 Selection of Key Criteria for Overheating Risk Assessment Methodology
	3.4 The Occupants’ Thermal Comfort
		3.4.1 Definition of Thermal Comfort
		3.4.2 Current Studies on Thermal Comfort in Residential Buildings in Europe
		3.4.3 Warming Climate Measures in Residential Buildings
		3.4.4 Thermal Comfort Assessment Criteria in Residential Buildings
		3.4.5 Adaptive Thermal Comfort Theory
		3.4.6 Indices for the Long-Term Evaluation of General Thermal Discomfort
		3.4.7 Indices of Feeling—Predicted Mean Vote (PMV) and Percentage People Dissatisfied (PPD)
	Summary
	References
4 Methods and Tools
	4.1 Rationale for the Research
	4.2 Conceptual Framework
	4.3 Research Design Model
		4.3.1 Pragmatic Worldview
		4.3.2 Strategy of Inquiry
		4.3.3 Research Methods
	4.4 Survey for Investigating the Cooling Energy Consumption Patterns and the Thermal Comfort of Households
		4.4.1 Relevance of Selecting Post-war Social Housing Developments
		4.4.2 The Case of Famagusta, Northern Cyprus
	4.5 Data Collection
		4.5.1 Questionnaire Design
		4.5.2 Sampling Methodology
		4.5.3 Data Collection Method
	4.6 Fieldwork Procedures
		4.6.1 Interviews—The Socio-Demographic Characteristics of Households and Their Home Energy Use
		4.6.2 Interviews—Thermal Comfort Assessment
		4.6.3 Pilot Questionnaire
		4.6.4 Data Collection and Production
	4.7 Environmental Monitoring
		4.7.1 On-site Measurements
		4.7.2 Spot Measurements
		4.7.3 Thermal Imaging Survey
	4.8 Building Modelling Simulation
		4.8.1 Reference Sources for the Base-Case Scenario Residential Tower Blocks
		4.8.2 Building Data Collection
		4.8.3 Building Performance Evaluation: Modelling and Simulation
		4.8.4 Step-by-Step: Developing the Simulation Set Input Parameters
		4.8.5 Methodology and Means for Optimisation Studies
	4.9 Limitations of the Study
		4.9.1 Field Measurements
		4.9.2 Sampling Protocol
		4.9.3 Thermal Sensation Findings
	Summary
	References
5 Questionnaire Survey: The Significance of Occupancy Patterns and Household Habitual Adaptive Behaviour on Home Energy Performance
	5.1 General Survey Findings
		5.1.1 Analysis of Number of Questionnaires Distributed
		5.1.2 Residents’ Socio-Demographic Characteristics
		5.1.3 Assessing Energy-Saving Awareness and Participants’ Opinions on Energy Conservation
		5.1.4 Home Energy System Information and Performance
		5.1.5 Occupants’ Patterns of Energy Use
		5.1.6 Household Energy Usage
		5.1.7 Summary of Findings
	5.2 Correlation Results
		5.2.1 Statistical Test Analysis
		5.2.2 Sample Size and Validity of the Results
		5.2.3 Correlation Between Block Number and Other Variables
		5.2.4 Correlation Between Occupants’ Age and Other Variables
		5.2.5 Correlation Between Occupants’ Age and Tenancy Status
		5.2.6 Correlation Between Income and Tenancy Status
		5.2.7 Correlation Between Energy Saving Advice and Income
		5.2.8 Correlation Between Household Occupation and Cooling and Heating Consumption Patterns
		5.2.9 Correlation Between Household Size and Heating and Cooling Consumption Patterns
		5.2.10 Correlation Between Occupation and Window Opening Patterns
		5.2.11 Correlation Between Household Income and Types of Heating and Cooling Systems Used
		5.2.12 Correlation Between Household Income and Energy Bills
		5.2.13 Correlation Between Energy Consumption and Utility Bills
	Summary
	References
6 Thermal Comfort Survey I: A Field Study Investigation to Assess on Households’ Thermal Discomfort and Overheating Risk of European Buildings
	6.1 General Survey Findings
		6.1.1 Habitual Adaptive Behaviour to Identify Reasons for Thermal Discomfort
		6.1.2 Conditions of the Interviewed Living Rooms
		6.1.3 Participants’ Metabolic Rates
		6.1.4 Participants’ Clothing Insulation
		6.1.5 Occupants’ Thermal Comfort Preferences
		6.1.6 Occupants’ Thermal Satisfaction in Winter and Summer
		6.1.7 Prevalence of Thermal Discomfort in Winter and Summer
		6.1.8 Summary of Findings
	6.2 Correlation Results
		6.2.1 Correlations Between Reasons for Thermal Discomfort and Other Variables
		6.2.2 Correlations Between the Reasons for Thermal Discomfort and the Households’ Socio-Demographic Characteristics
		6.2.3 Correlations Between the Households’ Living Room Conditions and Other Variables
		6.2.4 Correlations Between the Households’ Metabolic Rates/Clothing Insulation Levels and Other Variables
		6.2.5 Correlations Between the Households’ Thermal Comfort Preferences and Other Variables
		6.2.6 Correlations Between the Households’ TSVs and Energy Consumption in Winter and Summer
		6.2.7 Correlation Between the Households’ TSVs on Their Occupied Spaces and the Position of the RTBs in Winter and Summer
	Summary
	References
7 Thermal Comfort Survey II: A Field Study Investigation on the Regression Forecasting of Neutral Adaptive Thermal Comfort
	7.1 Overheating Risk Assessment Criteria
	7.2 Environmental Monitoring and Overheating Risk Assessment
		7.2.1 Analysis of Environmental Monitoring Surveys
		7.2.2 Analysis of On-site Monitoring and In-situ Measurements
	7.3 Evaluation of the Physical Approach
		7.3.1 Thermal Sensation Analysis with Environmental Conditions
		7.3.2 Regression Analysis with Environmental Parameters
		7.3.3 Regression Analysis with Occupants’ Thermal Comfort Preference
		7.3.4 Regression Analysis with Occupants’ Thermal Sensation
		7.3.5 Regression Analysis with Occupants’ Thermal Sensation for Each Occupied Space
	7.4 Evaluation of Physical Conditions
		7.4.1 Effect of Metabolic Rate of Participants
		7.4.2 Effect of Clothing Insulation of Participants
	Summary
	References
8 Energy Calibration: Developing a Novel Methodology to Calibrate Building Energy Performance of Social Housing Estates
	8.1 Scope and Method
		8.1.1 Selection Criteria for Using IES Software
		8.1.2 Selection Criteria of Representative Residential Tower Block as Base Case Scenario
		8.1.3 Descriptions of Building Modelling Phase of the Study
	8.2 Establishing Input Parameters for Evaluation of Current Energy Performance in the Base-Case Representative Building
		8.2.1 Weather Files and Model Geographical Location
		8.2.2 Building Constructions
		8.2.3 Room Materials and Energy Survey
	8.3 The Calibration Process of Building Energy Models
		8.3.1 Setting Up the Parameters for Dynamic Thermal Simulations
		8.3.2 Templates
	8.4 Model Validation
		8.4.1 Thermal Imaging Survey
		8.4.2 Thermal Radiometer Survey
		8.4.3 In-situ Measurements
		8.4.4 Energy Bills Analysis
	8.5 Thermal Modelling and Calibration
		8.5.1 Solar Exposure Analysis
	Summary
	References
9 Building Performance Evaluation: Policy Design and Life-Cycle Cost Impact Analysis of Retrofit Strategies
	9.1 Evaluation of the Significance of the Orientation Factor on Energy Performance
	9.2 Descriptive Information for Base-Case Representative Flats
		9.2.1 Flat A (South–Southeast)
		9.2.2 Flat B (South–Southwest)
		9.2.3 Flat C (South–Southeast)
		9.2.4 Flat D (South–Southwest)
		9.2.5 Flat E (South–Southeast)
		9.2.6 Flat F (South–Southwest)
	9.3 Evaluation of the Significance of Occupancy Patterns on Energy Performance
	9.4 Overall Electricity Consumption Assessment
		9.4.1 Flat A (South–Southeast)
		9.4.2 Flat B (South–Southwest)
		9.4.3 Flat C (South–Southeast)
		9.4.4 Flat D (South–Southwest)
		9.4.5 Flat E (South–Southeast)
		9.4.6 Flat F (South–Southwest)
		9.4.7 Validation Study Results with Occupants’ Energy Bills
	9.5 Cooling Consumption Assessment
		9.5.1 Flat A (South–Southeast)
		9.5.2 Flat B (South–Southwest)
		9.5.3 Flat C (South–Southeast)
		9.5.4 Flat D (South–Southwest)
		9.5.5 Flat E (South–Southeast)
		9.5.6 Flat F (South–Southwest)
		9.5.7 Validation Study Results with Occupants’ Energy Bills
	9.6 Overheating Risk Assessment
		9.6.1 Scope and Method
		9.6.2 Flat A (South–Southeast Orientation, OP3)
		9.6.3 Flat B (South–Southwest Orientation, OP1)
	9.7 Overall Overheating Risk Evaluation of the Representative Flats
	9.8 Building Energy Performance Optimisation
		9.8.1 Applications of Principles and Methodologies for Effective Retrofitting Actions
		9.8.2 Energy Efficiency Strategies Investigated in the Base-Case Representative RTB
		9.8.3 Energy Use Analysis Comparing the Pre- and Post-retrofitting Phases–Energy Efficient Building Systems
		9.8.4 Passive Cooling Design Strategies Investigated in the Base-Case Representative RTBs
	9.9 Summary
		9.9.1 Lessons Learned from the Building Performance Evaluation
		9.9.2 Lessons Learned from the Building Energy Performance Optimization
		9.9.3 Overall Summary and Future Recommendations
	References
10 Limitations: Developing an Evidence-Based Energy Policy Framework to Asset Robust Energy Performance Evaluation and Certification Schemes
	10.1 Limitations Due to the Survey Design
		10.1.1 Sampling Size and Technical Procurement on Assessing Energy Use
		10.1.2 Limitations Due to Sample Size
		10.1.3 Limitations in Relation to the Use of Survey/Response Quality
	10.2 Limitations Due to the Environmental Monitoring
	10.3 Limitations Due to Long-Term Thermal Discomfort: PMV and PPD Indices
		10.3.1 Uncertainty in Vulnerable Respondents Related to Thermal Discomfort
		10.3.2 Uncertainty in Regression Analysis Development and Tests
	10.4 Limitations Due to the Modelling Techniques
		10.4.1 Weather Files for Simulation Analysis
		10.4.2 Representativeness of Households’ Overall Energy Consumption
		10.4.3 Assigning International Standards to the Energy Simulation Model
	10.5 Limitations Due to the Implementation of Retrofit Strategies for Energy Policymaking Decisions
	Summary
	References
11 Interpretations and Discussions: Retrofitting of the Post-war Social Housing Estates in the Eastern Mediterranean Climate
	11.1 Overview
	11.2 Effect of Households’ Socio-Demographic Characteristics on Actual Energy Consumption
		11.2.1 Correlations Between Actual and Predicted Energy Consumption
		11.2.2 Correlations Between Occupancy Patterns and Household Habitual Adaptive Behaviour on Home Energy Performance
		11.2.3 Correlations Between Occupant Behaviour and Environmental Conditions
		11.2.4 Correlations Between Occupancy Profiles and Predicted Energy Use
		11.2.5 Correlations Between Household Type and Energy Use
	11.3 Effect of Buildings’ Thermal Characteristics on Actual Energy Consumption
		11.3.1 The Significance of Buildings’ Thermal Characteristics in Relation to Energy Consumption in the Calibration of Energy Models for Space Cooling in Summer
		11.3.2 Correlations Between Fabric Performance and Energy Consumption
		11.3.3 Correlations Between Buildings’ Thermal Characteristics and Occupants’ Thermal Sensations
		11.3.4 Correlations Between Households’ Energy Bills and Building Energy Performance
		11.3.5 Lessons to Learn from the STS Approach for Policymaking
	11.4 Implications for a Retrofit of Social Housing
		11.4.1 The Significance of Occupants’ Behaviour Related to Home Energy Use
	Summary
	References
12 Conclusions and Future Recommendations: Roadmap to Retrofit Policy Design
	12.1 Value for Practice
		12.1.1 Energy Policy Implications for Northern Cyprus
		12.1.2 Energy Policy Implications in the UK
	12.2 Summary of the Research Outcomes
	12.3 Recommendations
		12.3.1 Recommendations on Building Scale Retrofitting
		12.3.2 Recommendations on Urban Scale Retrofitting
		12.3.3 Recommendations on Occupants’ Behaviour
	12.4 Future Research Direction
	12.5 Closing Remarks
	References
Appendix A Pro-Forma Questionnaire Survey in English
Appendix B Building Diagnostic
Appendix C Thermal-Imaging Survey—Walk-In
Appendix D Thermal-Imaging Survey—Walk-Through
Appendix E Thermal Properties of Buildings with Different Climatic Zones in Cyprus
Appendix F Overheating Risk Assessment
Appendix G Retrofit Interventions
Appendix H Descriptive Analysis
Appendix I Type of Measures for Each Variable
Appendix J Sample of A Correlation Analysis
Appendix K Statistical Analysis




نظرات کاربران