دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Bassem R. Mahafza (editor), Scott C. Winton (editor), Atef Z. Elsherbeni (editor) سری: ISBN (شابک) : 1138062863, 9781138062863 ناشر: Chapman and Hall/CRC سال نشر: 2021 تعداد صفحات: 706 [707] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 27 Mb
در صورت تبدیل فایل کتاب Handbook of Radar Signal Analysis (Advances in Applied Mathematics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای آنالیز سیگنال رادار (پیشرفت در ریاضیات کاربردی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتابچه راهنمای جدید در مورد تجزیه و تحلیل سیگنال راداری یک رویکرد عمدی و سیستماتیک را اتخاذ می کند. از یک سطح واضح و ثابت از تحویل استفاده می کند و در عین حال جزئیات ریاضی قوی و قابل پیگیری را حفظ می کند. تاکید این کتاب بر روی انواع سیگنال رادار و پردازش سیگنال مربوطه آنهاست و نه بر روی سخت افزار یا قطعات سیستم های راداری.
این کتاب راهنما به عنوان یک مرجع ارزشمند برای طیف وسیعی از مخاطبان عمل می کند. به طور خاص، دانشجویان در سطح کالج، مهندسان رادار، و همچنین خوانندگان معمولی این موضوع، مخاطبان مورد نظر چند فصل اول این کتاب هستند. با پیشرفت فصلهای کتاب، پیچیدگی و ویژگی آن افزایش مییابد. بر این اساس، فصلهای بعدی برای مهندسان، دانشجویان تحصیلات تکمیلی و خوانندگان پیشرفته در نظر گرفته شده است. در نهایت، چند فصل آخر شامل چندین موضوع خاص در مورد سیستم های راداری است که هم آموزشی و هم از نظر علمی سرگرم کننده برای همه خوانندگان است.
ارائه موضوعات در این کتاب راهنما خواننده را به سفری علمی می برد که نشانه های اصلی آن عبارتند از: زیرسیستم ها و اجزای مختلف رادار در این زمینه، فصل ها سیگنال رادار را در طول این سفر از تولد تا پایان عمر آن دنبال می کنند. در طول راه، زیرسیستمهای مختلف رادار مرتبط با جزئیات زیاد تجزیه و تحلیل و مورد بحث قرار میگیرند.
شرکتکنندگان فصل این کتابچه راهنمای جدید شامل اعضای مجرب دانشگاهی و مهندسان رادار مجرب است. مجموع سالهای تجربی آکادمیک و دنیای واقعی آنها بیش از 175 سال است. آنها با هم ترکیبی منحصر به فرد و ساده از ارائههای ریاضی و عملی موضوعات مورد بحث در این کتاب را به ارمغان میآورند. برای اطلاعات بیشتر در مورد این افراد به بخش \"مشارکت کنندگان فصل\" مراجعه کنید.
This new handbook on radar signal analysis adopts a deliberate and systematic approach. It uses a clear and consistent level of delivery while maintaining strong and easy-to-follow mathematical details. The emphasis of this book is on radar signal types and their relevant signal processing and not on radar systems hardware or components.
This handbook serves as a valuable reference to a wide range of audience. More specifically, college-level students, practicing radar engineers, as well as casual readers of the subject are the intended target audience of the first few chapters of this book. As the book chapters progress, these grow in complexity and specificity. Accordingly, later chapters are intended for practicing engineers, graduate college students, and advanced readers. Finally, the last few chapters contain several special topics on radar systems that are both educational and scientifically entertaining to all readers.
The presentation of topics in this handbook takes the reader on a scientific journey whose major landmarks comprise the different radar subsystems and components. In this context, the chapters follow the radar signal along this journey from its birth to the end of its life. Along the way, the different relevant radar subsystems are analyzed and discussed in great detail.
The chapter contributors of this new handbook comprise experienced academia members and practicing radar engineers. Their combined years of academic and real-world experiences are in excess of 175. Together, they bring a unique, easy-to-follow mix of mathematical and practical presentations of the topics discussed in this book. See the "Chapter Contributors" section to learn more about these individuals.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors Acknowledgments Chapter 1: Signals and Systems - Refresher 1.1. Signal Classification 1.2. Signal Expansion Functions 1.2.1. Fourier Series Expansion Trigonometric Fourier Series Complex Exponential Fourier Series 1.2.2. Properties of the Fourier Series Addition and Subtraction Multiplication Average Power 1.3. Fourier Transform 1.3.1. Fourier Transform Pairs and Properties Tables 1.4. Systems Classification 1.4.1. Linear and Nonlinear Systems 1.4.2. Time Invariant and Time Varying Systems 1.4.3. Stable and Nonstable Systems 1.4.4. Causal and Noncausal Systems 1.5. Spectra of Common Radar Signals 1.5.1. Continuous Wave Signal 1.5.2. Finite Duration Pulse Signal 1.5.3. Periodic Pulse Signal 1.5.4. Finite Duration Pulse Train Signal 1.6. Convolution Integral 1.7. Correlation 1.7.1. Correlation Coefficient Energy Signals Power Signals 1.7.2. Correlation Integral Energy Signals 1.7.3. Relationship between Convolution and Correlation Integrals 1.7.4. Effect of Time Translation on the Correlation Function 1.7.5. Correlation Function Properties Conjugate Symmetry Total Signal Energy Total Area under the Autocorrelation Function Maximum Value for the Autocorrelation Function Fourier Transform for the Correlation Function 1.7.6. Correlation Integral Power Signals 1.7.7. Energy and Power Spectrum Densities 1.7.8. Correlation Function for Periodic Signals 1.8. Bandpass Signals 1.8.1. Analytic Signal (Pre-Envelope) 1.8.2. Pre-Envelope and Complex Envelope of Bandpass Signals 1.8.3. Spectrum for a Linear Frequency Modulation Signal 1.9. Discrete Time Systems and Signals 1.9.1. Sampling Theorem Lowpass Sampling Theorem Bandpass Sampling Theorem 1.10. Z-Transform 1.11. Discrete Fourier Transform 1.11.1. Discrete Power Spectrum 1.11.2. Spectral Leakage and Fold-Over Spectral Leakage Spectral Fold-Over 1.11.3. Windowing Techniques Interpolation 1.11.4. Decimation and Interpolation Decimation Interpolation 1.12. Random Variables and Random Processes 1.12.1. Random Variables 1.12.2. Multivariate Gaussian Random Vector 1.12.3. Complex Multivariate Gaussian Random Vector 1.12.4. Rayleigh Random Variables 1.12.5. The Chi-Square Random Variables Central Chi-Square Random Variable with N Degrees of Freedom Noncentral Chi-Square Random Variable with N Degrees of Freedom 1.12.6. Random Processes 1.12.7. Gaussian Random Process 1.12.8. Lowpass Gaussian Random Processes 1.12.9. Bandpass Gaussian Random Processes 1.12.10. Envelope of a Bandpass Gaussian Process Chapter 2: Radar Systems Basics 2.1. Radar Block Diagram 2.2. Radar Specific Terms 2.2.1. Range 2.2.2. Unambiguous Range 2.2.3. Range Resolution 2.2.4. Doppler Frequency Doppler Frequency Extraction - Method I Doppler Frequency Extraction - Method II 2.3. Radar Systems Classifications and Bands 2.3.1. High Frequency and Very HF Radars (Aand B-Bands) 2.3.2. Ultra High Frequency Radars (C-Band) 2.3.3. L-Band Radars (D-Band) 2.3.4. S-Band Radars (E- and F-Bands) 2.3.5. C-Band Radar (G-Band) 2.3.6. X- and Ku-Band Radars (I- and J-Bands) 2.3.7. K- and Ka- Band Radars (J- and K-Bands) 2.3.8. Millimeter Wave Radars (V- and W-Bands) 2.4. Decibel Arithmetic 2.5. Electromagnetic Waves (RF Waves) 2.5.1. Polarization 2.6. Coherence 2.7. Radar Antenna 2.7.1. Antenna Directivity and Gain 2.7.2. Antenna Power Radiation Pattern 2.7.3. Near and Far Fields 2.7.4. Beam Shape Loss and Scan Loss Beam Shape Loss Antenna Scan Loss 2.7.5. Number of Beam Positions 2.8. Radar Cross-Section 2.8.1. RCS Prediction Methods 2.9. Radar Measurement Errors Chapter 3: Radar Equation 3.1. Radar Range Equation 3.1.1. Maximum Detection Range 3.1.2. Blake Chart 3.1.3. Low Pulse Repetition Frequency Radar Equation 3.1.4. High PRF Radar Equation 3.1.5. Surveillance Radar Equation 3.2. Bistatic Radar Equation 3.3. Radar Losses 3.3.1. Transmit and Receive Losses 3.3.2. Antenna Pattern Loss and Scan Loss 3.3.3. Atmospheric Loss Atmospheric Absorption Atmospheric Attenuation Plots Attenuation Due to Precipitation 3.3.4. Collapsing Loss 3.3.5. Processing Loss Detector Approximation Constant False Alarm Rate Loss Quantization Loss Range Gate Straddle Loss Doppler Filter Straddle Loss Other Losses 3.4. Noise Figure 3.5. Continuous Wave Radars 3.5.1. CW Radar Equation 3.5.2. Frequency Modulation 3.5.3. Linear Frequency Modulated CW Radar 3.5.4. Multiple Frequency CW Radar Chapter 4: Radar Propagation Medium 4.1. Earth’s Impact on the Radar Equation 4.2. Earth’s Atmosphere 4.3. Atmospheric Models 4.3.1. Index of Refraction in the Troposphere 4.3.2. Index of Refraction in the Ionosphere 4.3.3. Mathematical Model for Computing Refraction 4.3.4. Stratified Atmospheric Refraction Model 4.4. Four-Third Earth Model 4.4.1. Target Height Equation 4.5. Ground Reflection 4.5.1. Smooth Surface Reflection Coefficient 4.5.2. Divergence 4.5.3. Rough Surface Reflection 4.5.4. Total Reflection Coefficient 4.6. Pattern Propagation Factor 4.6.1. Flat Earth 4.6.2. Spherical Earth 4.7. Diffraction Chapter 5: Radar Electronic Warfare Techniques 5.1. Electronic Warfare Classes 5.2. Passive Jamming Techniques 5.3. Radar Equation with Jamming 5.3.1. Self-Protection Jamming Radar Equation Burn-Through Range 5.3.2. Support Jamming Radar Equation 5.3.3. Range Reduction Factor 5.4. Noise (Denial) Jamming Techniques 5.4.1. Barrage Noise Jamming 5.4.2. Spot Noise and Sweep Spot Noise Jamming 5.5. Deceptive Jamming 5.6. Electronic Counter-Counter Measure Techniques 5.6.1. Receiver Protection Techniques 5.6.2. Jamming Avoidance and Exploitation Techniques 5.7. Case Studies 5.7.1. Hypothetical Victim-Radar Parameters 5.7.2. Self-Screening Jamming Case 5.7.3. Support Jamming Case Chapter 6: Matched Filter Receiver 6.1. Matched Filtering 6.1.1. Matched Filter Impulse Response 6.1.2. The Replica 6.1.3. Mean and Variance of the Matched Filter output 6.2. General Formula for the Output of the Matched Filter 6.2.1. Stationary Target Case 6.2.2. Moving Target Case 6.3. Waveform Resolution 6.3.1. Range Resolution 6.3.2. Doppler Resolution 6.3.3. Combined Range and Doppler Resolution 6.4. Range and Doppler Uncertainty 6.4.1. Range Uncertainty 6.4.2. Doppler (Velocity) Uncertainty 6.5. Combined Range-Doppler Uncertainty 6.6. Target Parameter Estimation 6.6.1. What Is an Estimator? 6.6.2. Amplitude Estimation 6.6.3. Phase Estimation 6.7. Pulse Compression 6.7.1. Time-Bandwidth Product 6.7.2. Radar Equation with Pulse Compression 6.7.3. Basic Principle of Pulse Compression 6.7.4. Correlation Processor 6.7.5. Stretch Processor 6.7.6. Stepped Frequency Waveforms Range Resolution and Range Ambiguity in SFW 6.7.7. Effect of Target Velocity on Pulse Compression SFW Case LFM Case Range-Doppler Coupling in LFM Chapter 7: Radar Ambiguity Function 7.1. Ambiguity Function Definition 7.2. Effective Signal Bandwidth and Duration 7.3. Single Pulse Ambiguity Function 7.3.1. Time-Bandwidth Product 7.3.2. Ambiguity Function 7.4. LFM Ambiguity Function 7.4.1. Time-Bandwidth Product 7.4.2. Ambiguity Function 7.5. Coherent Pulse Train Ambiguity Function 7.5.1. Time-Bandwidth Product 7.5.2. Ambiguity Function 7.6. Pulse Train with LFM Ambiguity Function 7.7. Stepped Frequency Waveform Ambiguity Function 7.8. Nonlinear Frequency Modulation 7.8.1. Concept of Stationary Phase 7.8.2. Frequency Modulated Waveform Spectrum Shaping 7.9. Ambiguity Diagram Contours 7.9.1. Range-Doppler Coupling in LFM Signals - Revisited 7.10. Discrete Code Signal Representation 7.10.1. Pulse-Train Codes 7.11. Phase Coding 7.11.1. Binary Phase Codes Barker Code Pseudo-Random Number Codes Linear Shift Register Generators Maximal Length Sequence Characteristic Polynomial 7.11.2. Polyphase Codes Frank Codes 7.12. Frequency Codes Chapter 8: Target Detection Part I: Single Pulse Detection 8.1. Single Pulse with Known Parameters 8.2. Single Pulse with Known Amplitude and Unknown Phase 8.2.1. Probability of False Alarm 8.2.2. Probability of Detection Part II: Detection of Fluctuating Targets 8.3. Pulse Integration 8.3.1. Coherent Integration 8.3.2. Noncoherent Integration 8.3.3. Improvement Factor and Integration Loss 8.3.4. Probability of False Alarm Formulation for a Square Law Detector 8.3.5. Square Law Detection 8.4. Probability of Detection Calculation 8.4.1. Detection of Swerling 0 (Swerling V) Targets 8.4.2. Detection of Swerling I Targets 8.4.3. Detection of Swerling II Targets 8.4.4. Detection of Swerling III Targets 8.4.5. Detection of Swerling IV Targets 8.5. Cumulative Probability of Detection 8.6. Constant False Alarm Rate 8.6.1. Cell-Averaging CFAR (Single Pulse) 8.6.2. Cell-Averaging CFAR with Noncoherent Integration 8.7. M-out-of-N Detection 8.8. Radar Equation-Revisited 8.9. Gamma Function 8.9.1. Incomplete Gamma Function Chapter 9: Radar Signal Processing in Clutter 9.1. Introduction 9.2. Clutter Definition 9.3. Volume Clutter Volume Cell Rain Chaff 9.3.1. Radar Range Equation in Volume Clutter 9.3.2. Volume Clutter Spectra 9.4. Area Clutter 9.4.1. Constant Y Model 9.4.2. Signal to Clutter, Airborne Radar 9.5. Clutter RCS, Ground-Based 9.5.1. Low PRF Case 9.5.2. High PRF Case 9.6. Amplitude Distribution 9.7. Area Clutter Spectrum 9.8. Doppler Processing 9.8.1. Range and Doppler Processing 9.8.2. Range and Doppler Ambiguity 9.8.3. Generalized Spectrum for Ground and Airborne Systems 9.9. Moving Target Indicator 9.9.1. Two Pulse Canceler 9.9.2. Three Pulse Canceler 9.9.3. The N+1 Pulse Canceler 9.9.4. Recursive MTI Filter 9.9.5. Blind Speeds and PRF Staggering 9.9.6. MTI Figures of Merit 9.10. Pulse Doppler Processing 9.10.1. Discrete Time Fourier Transform 9.10.2. Discrete Fourier Transform 9.10.3. Windowing 9.11. Ambiguity Resolution 9.11.1. Range Ambiguity Resolution 9.11.2. Doppler Ambiguity Resolution 9.11.3. Pulse Pair Processing 9.12. Limitations of Doppler Processing Appendix 9-A: Fill Pulses in Pulse Doppler Radars 9.A.1. Range and Doppler Ambiguities 9.A.2. Overview of Fill Pulses 9.A.3. Pulse Doppler Waveform with Fill Pulses 9.A.4. Recovery of Fill Pulses 9.A.5. Doppler Filtering Fill Pulses 9.A.6. Caveats and Extension Chapter 10: Radar Tracking 10.1. Introduction 10.2. Basic Concepts 10.2.1. Tracking Architecture 10.2.2. State Space Representation 10.3. Measurements 10.3.1. Angle Measurements Sequential Lobing Amplitude Comparison Monopulse Phase Comparison Monopulse Range Tracking and Measurements Measurement Accuracy 10.4. Filtering 10.4.1. Least Squares 10.4.2. Recursive Least Squares 10.4.3. Kalman Filter 10.4.4. Extended Kalman Filter 10.5. Derivation of Recursive Least Squares 10.6. Data Association 10.6.1. Gating Global Nearest Neighbor Joint Probabilistic Data Association Multiple Hypothesis Tracker 10.7. Tracking Maneuvering Targets 10.7.1. Field Parameter Filters 10.7.2. Dynamic Parameter Filters 10.7.3. Multiple Model Filters Chapter 11: Canonical and Finite Difference Time Domain Methods for RCS Computation 11.1. Radar Cross-Section Definition 11.2. RCS Dependency on Aspect Angle and Frequency 11.3. Target Scattering Matrix 11.4. Scattering off Basic Canonical Objects 11.4.1. Cylinder 11.4.2. Dielectric-Capped Wedge Far Scattered Field Plane Wave Excitation Special Cases Sample Numerical Results 11.4.3. Spheres 11.4.4. Ellipsoids 11.5. RCS Approximations of Simple Objects 11.5.1. Finite Length Cylinder 11.5.2. Circular Flat Plate 11.5.3. Rectangular Flat Plate 11.5.4. Triangular Flat Plate 11.5.5. Truncated Cone (Frustum) 11.6. RCS Using Computational Electromagnetics 11.6.1. The Standard Finite Difference Time Domain Method 11.7. RCS Using the FDTD Method 11.7.1. RCS of a Sphere 11.7.2. RCS of Complex Objects Chapter 12: Integral and Physical Optics Methods for RCS Computation 12.1. Introduction 12.2. Radiation and Scattering 12.2.1. Maxwell’s Equations 12.2.2. Boundary Conditions 12.2.3. Formulations for Radiation 12.2.4. Near and Far Fields Three-Dimensional Far Field 12.2.5. Formulations for Scattering Surface Equivalent Surface Integral Equations 12.3. Numerical Methods 12.3.1. Method of Moments MoM For 3-D Surfaces of Arbitrary Shape Fast Multipole Method Adaptive Cross-Approximation 12.3.2. Physical Optics 12.3.3. Physical Theory of Diffraction 12.3.4. Shooting and Bouncing Rays 12.3.5. Scattering Centers Scattering Center Definition Extraction Scattering Center Models 12.4. RCS Data Products 12.5. Scattering Coordinate System 12.5.1. Target Geometry Coordinate System 12.5.2. Spherical Coordinates Sampling on the Sphere Vertical and Horizontal Polarizations 12.5.3. Aspect and Roll Coordinates 12.5.4. Measurement Coordinate System 12.6. Examples 12.6.1. Bodies of Revolution Frustum Cone-Sphere Monoconic Reentry Vehicle 12.6.2. Complex Three-Dimensional Objects Trihedral Corner Reflector Business Jet Chapter 13: Antennas for Radar Applications 13.1. Antenna Types 13.2. Antenna Basic Parameters 13.2.1. Radiation Pattern Half-Power Beamwidth Beam Solid Angle Sidelobe Forward / Backward Ratio Voltage Standing Wave Ratio Antenna Bandwidth 13.2.2. Antenna Radiated Power 13.2.3. Radiation Intensity 13.2.4. Directivity 13.2.5. Antenna Gain 13.2.6. Antenna Effective Aperture 13.3. General Antenna Arrays 13.4. Linear Arrays 13.5. Array Tapering 13.6. Planar Arrays 13.6.1. Rectangular Grid Arrays 13.6.2. Circular Grid Arrays 13.6.3. Concentric Grid Circular Arrays 13.6.4. Recursive Circular 2-D Arrays 13.6.5. Rectangular Grid with Circular Boundary Arrays 13.7. Three-Dimensional Arrays 13.7.1. Rectangular Parallelepiped 3-D Array 13.7.2. Spherical 3-D Arrays 13.7.3. Arbitrary Arrays 13.8. Array Feeding and Beamforming Networks 13.8.1. General Forms of Array Feeding Networks 13.8.2. Wideband Operation of Feeding Networks 13.8.3. Array Beamforming Networks 13.8.4. Power-Divider Beamforming Networks 13.8.5. Butler and Blass Matrix 13.8.6. Rotman Lens 13.8.7. Design Considerations for Beamforming Networks 13.8.8. Feeding and Beamforming Networks for Two-Dimensional Arrays Chapter 14: Synthetic Aperture Radar 14.1. Basic Strip-Map Synthetic Aperture Radar Concept 14.1.1. Down Range Resolution 14.1.2. Cross-Range Resolution 14.1.3. Pulse Repetition Frequency Considerations 14.2. SAR Image Formation 14.2.1. Image Formation Processing Steps 14.2.2. Motion Compensation 14.2.3. Image Formation 14.2.4. Auto-Focus Techniques 14.3. Image Quality Considerations 14.4. Spotlight SAR 14.4.1. Motion through Resolution Cells 14.4.2. Polar Format Algorithm 14.4.3. Interferometric Synthetic Aperture Radar 14.5. Inverse Synthetic Aperture Radar Chapter 15: Wideband Radar Applications 15.1. Introduction 15.2. Band Versus Bandwidth 15.2.1. Various Bandwidths 15.2.2. Narrow Band, Medium Band and Wideband 15.3. Wideband Radar Applications 15.3.1. Foliage Penetrating Synthetic Array Radar 15.3.2. Automotive Blind Spot Warning and Collision Avoidance 15.3.3. Space Object Identification 15.3.4. Ground Perimeter Surveillance 15.3.5. Pavement Profiling and Inspection 15.3.6. Wall-Penetrating Radar for Detecting People 15.3.7. Noninvasive Construction Scanning 15.3.8. Industrial Robot Control 15.3.9. Compact Radar Range 15.3.10. Airport Security Imaging and Detection 15.3.11. Application Conclusions Chapter 16: Modern Digital Array Antennas for Radar Applications 16.1. Introduction 16.2. Introduction to Digital Arrays 16.3. Comparison of Array Antenna Architectures by Example 16.4. Other Digital Array Advantages 16.5. Extreme Data Rate Demands in Digital Arrays 16.6. Digital Down-Conversion and Digital Up-Conversion 16.7. Array Factor versus Huygens-Fresnel Principle 16.8. Simultaneous Receive Beams 16.9. Array Scanning Effects to Antenna Pattern 16.10. Noise Figure and Third Order Intercept in AESA 16.11. Concluding Remarks Bibliography Index