دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Chunlei Guo (editor), Subhash Chandra Singh (editor) سری: ISBN (شابک) : 1138032611, 9781138032613 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: [563] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 31 Mb
در صورت تبدیل فایل کتاب Handbook of Laser Technology and Applications, Volume 1: Lasers: Principles and Operations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای فناوری و کاربردهای لیزر: مجموعه چهار جلدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتابچه راهنمای جامع راهنمای کامل به روز شده لیزرها و سیستم های لیزری، شامل طیف کاملی از کاربردهای فنی آنها را ارائه می دهد. جلد اول به تشریح اجزای اساسی لیزرها، خواص و اصول کار آنها می پردازد. جلد دوم پوشش کاملی از تمام دسته های اصلی لیزرها، از دیود حالت جامد و نیمه هادی گرفته تا لیزرهای فیبر، موجبر، گاز، شیمیایی و رنگی را ارائه می دهد. جلد سوم، کاربردهای مدرن در مهندسی و فناوری، از جمله تمام مطالعات موردی جدید و به روز شده را در بر می گیرد که ارتباطات از راه دور و ذخیره سازی داده تا پزشکی، اندازه گیری نوری، دفاع و امنیت، پردازش نانومواد و خصوصیات را در بر می گیرد.
This comprehensive handbook gives a fully updated guide to lasers and laser systems, including the complete range of their technical applications. The first volume outlines the fundamental components of lasers, their properties and working principles. The second volume gives exhaustive coverage of all major categories of lasers, from solid-state and semiconductor diode to fiber, waveguide, gas, chemical, and dye lasers. The third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors 1. Laser Principle: Section Introduction 2. Basic Laser Principles 2.1 Introduction 2.2 The Amplifier–Oscillator Connection 2.3 The Energy Levels of Atoms, Molecules and Condensed Matter 2.4 Spontaneous and Stimulated Transitions 2.4.1 Spontaneous Emission 2.4.2 The Lineshape Function 2.4.3 Stimulated Emission 2.4.4 The Relation between Energy Density and Intensity 2.4.5 Stimulated Absorption 2.5 Transitions between Energy Levels for a Collection of Particles in Thermal Equilibrium 2.6 The Relationship between the Einstein A and B Coefficients 2.6.1 The Effect of Level Degeneracy 2.6.2 Ratio of Spontaneous and Stimulated Transitions 2.7 Optical Frequency Amplifiers and Line Broadening 2.7.1 Homogeneous Line Broadening 2.7.2 Natural Broadening 2.7.3 Other Homogeneous Broadening Mechanisms 2.8 Inhomogeneous Broadening 2.8.1 Doppler Broadening 2.8.2 Energy Bands in Condensed Matter 2.9 Optical Frequency Amplification with a Homogeneously Broadened Transition 2.9.1 The Stimulated Emission Rate in a Homogeneously Broadened System 2.9.2 Optical Frequency Amplification with Inhomogeneous Broadening Included 2.10 Optical Frequency Oscillation—Saturation 2.10.1 Homogeneous Systems 2.10.2 Inhomogeneous Systems 2.11 Power Output from a Laser Amplifier 2.12 The Electron Oscillator Model of a Radiative Transition 2.12.1 The Connection between the Complex Susceptibility, Gain and Absorption 2.12.2 The Classical Oscillator Explanation for Stimulated Emission 2.13 From Amplifier to Oscillator—the Feedback Structure 2.14 Optical Resonators Containing an Amplifying Media 2.15 The Oscillation Frequency 2.15.1 Multi-mode Laser Oscillation 2.15.2 Mode Beating 2.16 The Characteristics of Laser Radiation 2.16.1 Laser Modes 2.16.2 Beam Divergence 2.16.3 Linewidth of Laser Radiation 2.17 Coherence Properties 2.17.1 Temporal Coherence 2.17.2 Laser Speckle 2.17.3 Spatial Coherence 2.18 The Power Output of a Laser 2.18.1 Optimum Coupling Acknowledgement References 3. Interference and Polarization 3.1 Introduction 3.2 Interference 3.2.1 Wave Coherence 3.2.2 Coherent-wave Interference 3.2.3 Interferometers 3.2.4 Interference between Partially Coherent Waves 3.2.5 Practical Examples 3.3 Polarization 3.3.1 Introduction 3.3.2 The Polarization Ellipse 3.3.3 Material Interactions 3.3.4 Crystal Optics 3.3.5 Retarding Waveplates 3.3.6 Polarizing Prisms 3.3.7 Circular Birefringence 3.3.8 Polarization Analysis 3.3.9 Applications of Polarization Optics 3.4 Conclusions Acknowledgements References 4. Introduction to Numerical Analysis for Laser Systems 4.1 Introduction 4.1.1 Representation of the Optical Beams 4.1.2 Split-step Method 4.1.3 Solving the Diffraction Part of the Split-step Method 4.1.4 Finite-difference Propagation 4.1.5 Angular Spectrum Propagation 4.2 Propagation in Homogeneous Media 4.2.1 Sampling 4.2.2 Propagation Control 4.3 Gain and Non-linear Media 4.3.1 Saturated Beer's Law Gain 4.3.2 Rate Equation Model 4.3.2.1 Frantz–Nodvik Solution 4.3.2.2 Offline Effects 4.3.2.3 Spontaneous Emission 4.4 Integration of Geometrical and Physical Optics 4.5 Dielectric Waveguides 4.6 Reflecting Wall Waveguides 4.7 Laser Modelling Software 4.7.1 Traditional Methods of Modelling 4.7.2 Selecting Commercial Numerical Modelling Software 4.7.3 Validation of Software References 5. Optical Cavities: Free-Space Laser Resonators 5.1 Introduction 5.2 Gaussian Beams 5.2.1 Conventions and Notation 5.2.2 Description of Gaussian Beams 5.2.3 Ray Transfer Matrices 5.2.4 Gaussian Resonant Modes 5.3 Stable Resonators 5.3.1 Two Mirror Resonators 5.4 Higher-order Modes of Stable Resonators 5.4.1 Cartesian Coordinates 5.4.2 Cylindrical Coordinates 5.4.3 Beam Quality 5.5 Mode-Matching 5.5.1 One-lens Approach 5.5.2 Two-lens Mode-matching 5.6 Plane Parallel Resonators 5.7 Unstable Resonators 5.7.1 Hard-Edged Apertures 5.7.2 Soft-edged Apertures 5.8 Distortion Effects 5.9 Axial Modes 5.9.1 Stable-resonator Axial-mode Spectral Separation 5.10 Frequency Selection and Frequency Stability 5.11 Temporal Resonator Characteristics 5.12 Fibre Laser Resonators 5.13 Conclusion References 6. Optical Cavities: Waveguide Laser Resonators 6.1 Introduction 6.2 Propagation in Hollow Dielectric Waveguides 6.2.1 Waveguide Mode Expressions 6.3 Waveguide Resonator Analysis 6.3.1 The Concept of Resonator Modes 6.3.2 Waveguide Modes 6.3.3 Mode Coupling, Coupling Losses and Mode Losses 6.3.4 Single-mode, Few-mode and Multi-mode Theory 6.4 First-Order Theory and Its Limits 6.4.1 Coupling Loss Theory of Single-Mode Waveguide Resonators 6.4.2 Dual Case I Waveguide Lasers 6.4.3 Rigrod Analysis for Waveguide Lasers 6.5 Real Waveguide Resonators: Experiment and Theory 6.5.1 Distant Mirrors 6.5.2 Tilted Mirrors and Folded Lasers 6.5.3 Tunability and Line Selection 6.5.4 Resonator Mode Degeneracies: Hopping and Hooting 6.6 Summary References Reviews Other Reading 7. Nonlinear Optics 7.1 Basic Concepts 7.2 Mechanisms of Optical Nonlinearity 7.2.1 Influence of Inversion Symmetry on Second-order Nonlinear Optical Processes 7.2.2 Influence of Time Response on Nonlinear Optical Processes 7.2.3 Non-resonant Electronic Response 7.2.4 Molecular Orientation 7.2.5 Electrostriction 7.2.6 Photorefractive Effect 7.3 Nonlinear Optical Materials 7.4 Optics in Plasmonic Materials 7.4.1 Linear Optical Properties 7.4.2 Plasmonic Mechanisms of Optical Nonlinearity 7.4.3 Epsilon-Near-Zero Nonlinearities 7.5 Second- and Third-harmonic Generation 7.6 Optical Parametric Oscillation 7.7 Optical Phase Conjugation 7.8 Self-focusing of Light 7.9 Optical Solitons 7.10 Optical Bistability 7.11 Optical Switching 7.12 Stimulated Light Scattering 7.12.1 Stimulated Raman Scattering 7.12.2 Stimulated Brillouin Scattering 7.13 Multi-photon Absorption 7.14 Optically Induced Damage 7.15 Strong-field Effects and High-order Harmonic Generation References 8. Laser Beam Control 8.1 Transforming a Gaussian Beam with Simple Lenses 8.1.1 Beam Concentration 8.1.1.1 Calculating a Correcting Surface 8.1.1.2 Depth of Focus 8.1.2 Truncation 8.1.3 Non-Gaussian Laser Beams 8.2 Transverse Modes and Mode Control 8.2.1 Mode Control 8.2.2 Injection Locking 8.2.3 Mode Control with Phase-conjugate Mirrors 8.3 Single Axial Mode Operation 8.3.1 Theory of Longitudinal Modes 8.3.2 Selecting a Single Longitudinal Mode 8.3.2.1 The Ring Laser 8.3.3 Frequency Stabilization 8.4 Tunable Operation 8.5 Beam Shape and Astigmatism in Diode Lasers 8.5.1 Correcting Astigmatism in Collimators 8.5.2 Circularizing a Diode Laser 8.6 Q-switching, Mode-locking and Cavity Dumping 8.6.1 Q-switching 8.6.1.1 Rotating Mirrors 8.6.1.2 Electro-optic and Acousto-optic Q-switching 8.6.1.3 Passive Q-switching 8.6.2 Cavity Dumping 8.6.3 Mode-locking 8.6.3.1 Active Mode-locking 8.6.3.2 Passive Mode-locking 8.6.3.3 Synchronous Pumping 8.7 Beam Quality—Limits and Measurement 8.7.1 Frequency and Amplitude Stabilization 8.7.2 Methods for Suppressing Amplitude Noise and Drift 8.8 Spatial Filtering References Further Reading 9. Optical Detection and Noise 9.1 Introduction 9.1.1 Nomenclature and Figures of Merit 9.1.1.1 Signal-to-noise Ratio 9.1.1.2 Noise-equivalent Power 9.1.1.3 Detectivity (D) and Specific Detectivity (D*) 9.1.1.4 Responsivity 9.2 Photoemissive Detectors 9.2.1 The Photoemissive Effect 9.2.2 Photomultipliers 9.3 Semiconductor Detectors 9.3.1 Photoelectric Absorption 9.3.2 pn and Pin Photodiodes 9.3.2.1 Photovoltaic Mode 9.3.3 Schottky Diode Detectors 9.3.4 Avalanche Photodiodes 9.3.5 Photoconductive Detectors 9.3.6 Intra-band Detectors or QWIPs 9.4 Thermal Detectors 9.4.1 Thermocouples and Thermopiles 9.4.2 Bolometers and Thermistors 9.4.3 Pyroelectric Detectors 9.5 Noise in Photodetection 9.5.1 Noise in the Optical Signal 9.5.1.1 Background Noise (Blackbody Radiation) 9.5.1.2 Photon Noise 9.5.2 Noise in the Photodetector 9.5.2.1 Photoelectron Noise 9.5.2.2 Shot Noise 9.5.2.3 Generation–Recombination (G–R) Noise 9.5.2.4 Gain Noise 9.5.2.5 1/f or Flicker 9.5.2.6 Temperature Noise 9.5.3 Noise in the Measurement Circuit 9.5.3.1 Thermal Noise (Aka Johnson or Nyquist Noise) 9.5.3.2 Amplifier Noise and Impedance Matching 9.5.4 Combining Noise Sources 9.5.5 Bandwidth-related Noise Reduction Methods References Further Reading 10. Laser Safety 10.1 Introduction 10.2 Laser Injuries to the Eyes and Skin 10.2.1 Injury Mechanisms 10.2.2 Principal Components and Operation of the Eye 10.2.3 Laser Injuries to the Eye 10.2.4 Retinal Injuries 10.3 Exposure Limits 10.3.1 Establishing a Threshold Level 10.3.2 Calculating MPE from Tables 10.3.2.1 Assessing the Exposure Duration 10.3.2.2 Dealing with Multiple Pulse Exposures 10.3.2.3 Small and Extended Sources 10.3.3 Nominal Ocular Hazard Distance 10.4 Safety in Product Design 10.4.1 The Classification Scheme 10.4.2 Optical Viewing Aids 10.4.3 Engineering Safety Features on Laser Products 10.4.3.1 Protective Housing 10.5 Safety in Practice 10.5.1 Class-based User Guidance 10.5.2 Application of Control Measures 10.5.3 Personal Protective Equipment 10.5.3.1 Eye Protection 10.5.3.2 Skin Protection 10.5.4 Accident Reports 10.6 Associated Hazards 10.7 Summary References Further Reading 11. Optical Components: Section Introduction 12. Optical Components 12.1 Introduction 12.2 Optical Design Aspects of Laser Optics 12.2.1 What and Where Are the Object and Image? 12.2.2 Size of the Image Waist 12.2.3 Real Laser Beams 12.2.4 Multiple Optical Elements and the Use of Ray Tracing 12.2.5 Evaluation of Aberrations and Diffraction Patterns 12.3 Surface Phenomena and Thin Layer Coatings 12.3.1 Reflection at the Surface of a Dielectric 12.3.2 Vertical Incidence and Effect of a Single Thin Layer 12.3.3 Multi-layer Coatings and Their Applications 12.4 Elementary Lens Forms 12.4.1 The Singlet 12.4.2 The Dialyte and the Achromat 12.4.3 Lens Systems with More than Two Elements 12.5 Use of (Curved) Mirrors 12.6 Non-focusing Optical Laser-beam Handling and Relaying 12.7 Thermal Effects in Optical Materials 12.8 Specifying Optics for Laser Applications 12.8.1 Tolerances 12.8.2 Surface Imperfections: Shape Deviations 12.8.3 Surface Imperfections: Surface Quality 12.8.4 Communication of Specifications—ISO 10110 12.9 Manufacture of Optical Components 12.10 Summary and Conclusions References 13. Optical Control Elements 13.1 Introduction 13.2 Amplitude Modulation 13.2.1 Electro-optic Modulators 13.2.2 Acousto-optic Modulators 13.2.3 High-power Beams 13.2.4 Magneto-optic Isolators 13.3 Scanning and Positioning the Beam 13.3.1 Mechanical Beam-directing Systems 13.3.2 Acousto-optic and Electro-optic Scanners 13.3.3 Diffractive Beam Steering 13.3.4 Positioning the Beam 13.4 Controlling the Size and Shape of the Beam 13.5 Safe Disposal of Unwanted Beams References Further Reading 14. Adaptive Optics and Phase Conjugate Reflectors 14.1 Adaptive Mirrors 14.2 Wavefront Sensors, Reconstruction and Control 14.3 Non-linear Optical Phase Conjugation 14.3.1 Four-wave Mixing 14.3.2 Stimulated Brillouin Scattering 14.3.3 Photorefraction 14.3.4 Self-intersecting Loop Conjugators References Further Reading 15. Opto-mechanical Parts 15.1 Introduction 15.2 Requirements and Specifications 15.3 System Considerations 15.3.1 Position Description 15.3.2 Mounting Accuracy 15.3.3 Mounting Techniques 15.3.4 Optimization 15.3.5 Design for Manufacturability 15.3.6 Testing 15.4 Materials and Finishes 15.5 Parts Configuration 15.5.1 Visualization 15.5.2 Distortion, Stress and Strain 15.6 Precision Positioning 15.6.1 Stages 15.6.2 Actuators 15.6.3 Servo-actuator Systems 15.7 Closure References Further Reading 16. Optical Pulse Generation: Section Introduction 17. Quasi-cw and Modulated Beams 17.1 Operation of Solid-state Lasers 17.1.1 Lamp-Pumped Operation 17.1.2 Diode-Pumped Operation 17.1.3 Effects of Thermal Distortion in Solid-state Lasers 17.2 Operation of CO[sub(2)] Lasers 17.3 Examples of Quasi-cw or Modulated Beam Applications References Further Reading 18. Short Pulses 18.1 Gain Switching 18.2 Q-switching 18.2.1 Q-switched cw Pumped Lasers 18.2.2 Methods of Q-switching 18.2.3 Mechanical Q-switches 18.2.4 Electro-optic Q-switches 18.2.5 Acousto-optic Q-switches 18.2.6 Saturable-absorber Q-switches 18.3 Cavity Dumping 18.4 Mode-locking 18.5 Master Oscillator with Power Amplifiers 18.6 Beam Characterization and Pulse Measurement References Further Reading 19. Ultrashort Pulses 19.1 Theory of Ultrashort Pulse Generation and Mode-locking 19.1.1 Active Mode-locking 19.1.2 Passive Mode-locking 19.2 Sources of Ultrashort Pulses 19.2.1 Dye Lasers 19.2.2 Ti:sapphire Lasers 19.2.3 Colour-centre Lasers 19.2.4 Fibre Lasers 19.2.5 Semiconductor Sources 19.2.6 Other Common Solid-state Laser Sources 19.2.7 Sources Based on Non-linear Frequency Conversion 19.2.8 Sources of Amplified Ultrashort Pulses 19.3 Pulse Shaping and Dispersion in Optical Systems 19.3.1 Linear Material Dispersion 19.3.2 Non-linear Material Dispersion 19.3.3 Other Sources of Dispersion 19.3.4 Group-velocity Dispersion Compensation 19.3.5 Fourier-transform Pulse Shaping 19.4 Diagnostic Techniques 19.4.1 Direct Electronic Measurements 19.4.2 Approximate Methods of Pulse-shape Measurement 19.4.3 Exact Methods of Pulse-shape Measurement 19.5 Applications of Ultrashort Pulses 19.5.1 Imaging 19.5.2 Ultrafast Chemistry 19.5.3 Semiconductor Spectroscopy 19.5.4 Material Processing 19.5.5 High Field Science 19.5.6 Other Applications References 20. Mode-locking Techniques and Principles 20.1 Introduction 20.2 Basic Principles of Mode-locking 20.2.1 Origin of the Term “Mode Locking” 20.2.2 Active Mode-locking 20.2.3 Passive Mode-locking 20.2.3.1 Basic Principle 20.2.3.2 Stability of the Circulating Pulse 20.2.3.3 Start-up Phase 20.2.3.4 Q-switching Instabilities 20.2.4 Fundamental vs. Harmonic Mode-locking 20.2.5 Frequency Combs 20.3 Saturable Absorbers for Mode Locking 20.3.1 Parameters of Saturable Absorbers 20.3.2 Semiconductor Absorbers 20.3.3 Carbon Nanotubes and Graphene 20.3.4 Laser Dyes 20.3.5 Artificial Saturable Absorbers 20.4 Soliton Mode-locking 20.5 Mode-locked Solid-state Bulk Lasers 20.5.1 Initial Remarks 20.5.2 Picosecond Lasers 20.5.3 Femtosecond Lasers 20.5.4 High-power Operation 20.5.5 High Pulse Repetition Rates 20.6 Mode-locked Fibre Lasers 20.7 Mode-locked Semiconductor Lasers 20.7.1 Mode-locked Diode Lasers 20.7.2 Mode-locked VECSELs 20.8 Modelling of Ultrashort Pulse Lasers References 21. Attosecond Metrology 21.1 Introduction 21.2 General Principles of Attosecond Pulse Characterization 21.3 Second-order XUV AC/FROG 21.4 Reconstruction of Attosecond Beating by Interference of Two-photon Transitions (RABBITT) 21.4.1 Two-Colour IR-XUV Photoionization in the Perturbative Regime 21.4.2 Spectral Amplitude 21.4.3 Spectral Phase: RABBITT 21.4.4 Rainbow RABBITT 21.5 Isolated Attosecond Pulses 21.6 Momentum Streaking 21.6.1 Angular Streaking and Attoclock 21.7 Complete Reconstruction of Attosecond Beating (CRAB) 21.8 Phase Retrieval by Omega Oscillation Filtering (PROOF) 21.8.1 Improved PROOF (iPROOF) 21.9 Comparison of RABBITT, Momentum Streaking, CRAB and PROOF 21.10 All-optical Method 21.11 Other Methods 21.12 Some Experimental Remarks 21.13 Principle Component Generalized Projection Algorithm 21.14 Conclusions and Outlook References 22. Chirped Pulse Amplification 22.1 Introduction 22.2 CPA Basics 22.2.1 Original CPA System 22.2.2 Nd:glass and Ti:sapphire Systems 22.3 Dispersion Control 22.3.1 Treacy Grating Compressor 22.3.2 Martinez Grating Stretcher 22.3.3 Offner Triplet 22.3.4 Dispersion Compensation for Optical Elements in the Amplifier 22.3.5 Grating Alignment Issues 22.4 Amplification to PW Level Power 22.4.1 Energy Extraction from CPA Amplifier 22.4.2 Energy Limitations 22.4.3 Pulse Duration Limitations 22.4.4 OPCPA 22.5 High-intensity Requirements 22.5.1 Beam Quality 22.5.2 ASE Issues 22.6 Concluding Remarks References 23. Optical Parametric Devices 23.1 Introduction 23.2 Non-linear Frequency Conversion 23.2.1 Optical Parametric Generation 23.2.2 Optical Parametric Gain 23.2.3 Optical Parametric Amplification 23.3 Phase-matching 23.3.1 Birefringent Phase-matching 23.3.2 Quasi-phase-matching 23.4 Optical Parametric Devices 23.5 Optical Parametric Oscillators 23.5.1 Continuous-wave OPOs 23.5.1.1 Steady-state threshold 23.5.1.2 Conversion Efficiency 23.5.2 Pulsed OPOs 23.5.2.1 Nanosecond OPOs 23.5.2.2 Picosecond and Femtosecond OPOs 23.6 OPO Design Issues 23.6.1 Non-linear Material 23.6.2 Pump Laser 23.7 Continuous-wave OPO Devices 23.8 Nanosecond OPO Devices 23.9 Synchronously Pumped OPO Devices 23.9.1 Picosecond OPO Devices 23.9.2 Femtosecond OPO Devices 23.10 Summary References 24. Optical Parametric Chirped-Pulse Amplification (OPCPA) 24.1 Introduction 24.2 Comparison of OPCPA and Lasers 24.3 Theory 24.3.1 Parametric Amplification 24.3.2 Phase-matching 24.3.3 Saturated Regime – Intensity, Phase and CEP 24.3.4 Simulations 24.4 OPCPA Architecture 24.5 OPCPA in Practice 24.5.1 Broad Spectral Coverage 24.5.2 Few-cycle Pulse Duration 24.5.3 Ultrahigh Power Systems 24.6 Optical Parametric Synthesizers 24.7 Summary References 25. Laser Beam Delivery: Section Introduction 26. Basic Principles 26.1 Beam Manipulation 26.2 Materials for Transmissive and Reflective Optics 26.3 Beam Quality 26.4 Beam Requirements at the Workpiece 26.5 Attenuation 26.6 Optical Damage 26.7 Safety 26.8 Summary References 27. Free-space Optics 27.1 Introduction 27.2 Laser Beam Propagation and Its Optical Consequences 27.2.1 Beam Size 27.3 Computation of Laser Optical Systems 27.3.1 Location of the Laser Beam Image 27.3.1.1 Multiple Optical Elements and the Use of Ray Tracing 27.3.2 Focal Spot Size 27.3.3 Effect of Aberrations on Image Size and Shape 27.3.4 Beam Aperturing Requirements and Effects 27.3.5 Low Beam Quality Sources 27.3.6 Non-rotationally Symmetrical Laser Beams 27.4 General Practical Guidelines of Optics for Laser Applications 27.5 Optics for CO[sub(2)] Laser Systems 27.5.1 Beam Transport 27.5.1.1 Articulated Arms 27.5.2 Lenses for Focusing CO[sub(2)] Laser Radiation 27.5.2.1 The Single (ZnSe) Lens 27.5.2.2 Extending the Limits of the Single Lens 27.5.2.3 Use of Zoom Optics 27.5.2.4 Thermal Effects in ZnSe Lenses 27.5.2.5 Use of Artificial Diamond 27.5.3 Mirror Systems for Use with CO2 Lasers 27.5.3.1 Angular Field Considerations 27.5.3.2 The Off-axis Paraboloid 27.5.3.3 Coma-corrected Optics 27.5.3.4 General Remarks on Aspherical Mirrors 27.5.4 CO[sub(2)] Laser Beam Integration for Homogeneous Illumination 27.5.5 Power Distribution Shaping by Phase Modulation 27.6 Optics for Lasers Operating in the Visible or Near-IR 27.6.1 Optical Handling of Fibre-delivered Nd:YAG Laser Radiation 27.6.2 Lens Design 27.6.3 Colour Correction 27.6.4 Optics for Diode Lasers 27.6.4.1 Classes of Diode Lasers and Applications 27.6.4.2 Diode Laser Optical Output Properties 27.6.4.3 Optical Handling of Single-diode Laser Beams 27.6.4.4 Single-diode Laser-focusing Optics 27.6.4.5 Optics for Applications of Diode Laser Arrays 27.6.4.6 Stacks of Diode Laser Arrays 27.7 Optics for Excimer and Other UV Lasers 27.7.1 Material Aspects 27.7.2 Beam Homogenization 27.7.3 Optics for Imaging a Mask 27.7.3.1 Design Examples 27.7.3.2 Photolithography 27.8 Optics for Other Laser Sources 27.9 Conclusions References Further Reading 28. Optical Waveguide Theory 28.1 Introduction 28.2 Basic Types of Optical Waveguides 28.3 Planar and Rectangular Guides 28.3.1 Planar Guides 28.3.2 Two-dimensional Guides 28.3.3 Numerical Methods for Waveguide Analysis 28.4 Optical fibres 28.4.1 Description of the Modes and Fields in Optical Fibres 28.4.2 Modal Birefringence and Polarization-maintaining Fibres 28.5 Propagation Effects in Optical Fibres 28.5.1 Attenuation in Optical Fibres 28.5.2 Dispersion in Optical Fibres 28.5.2.1 Inter-modal Dispersion 28.5.2.2 Chromatic Dispersion 28.5.2.3 Polarization-mode Dispersion 28.5.3 Non-linear Effects in Optical Fibres and Solitons 28.6 Mode-coupling 28.7 Conclusion References Further Reading 29. Fibre Optic Beam Delivery 29.1 Fibre Operation 29.1.1 Total Internal Reflectance Fibres 29.1.2 Hollow Waveguide Fibres 29.2 Fabrication 29.2.1 Fused Silica Optical Fibres 29.2.2 Chalcogenide, Fluoride and Germanate Glasses 29.2.3 Crystalline Optical Fibres 29.2.4 Hollow Waveguide Optical Fibres 29.2.5 Micro-structured Optical Fibres 29.3 Implementation 29.4 Beam Division and Combination 29.5 Limitations 29.5.1 Beam Quality and Profile 29.5.2 Thermal Damage 29.5.3 Pulsed Laser Damage 29.5.4 Non-linear Effects 29.5.5 Mechanical Damage 29.6 Summary and Future Directions References 30. Positioning and Scanning Systems 30.1 Introduction 30.2 General Requirements 30.3 Positioning Systems 30.3.1 Motion Devices 30.3.2 Kinematics 30.3.3 Measuring Devices 30.3.4 Advanced Positioning Systems and Optical Set-ups 30.3.5 Influences on Beam Propagation 30.3.6 Comparison of 3D-positioning Systems 30.4 Scanning Systems 30.4.1 Scanning Methods 30.4.2 Optical Configurations of Scanning Systems 30.4.3 Polygonal Scanners 30.4.4 Galvanometer Scanners 30.4.5 Performance and Accuracy of Scanning Galvanometers 30.4.6 Mirrors in Oscillatory Scanning Systems 30.4.7 Piezoelectric Devices 30.4.8 Acousto-Optic Deflectors 30.5 Conclusion Acknowledgements References Further Reading 31. Laser Beam Measurement: Section Introduction 32. Beam Propagation 32.1 Introduction 32.2 Beam Types 32.3 Beam Diameter 32.4 Practical Measurements 32.5 Propagation Characteristics 32.6 Beam Transformation by a Lens 32.7 Alternative Measurement Methods 32.8 Propagation of Astigmatic Beams 32.9 Summary References 33. Laser Beam Management Detectors 33.1 Introduction 33.2 Position-sensitive Detectors 33.2.1 Resistive Charge Division Sensors 33.2.2 Strip Detector and Quadrant Detector 33.3 Multi-pixel Arrays 33.3.1 Photodiode Arrays 33.3.2 Charge-coupled Devices as Tracking/Image Sensors 33.3.3 Complementary Metal Oxide Semiconductor Detectors 33.4 Fast Response Photodetectors 33.5 Photodetectors with the Intrinsic Amplification 33.6 Colour-sensitive Detectors 33.7 Detectors for the UV Spectral Range 33.8 Detectors for the IR Spectral Range 33.9 Common Customizations 33.9.1 Active Area Sizes, Shapes and Apertures 33.9.2 Coatings and Filters 33.10 Photodetector Integration 33.10.1 Packaging 33.10.2 Hybrids and Detectors for Fibre-coupled Lasers 33.11 Future Directions in Detectors Technology and Applications References Further Reading 34. Laser Energy and Power Measurement 34.1 Measurement Technique Selection 34.2 Test Configuration 34.3 Pyroelectric Sensors 34.4 Thermopile Sensors 34.5 Laser Absorbers 34.6 Semiconductor Photodiode or Optical Sensors 34.7 Displays References Further Reading 35. Irradiance and Phase Distribution Measurement 35.1 Basic Concepts and Definitions 35.2 Principal Measurement Set-Up 35.3 Irradiance Distribution Measurement 35.3.1 Scanning Devices 35.3.2 Camera-based Systems 35.4 Phase Distribution Measurement 35.4.1 Hartmann–Shack Wavefront Sensor 35.4.2 Interferometers 35.4.3 Phase Retrieval from Intensity Transport Equations 35.5 Coherence Measurement References Further Reading 36. The Measurement of Ultrashort Laser Pulses 36.1 Ultrashort Laser Pulses 36.1.1 Measuring the Spectrum 36.2 The Spectrum and One-dimensional Phase Retrieval 36.3 The Intensity Autocorrelation 36.3.1 The Autocorrelation and One-dimensional Phase Retrieval 36.4 Autocorrelations of Complex Pulses 36.5 Autocorrelations of Noisy Pulse Trains 36.6 Third-order Autocorrelations 36.7 The Autocorrelation and Spectrum—in Combination 36.8 Interferometric Autocorrelation 36.9 Cross-correlation 36.10 Autocorrelation Conclusions 36.11 The Time-frequency Domain 36.12 Frequency-resolved Optical Gating (FROG) 36.13 FROG and the Two-dimensional Phase-retrieval Problem 36.14 FROG Beam Geometries 36.15 The FROG Algorithm 36.16 The RANA Approach 36.17 Properties of FROG 36.18 Single-shot FROG 36.19 Near-single-cycle Pulse Measurement 36.20 FROG and the Coherent Artefact 36.21 XFROG 36.22 Very Simple FROG: GRENOUILLE 36.23 Measuring Two Pulses Simultaneously 36.24 Error Bars 36.25 Other Self-referenced Methods 36.26 Spectral Interferometry 36.27 Advantages and Disadvantages of Spectral Interferometry 36.28 Crossed-beam Spectral Interferometry 36.29 Practical Measurement Weak and Complex Pulses: SEA TADPOLE 36.30 Measuring Very Complex Pulses in Time: MUD TADPOLE 36.31 Single-shot MUD TADPOLE 36.32 SPIDER 36.33 Spatiotemporal Pulse Measurement 36.34 Spatially Resolved Spectral Interferometry: One Spatial Dimension 36.35 Fibre-based Scanning Spatiotemporal Pulse Measurement: Two and Three Spatial Dimensions 36.36 Spatiotemporal Measurement Examples: Focusing Pulses 36.37 Other Spatiotemporal-measurement Methods 36.38 Spatiotemporal Measurement on a Single Shot: STRIPED FISH 36.39 Conclusions Acknowledgements References Index