ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Physics in Medicine and Biology

دانلود کتاب کتاب فیزیک در پزشکی و زیست شناسی

Handbook of Physics in Medicine and Biology

مشخصات کتاب

Handbook of Physics in Medicine and Biology

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 1420075241, 9781420075243 
ناشر: CRC Press 
سال نشر: 2010 
تعداد صفحات: 521 
زبان: English  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 30 مگابایت 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Handbook of Physics in Medicine and Biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب فیزیک در پزشکی و زیست شناسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب فیزیک در پزشکی و زیست شناسی

در بررسی روش هایی که فیزیک به پیشرفت زیست شناسی و پزشکی کمک کرده است، آنچه معمولاً به ذهن می رسد ابزارهای مختلفی است که توسط محققان و پزشکان استفاده می شود. ما به اپتیکی فکر می کنیم که در میکروسکوپ، آندوسکوپ و لیزر کار می کند. تشخیص پیشرفته مجاز از طریق تصویربرداری مغناطیسی، اشعه ایکس و اولتراسوند. و حتی ابزارهای نانویی که به ما اجازه می دهند با مولکول ها سرهم بندی کنیم. ما این ابزارها را مطابق با نزدیک ترین چیز به حقایق مطلقی که می دانیم، یعنی قوانین فیزیک می سازیم، اما به ندرت همان ثابت های فیزیک را برای مطالعه موجودات مبتنی بر کربن خودمان به کار می بریم، مانند سیالات اعمال شده در جریان خون، یا قوانین حرکت و انرژی اعمال شده در عضله در حال کار. کتاب راهنمای فیزیک در پزشکی و زیست شناسی به جای در نظر گرفتن یک جنبه یا جنبه دیگر، دامنه کامل رابطه فیزیک با زیست شناسی و پزشکی را در بیش از 40 فصل بررسی می کند که توسط کارشناسان از آزمایشگاه تا کلینیک نوشته شده است. این کتاب با توصیف اولیه ویژگی‌های بیولوژیکی خاص آغاز می‌شود و به فیزیک ساختارهای تشریحی صریح که از سلول شروع می‌شود، می‌پردازد. فصل‌های بعدی به حواس، اندام‌ها و سیستم‌های بدن نگاه می‌کنند و به توضیح عملکردهای بیولوژیکی به زبان فیزیک ادامه می‌دهند. سپس متن روش‌های تحلیلی مختلف مانند تصویربرداری و روش‌های تشخیصی را شرح می‌دهد. بخش پایانی به دیدگاه‌های آتی مرتبط با مهندسی بافت، از جمله بیوفیزیک پروتزها و پزشکی بازساختی می‌پردازد. رویکرد ویراستار در سرتاسر این است که به چالش‌های عمده مراقبت‌های بهداشتی، از جمله مهندسی بافت و پزشکی تولید مثل، و همچنین توسعه اندام‌های مصنوعی و دستگاه‌های مصنوعی رسیدگی کند. محتویات بر اساس نوع اندام و عملکرد بیولوژیکی سازماندهی می شوند که توصیف روشنی از نظر خواص الکتریکی، مکانیکی، ترمودینامیکی و هیدرودینامیکی ارائه شده است. علاوه بر توضیحات فیزیکی، هر فصل اصول روش های تشخیصی بالینی مرتبط و جنبه های تکنولوژیکی کاربردهای درمانی را مورد بحث قرار می دهد. بخش آخر در مهندسی احیا، بر عوامل بیوشیمیایی و فیزیکوشیمیایی که برای بهبود یا جایگزینی عملکردهای بیولوژیکی مهم هستند، تأکید می کند. فصل ها مواد مورد استفاده برای طیف وسیعی از کاربردهای مرتبط با جایگزینی یا ترمیم بافت ها یا کل ساختارهای بافت را پوشش می دهند.


توضیحاتی درمورد کتاب به خارجی

In considering ways that physics has helped advance biology and medicine, what typically comes to mind are the various tools used by researchers and clinicians. We think of the optics put to work in microscopes, endoscopes, and lasers; the advanced diagnostics permitted through magnetic, x-ray, and ultrasound imaging; and even the nanotools, that allow us to tinker with molecules. We build these instruments in accordance with the closest thing to absolute truths we know, the laws of physics, but seldom do we apply those same constants of physics to the study of our own carbon-based beings, such as fluidics applied to the flow of blood, or the laws of motion and energy applied to working muscle. Instead of considering one aspect or the other, Handbook of Physics in Medicine and Biology explores the full gamut of physics’ relationship to biology and medicine in more than 40 chapters, written by experts from the lab to the clinic. The book begins with a basic description of specific biological features and delves into the physics of explicit anatomical structures starting with the cell. Later chapters look at the body's senses, organs, and systems, continuing to explain biological functions in the language of physics. The text then details various analytical modalities such as imaging and diagnostic methods. A final section turns to future perspectives related to tissue engineering, including the biophysics of prostheses and regenerative medicine. The editor’s approach throughout is to address the major healthcare challenges, including tissue engineering and reproductive medicine, as well as development of artificial organs and prosthetic devices. The contents are organized by organ type and biological function, which is given a clear description in terms of electric, mechanical, thermodynamic, and hydrodynamic properties. In addition to the physical descriptions, each chapter discusses principles of related clinical diagnostic methods and technological aspects of therapeutic applications. The final section on regenerative engineering, emphasizes biochemical and physiochemical factors that are important to improving or replacing biological functions. Chapters cover materials used for a broad range of applications associated with the replacement or repair of tissues or entire tissue structures.



فهرست مطالب

Cover Page......Page 1
Title Page......Page 3
ISBN 9781420075243......Page 4
Contents......Page 6
Preface......Page 9
Acknowledgments......Page 11
Editor......Page 12
Contributors......Page 13
Section I: Anatomical Physics......Page 16
1.2 Cellular Membranes are Elastic Solids......Page 17
Membrane-Associated Proteins......Page 18
Lipoproteins......Page 19
ER and Golgi......Page 20
Exocytosis......Page 21
Kinesins, Dyneins, and Myosins......Page 22
References......Page 23
Theory and Models......Page 24
Bacteriorhodopsin, a Transmembrane Protein......Page 26
Mechanosensitive Ion Channels......Page 28
References......Page 29
Desmosomes......Page 32
3.4 Intracellular Connections......Page 33
Diffusion......Page 34
Protein-Mediated Membrane Transport......Page 35
Forces Acting on Ion Movements......Page 36
Membrane Potential......Page 37
pH Regulation......Page 38
Additional Reading......Page 39
The First Law of Thermodynamics......Page 40
4.4 Ion Channels and Gap Junctions......Page 41
4.6 Models of Ionic Current......Page 42
References......Page 45
5.2 Components of the Neuron......Page 46
Unmyelinated Nerve......Page 47
Stimulus Conduction in the Unmyelinated Axon: Cable Equation......Page 48
Conduction in the Myelinated Axon: Modified Cable Equation......Page 49
Optimization of \"Conductivity\"......Page 50
Electrical Potential of an Electrical Dipole Layer......Page 51
Electrical Potential Perceived by Surface Electrodes......Page 52
Additional Reading......Page 54
Section II: Physics of Perception......Page 55
Stochastics......Page 56
Medical Device Development......Page 57
References......Page 58
Taste......Page 60
Novel Sensing Technology......Page 62
Stimulation of Receptors......Page 63
Smell Sensing Engineering Technology......Page 64
Additional Reading......Page 65
8.2 Touch......Page 66
Peripheral Afferents and Mechanoreception......Page 67
Mechanosensory Discrimination......Page 71
Proprioception......Page 72
Muscle Spindles......Page 73
8.3 The Somatosensory Cortex......Page 75
8.4 Thermoception......Page 76
Nociceptors......Page 78
Pain Modulation......Page 80
The Endogenous Opioids......Page 81
References......Page 82
How a Sound is Produced......Page 88
Propagation of Sound......Page 89
Sound Intensity and Pressure......Page 90
Sound Obstruction and Interaction......Page 91
Middle Ear......Page 93
Cochlea......Page 94
Central Auditory Nervous System......Page 102
Threshold......Page 105
Loudness......Page 106
Types of Hearing Loss......Page 107
Genetics, the Cochlea, and Hearing Loss......Page 108
Hearing Aids......Page 109
Additional Reading......Page 110
10.2 Lens......Page 115
Diseases of the Lens......Page 116
Diseases of the Vitreous Body......Page 117
Schlemm\'s Canal......Page 118
10.5 Mechanism of the Outflow of Aqueous Humor......Page 119
10.9 Cornea......Page 120
10.10 Sclera......Page 123
10.11 Retina......Page 124
Histological Structure of the Retina......Page 125
Visual Cells......Page 126
Ganglion Cells......Page 127
Cone Cells......Page 128
Integration of Visual Information in the Retina......Page 129
Retinal Diseases......Page 130
Ciliary Body......Page 131
Histological Anatomy of the Choroid......Page 132
10.14 Optic Nerve......Page 133
References......Page 134
11.1 Introduction......Page 135
Receptor Mechanism......Page 136
Animals with Active Electroreception......Page 137
Magnetic Detection......Page 138
References......Page 140
Section III: Biomechanics......Page 141
12.2 Muscle Tissue......Page 142
12.3 Anatomy of Skeletal Muscle......Page 143
12.4 Physiology of Skeletal Muscular Contraction......Page 145
12.6 Major Skeletal Muscles......Page 146
12.7 Physics of Skeletal Muscles......Page 147
References......Page 149
13.2 Micro Electro-Mechanical Systems......Page 150
13.4 IFA Mechanism of Action......Page 151
13.5 Summary......Page 154
References......Page 155
14.2 Functional Anatomy of the Heart......Page 156
Ventricular Systole......Page 157
Pressure–Volume Loop......Page 158
14.5 Heart Sounds......Page 159
Basic Functions of the Systemic Arterial System......Page 160
Control of Peripheral Blood Flow Distribution......Page 162
Mechanisms of Vasoconstriction......Page 163
References......Page 164
15.2 Control of HR......Page 165
The Frank–Starling Mechanism......Page 166
Ventricular Adaptation during Spontaneous Activity......Page 167
Chemoreceptor Reflexes......Page 168
15.7 Measurements of Pressure and Flow......Page 169
References......Page 170
Cardiovascular Circulation......Page 171
16.3 Heart......Page 172
16.4 Blood......Page 173
The Deformation-Rate and Rotation Tensors......Page 175
Navier–Stokes Equations......Page 176
Wall Shear Stress......Page 177
16.6 Laminar and Turbulent Flow......Page 179
References......Page 180
Pressure and Density......Page 182
Viscosity......Page 183
17.3 Conservation Laws in Fluid Dynamics......Page 184
Conservation of Energy......Page 185
Reynolds Number......Page 186
Particulate Flow Pattern......Page 187
Flow Conditions in Various Vessels......Page 188
Sinusoidal Fluctuation in Flow......Page 189
CFD Methods......Page 191
Example of CFD Analysis in a Large Artery......Page 192
References......Page 193
18.1 Introduction......Page 194
18.3 Inertia, Capacitance, and Resistance......Page 195
18.4 Bond Graphs......Page 196
18.5 Differential Equations......Page 197
References......Page 201
19.2 Anatomic and Physical Relationships......Page 202
Airway Resistance and Flow......Page 203
Surface Tension and Surfactant......Page 204
Lung Recruitment......Page 205
Measurement of Lung Volumes......Page 206
Gas Exchange......Page 207
Gas Transport in the Blood......Page 208
Clinical Correlations......Page 209
19.3 Ventilation......Page 210
The Medullary Neurons......Page 211
19.4 Artificial Ventilation......Page 212
Electric Control Scheme......Page 213
Power Outputs......Page 214
Control Strategy......Page 215
Novel Modes of Ventilatory Support......Page 216
Clinical Application of Mechanical Ventilation in Adults, Children, and Neonates......Page 217
Respiratory Distress Syndrome......Page 218
References......Page 219
Section IV: Bioelectrical Physics......Page 222
20.1 Measurement of Electrical Potential with Electrodes......Page 223
20.3 Electrode Types......Page 224
Electrical Double Layer......Page 225
Physical Models of the EEI......Page 226
Polarizable and Nonpolarizable Electrodes......Page 227
Frequency Response of the EEI......Page 228
20.4 Skin Impedance......Page 229
20.5 Current Levels......Page 230
20.6 Electrodes Placement......Page 231
20.7 Bipolar versus Unipolar......Page 232
Noise Related to Recording Devices......Page 234
20.9 Electrode–Skin Impedance Mismatch......Page 235
20.10 Electrochemical Electrodes......Page 236
Electrode Classification......Page 237
Silver/Silver Chloride Electrode......Page 238
Glass Electrode for pH Measurements......Page 239
References......Page 240
21.2 Origin of Bioelectrical Signals......Page 244
Action Potentials and Associated Extracellular Signals......Page 245
Electroencephalography......Page 246
Electromyography......Page 247
Reversible and Nonreversible Electrodes......Page 248
Stimulation Electrodes......Page 250
Electrochemical Potential, the Nernst Equation, and the Driving Force of Ions across Cell Membranes......Page 251
References......Page 252
Section V: Diagnostic Physics......Page 254
22.2 The Nature of a Signal......Page 256
System Theory......Page 257
References......Page 262
Cardiac Muscle......Page 263
Brief History of the Development of Electrocardiogram Recording......Page 264
QRS Axis......Page 265
Coherent Leads and Represented Cardiac Areas......Page 266
Relevant Intervals on the ECG......Page 267
Heart Rate Variability......Page 268
The Q-Waves......Page 269
Deviating ECG......Page 270
Arrhythmias......Page 277
ECG Manifestations of Relevant Cardiovascular Diseases......Page 280
Additional Reading......Page 282
Overview of Human Brain Function......Page 283
24.3 Nuts and Bolts of Measuring Brain Potentials......Page 285
24.4 Evoked Potentials and Event-Related Brain Potentials......Page 287
High-Density Electrode Arrays and Spatial Source Analysis......Page 288
Electroencephalogram......Page 289
Evoked Potentials......Page 290
Event-Related Brain Potentials......Page 292
EEG and Advances in Neuroimaging......Page 293
References......Page 294
25.2 Resistance and Impedance......Page 297
25.3 Impedance of Biological Tissues......Page 299
25.4 Frequency Dependence of Impedance......Page 300
25.5 Bioimpedance Measurement Mechanisms......Page 302
25.6 Whole-Body and Segmental Bioimpedance Measurements......Page 303
25.7 Bioelectric Impedance Analysis and Body Composition......Page 305
25.8 Bioelectric Impedance Analysis Applications......Page 306
References......Page 309
26.3 X-ray Tube Construction......Page 310
X-ray Generation Process......Page 311
X-ray Attenuation......Page 312
Image Intensifier......Page 313
26.6 Fluoroscopy......Page 314
26.8 Computed Tomography......Page 315
26.9 Central Slice Theorem......Page 316
26.10 Fan-Beam CT......Page 317
26.11 Cone Beam CT......Page 318
26.12 Artifacts......Page 319
Offset and Gain Correction......Page 320
26.13 Summary......Page 321
References......Page 322
27.2 Laser Technology......Page 323
Confocal Microscopy\'s Mechanism of Action......Page 324
Mechanism of Action for Immunofluorescent Imaging......Page 325
27.5 Summary......Page 326
Additional Reading......Page 327
Main Magnet......Page 328
RF Coils......Page 329
28.4 NMR Phenomenon......Page 330
RF Excitation......Page 331
Spin–Spin Relaxation......Page 332
Signal Contrast......Page 333
In-Plane Localization......Page 334
Frequency Encoding......Page 335
k-Space......Page 336
28.7 Pulse Sequences......Page 337
Inversion Recovery......Page 338
k-Space Trajectories......Page 340
28.9 Magnetic Resonance Spectroscopy......Page 341
Scan Time......Page 342
Partial Volume Effect......Page 343
Eddy Currents......Page 344
References......Page 345
29.2 Operational Mechanism......Page 346
29.5 Isotope Detection......Page 347
γ Radiation Detectors......Page 348
29.7 Applications of PET Scanning......Page 349
Functional Analysis......Page 350
References......Page 351
30.2 Nature of Light......Page 352
Fluorescence/Phosphorescence......Page 353
Fluorescence Lifetimes and Quantum Yields......Page 356
Anisotropy......Page 357
30.6 Molecular Imaging/Biological Details Revealed......Page 358
30.7 In Vivo Imaging......Page 359
30.8 Multiphoton Imaging......Page 360
References......Page 361
31.2 The Conventional OCT System......Page 363
Light Sources and Coherence Length......Page 364
Operation of the Fiber Optic Michelson Interferometer......Page 365
Detection Systems......Page 367
Polarization-Sensitive OCT......Page 368
References......Page 370
32.2 Advantages of Ultrasonic Imaging......Page 372
Generation of Ultrasound Waves......Page 373
Wave Equation......Page 374
Frequency Content......Page 375
Reflection......Page 376
Dispersion......Page 378
32.6 Real-Time Scanners......Page 379
Image Quality......Page 380
Doppler Effect......Page 381
Harmonic Imaging......Page 382
Additional Reading......Page 384
History......Page 386
Diffraction Limit......Page 387
33.3 Image Formation and Magnification......Page 388
Feedback Systems......Page 389
33.5 Imaging in a Liquid/Biological Imaging......Page 390
Quantitative Phase NSOM......Page 391
References......Page 393
34.3 Basic Principles......Page 394
Operational Details......Page 396
34.4 Bioengineering Applications......Page 397
References......Page 398
35.2 Fundamental Principles of SICM......Page 399
Ion Channel Studies in Live Cells......Page 401
SICM Plus Optical Microscopy Cell Surface Studies......Page 402
Mechanical Sensitivity......Page 403
References......Page 404
Electromagnetic Radiation Spectrum......Page 405
Wide-Band Radiation Power......Page 406
Band-Limited Thermal Radiation Power......Page 407
Thermal Radiative Heat Exchange between Bodies......Page 408
Tissues as Gray Bodies and the Origin of Their Emitted Radiation......Page 409
IR Photo-Detectors......Page 411
Detector IFOV......Page 414
Photo-Detector Noise Processes......Page 415
Flying Spot Scanners......Page 416
2-D Focal Plane Arrays: CCD Cameras......Page 417
36.4 Summary......Page 418
References......Page 419
Heat Detection......Page 421
37.3 Modeling Temperature in Coronary Arteries......Page 422
37.4 Clinical Applications......Page 424
37.5 Summary......Page 425
References......Page 426
38.1 Introduction......Page 427
38.2 Schlieren Techniques......Page 428
38.3 Deflection of Rays by a Medium......Page 430
38.6 Axially Symmetric Temperature Gradient......Page 431
38.8 Simulation of Interaction of Thermal Energy Applications in Tissue......Page 432
38.10 High-Speed Schlieren Imaging......Page 433
38.13 Schlieren Imaging as Educational Tool......Page 434
38.14 Summary......Page 435
References......Page 436
39.2 Technology of the HIM......Page 437
39.3 Beam Specimen Interaction......Page 439
39.5 Damage to the Surface and Subsurface......Page 440
Secondary Electrons......Page 441
Backscattered Helium......Page 442
Photons......Page 443
Charging Mitigation......Page 444
Helium Beam-Induced Chemical Reactions......Page 445
39.10 Backscattered Helium Energy Spectroscopy......Page 446
References......Page 447
40.1 Introduction......Page 448
Properties of Electron Beams......Page 449
40.4 Electron–Matter Interactions......Page 450
Elastic Interactions......Page 451
Secondary Electrons......Page 452
Electron Gun......Page 453
40.7 Electromagnetic Lens......Page 454
BSE Detection......Page 455
Imaging in TEM......Page 456
Imaging in SEM......Page 457
Fixation......Page 458
Infiltration......Page 459
Infectious Diseases......Page 460
Biopsies of Virus-Infected Skin......Page 461
40.14 EM Imaging Artifacts......Page 462
References......Page 463
Section VI: Physics of Accessory Medicine......Page 464
41.2 Microfluidics......Page 465
41.3 Potential Laboratory Functions......Page 466
41.4 Methods of Detection......Page 467
41.5 Mechanisms of Manufacturing......Page 468
41.6 Clinical Applications......Page 469
41.7 Future Indications......Page 470
References......Page 471
42.1 Introduction......Page 472
Location of DNA in Living Systems......Page 473
42.2 What are DNA Microarrays?......Page 474
Types of Microarrays......Page 475
42.3 Biophysical Modeling in Microarray Design......Page 476
Two-State Models of Hybridization......Page 477
Models of Unimolecular Structure Formation......Page 479
Kinetic Models of Hybridization......Page 480
42.4 Biophysical Issues in Interpretation of DNA Microarrays......Page 482
References......Page 483
Physical Characteristics of Nuclides......Page 487
43.2 Nuclear Medicine......Page 488
Scintigraphy......Page 489
Radioactive Dating......Page 490
Radiation Detection......Page 491
43.3 Clinical Applications of Nuclear Medicine......Page 492
References......Page 493
VII: Physics of Bioengineering......Page 495
44.2 In Vivo Regeneration and Repair......Page 496
Biodegradability......Page 497
44.4 Mechanical Characterization of Biomaterials......Page 498
Mechanical Behavior of Material......Page 499
44.5 Structural and Mechanical Properties......Page 501
44.6 Biological Tissue and Biomaterial Behavior......Page 502
44.7 Tissue Engineering: Identification of Target Function/Properties......Page 503
44.9 Role of SCs in Regenerative Medicine......Page 504
References......Page 505
Additional Reading......Page 510
A......Page 511
C......Page 512
D......Page 513
F......Page 514
H......Page 515
M......Page 516
N......Page 517
R......Page 518
S......Page 519
Z......Page 520
Back Page......Page 521




نظرات کاربران