ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of Ion Chromatography

دانلود کتاب راهنمای کروماتوگرافی یونی

Handbook of Ion Chromatography

مشخصات کتاب

Handbook of Ion Chromatography

ویرایش:  
نویسندگان:   
سری:  
 
ناشر: Wiley 
سال نشر: 2016 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 44 مگابایت 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Handbook of Ion Chromatography به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راهنمای کروماتوگرافی یونی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب راهنمای کروماتوگرافی یونی

این کتابچه راهنمای سه جلدی مرجع استاندارد در این زمینه است که در جامعیت بی نظیر است. هر موضوع قابل تصور مربوط به حوزه رو به گسترش و مهم کروماتوگرافی یونی را پوشش می دهد. نسخه چهارم به طور کامل به روز شده و اصلاح شده است تا آخرین پیشرفت ها در ابزار دقیق را شامل شود، و اکنون به سه جلد کشیده شده است تا وضعیت فعلی کاربردها را منعکس کند.

کروماتوگرافی یونی یکی از پرکاربردترین تکنیک های جداسازی در شیمی تجزیه است. با کاربرد در زمینه هایی مانند شیمی دارویی، شیمی آب و علم مواد. در نتیجه، تعداد کاربران این روش به طور مداوم در حال افزایش است و نیاز به یک مرجع به روز را نشان می دهد.

یکی از پیشگامان واقعی این روش، یواخیم وایس در دانشگاه فنی برلین (آلمان) در رشته شیمی تحصیل کرد. وی همچنین مدرک دکترای خود را در رشته شیمی تجزیه دریافت کرد. در سال 2002، او در رشته شیمی تجزیه در ...


توضیحاتی درمورد کتاب به خارجی

This three-volume handbook is the standard reference in the field, unparalleled in its comprehensiveness. It covers every conceivable topic related to the expanding and increasingly important field of ion chromatography. The fourth edition is completely updated and revised to include the latest developments in the instrumentation, now stretching to three volumes to reflect the current state of applications.

Ion chromatography is one of the most widely used separation techniques of analytical chemistry with applications in fields such as medicinal chemistry, water chemistry and materials science. Consequently, the number of users of this method is continuously growing, underlining the need for an up-to-date reference.

A true pioneer of this method, Joachim Weiss studied chemistry at the Technical University of Berlin (Germany), where he also received his PhD degree in Analytical Chemistry. In 2002, he did his habilitation in Analytical Chemistry at the...



فهرست مطالب

About the Editors XVII    Preface XIX    List of Contributors XXI    Volume 1    1 Basic HPLC Theory and Definitions: Retention, Thermodynamics, Selectivity, Zone Spreading, Kinetics, and Resolution 1 Torgny Fornstedt, Patrik Forssen, and Douglas Westerlund    1.1 Basic Definitions 2    1.1.1 Basic Retention Models and Kinetics 6    1.1.2 Band Broadening and the Plate Height Concept 7    1.1.3 Sources of Zone Broadening 9    1.1.3.1 Eddy Diffusion 10    1.1.3.2 Molecular Diffusion 10    1.1.3.3 Slow Equilibration 10    1.1.4 Dependence of Zone Broadening on Flow Rate 11    1.2 Resolution 12    1.3 Modern Trends in Liquid Chromatography 14    1.3.1 Efficiency Trend 15    1.3.2 Permeability Trend 17    1.3.3 Selectivity and New Material Trend 19    1.4 Conclusions 21    References 22    2 Basic LC Method Development and Optimization 25 Victoria F. Samanidou    2.1 Introduction 25    2.2 Theoretical Aspects 26    2.2.1 Retention Factork 27    2.2.2 Selectivity    27    2.2.3 Peak Asymmetry 27    2.2.4 Efficiency of Chromatographic Column and Theoretical Plates 27    2.2.5 Resolution Rs 28    2.2.6 The Fundamental vanDeemter Equation 29    2.3 Controlling Resolution 30    2.3.1 How to Improve N 32    2.3.1.1 Physical Characteristics of Packing Material 32    2.3.2 Increase ofk 33    2.3.3 Factors Influencing Selectivity or How to Improve   ? 33    2.3.3.1 Optimization of Mobile-Phase Composition 34    2.3.3.2 pH Control, Ion-Pair Reagents, and Other Additives 35    2.3.3.3 Temperature 35    2.3.3.4 Stationary Phase and Column Selection 35    2.3.3.5 Stationary Phase and Packing Material Composition 36    2.4 Method Development Strategy 37    2.4.1 Gradient Elution versus Isocratic 38    2.4.2 Other Parameters in LC Method Development 38    2.5 Current and Future Trends 39    2.5.1 Two-Dimensional Chromatography 39    2.6 Conclusions 40    References 40    3 Recent Advances in Column Technology 43 Ross Andrew Shalliker and Danijela Kocic    3.1 Introduction 43    3.2 Column Packing: Downward Slurry Packing 45    3.3 Column Bed Heterogeneity 46    3.3.1 Axial Heterogeneity 46    3.3.2 Radial Heterogeneity and the Wall Effect 49    3.4 Active Flow Technology: A New Design Concept in Chromatography Columns 51    3.4.1 AFT Columns: Parallel Segmented Flow 51    3.4.2 AFT Columns: Curtain Flow 52    3.4.3 Performance of AFT Columns 53    3.4.3.1 Sensitivity 53    3.4.3.2 Efficiency 54    3.4.3.3 Speed 58    3.5 Summary 60    References 61    4 Hydrophilic Interaction Liquid Chromatography 63 Xinmiao Liang, Aijin Shen, and Zhimou Guo    4.1 Introduction 63    4.2 Separation Mechanism in HILIC 64    4.3 Stationary Phases for HILIC 67    4.3.1 Conventional NPLC Stationary Phases for HILIC 67    4.3.2 Stationary Phases Developed for HILIC 75    4.3.2.1 Polyaspartamide-Based Stationary Phases 75    4.3.2.2 Amide-Based Stationary Phases 75    4.3.2.3 Saccharides-Based Stationary Phases 76    4.3.2.4 Zwitterionic Stationary Phases 76    4.4 Application of HILIC 77    4.4.1 Application in the Pharmaceutical Field 77    4.4.2 Application in the Separation of Carbohydrates 78    4.4.3 Application in Proteome, Glycoproteome, and Phosphoproteome 78    4.4.4 Application in Metabolomics/Metabonomics 80    4.5 Conclusions and Outlook 81    References 81    5 LC   MS Interfaces 87 Pierangela Palma, Elisabetta Pierini, and Achille Cappiello    5.1 Introduction 87    5.2 API Sources 88    5.2.1 Electrospray Interface (ESI) 89    5.2.1.1 Principles of Operation and Ion Formation 90    5.2.1.2 Factors Influencing ESI Response 92    5.2.1.3 Modes of Operation 92    5.2.2 Atmospheric Pressure Chemical Ionization 93    5.2.2.1 Principles of Operation and Ion Formation 94    5.2.3 Atmospheric Pressure Photoionization 95    5.2.3.1 Principle of Operation 96    5.2.4 Atmospheric Pressure Laser Ionization 98    5.2.4.1 Principle of Operation and Ion Formation 98    5.3 Non-API Sources 99    5.3.1 Direct-EI 100    5.3.2 EI of Cold Molecules in Supersonic Molecular Beam (SMB) 103    5.3.3 Combined Single-Photon Low-Pressure Photoionization and EI Ionization 104    5.3.4 LC/DESI   MS Interface 106    References 107    6 LC   MS Applications in Environmental and Food Analysis 111 Alessandra Gentili, Fulvia Caretti, and Virginia Perez Fernandez    6.1 Introduction 111    6.2 Environmental Applications 112    6.2.1 Last Trends in Sample Preparation for LC   MS Analysis 112    6.2.2 Advances and Trends in Liquid Chromatography 113    6.2.3 Advances and Trends in Mass Spectrometry 113    6.3 Food Toxicant Applications 117    6.3.1 Recent Trends in Sample Preparation for LC   MS Analysis 117    6.3.2 Recent Trends in LC   MS Screening Analysis 118    6.3.3 Recent Trends in LC   MS Confirmatory Analysis 120    6.4 Foodomics as a Recent Approach Embracing Metabolomics, Proteomics, and Lipidomics 121    6.4.1 Food Proteomics 121    6.4.2 Food Metabolomics 124    6.4.3 Food Lipidomics 125    6.5 Trends and Future Developments 127    References 128    7 Solvents in Chromatography and Electrophoresis 135 Alain Berthod and Karine Faure    7.1 Introduction 135    7.2 Physicochemical Properties of Solvents 135    7.2.1 Melting and Boiling Points, and Vapor Pressure 135    7.2.2 Molecular Weight, Density, and Molar Volume 136    7.2.3 Viscosity, Surface Tension, UV Cutoff, and Refractive Index 136    7.2.4 Solvent Polarity Scales 137    7.2.5 New Solvents 142    7.3 Physicochemical Properties of Mixtures of Solvents 143    7.3.1 Fully Miscible Solvents 143    7.3.2 Nonfully Miscible Solvents and Phase Diagrams 144    7.3.3 Solvent Mixtures and Chromatographic Retention Times: Elution Strength 146    7.4 Mobile-Phase pH and Buffers 147    7.4.1 pH Definition 147    7.4.2 pH in Hydro-organic Mobile Phases 147    7.4.3 pKa Shifts in Hydro-organic Mobile Phases 148    7.5 Conclusions 151    Acknowledgments 157    References 157    8 Reversed Phase Liquid Chromatography 159 Maria C. Garcia-Alvarez-Coque, Juan J. Baeza-Baeza, and Guillermo Ramis-Ramos    8.1 Introduction 159    8.2 The Stationary Phase 160    8.2.1 Silica Support and Chemical Bonding 161    8.2.2 Types of Phases 163    8.2.3 Silanol Effects 164    8.2.4 Silanol Deactivation 166    8.3 The Mobile Phase 167    8.3.1 Mobile Phase Components 167    8.3.2 Snyder   s Solvent Selectivity Triangle 168    8.3.3 Control of the Mobile-Phase pH 170    8.4 Temperature as Chromatographic Factor 172    8.5 Gradient versus Isocratic Elution 174    8.5.1 Solute Retention and Peak Width 174    8.5.2 Isocratic Elution 175    8.5.3 Gradients of Modifier: The Usual Solution for the General Elution Problem 175    8.5.4 Development of Gradients of Modifier 176    8.5.5 Strengths and Weaknesses of Gradients of Modifier 179    8.5.6 Other Types of Gradients 181    8.6 Attempts to Explain the Retention Mechanisms in RPLC 181    8.6.1 Solvent Adsorption and Partitioning in RPLC 181    8.6.2 The Solvophobic Theory 182    8.6.3 Solute Adsorption or Partitioning? 183    8.6.4 Investigating How RPLC Really Works 184    8.6.5 Going Down to the Molecular Detail 186    8.6.5.1 Chain Conformation 186    8.6.5.2 Adsorption and Partitioning of Common Solvents 186    8.6.5.3 Adsorption and Partitioning of Solutes 188    8.6.5.4 Anomalous Behavior with Highly Aqueous Mobile Phases 189    8.7 Development and Trends in RPLC 190    References 192    9 Modeling of Retention in Reversed Phase Liquid Chromatography 199 Maria C. Garcia-Alvarez-Coque, Guillermo Ramis-Ramos, Jose R. Torres-Lapasio, and C. Ortiz-Bolsico    9.1 Introduction 199    9.2 Isocratic Elution 199    9.2.1 Polynomial Models to Describe Retention Using Modifier Content as a Factor 199    9.2.2 Polarity Models 201    9.2.3 pH as an Experimental Factor 202    9.3 Dead Time Estimation 206    9.3.1 Static Methods 207    9.3.2 Dynamic Methods 207    9.4 Effect of Temperature 209    9.4.1 Van   t Hoff Equation 209    9.4.2 Combined Effect of Modifier Content, pH, and Temperature 210    9.5 Effect of Pressure 211    9.5.1 Deviations of Retention Factors 211    9.5.2 Correction of Pressure Effects 212    9.6 Enhancing the Prediction of Retention 214    9.6.1 Practical Considerations 214    9.6.2 Influence of the Model Regression Process on the Quality of Predictions 215    9.7 Gradient Elution 216    9.7.1 Integration of the Fundamental Equation for Gradient Elution 216    9.7.2 Nonintegrable Retention Models 217    9.8 Computer-Assisted Interpretive Optimization 218    9.9 Stationary-Phase Characterization 220    9.9.1 Linear Solvation Energy Relationships 220    9.9.2 Local Models for Characterizing RPLC Columns 221    References 223    10 Normal-Phase and Polar Organic Solvents Chromatography 227 Ahmed A. Younes, Charlene Galea, Debby Mangelings, and Y. Vander Heyden    10.1 Introduction 227    10.2 HPLC Retention and Separation Mechanisms 228    10.2.1 Polarity-Based Separations 228    10.2.2 Charge-Based Separations 232    10.2.3 Size-Based Separations 232    10.2.4 Other Separation Mechanisms 232    10.3 Normal-Phase and Polar Organic Solvents Chromatography 233    10.3.1 Retention Mechanism 234    10.3.2 Stationary Phases 234    10.3.2.1 Nonbonded Phases 234    10.3.2.2 Bonded Phases 235    10.3.2.3 Stationary Phases and Selectivity 236    10.3.3 Mobile Phases 238    10.3.3.1 Mobile-Phase Selection 238    10.3.3.2 Solvent Strength and Selectivity 239    10.3.3.3 Isocratic and Gradient Elution 241    10.4 Conclusions 242    References 243    11 Inline Detectors 245 Ramisetti Nageswara Rao and Pothuraju Nageswara Rao    11.1 Introduction 245    11.2 Detector Characteristics 246    11.2.1 Sensitivity 246    11.2.2 Selectivity 246    11.2.3 Linearity 247    11.2.4 Dynamic Range 247    11.2.5 Detector Cell Volume 247    11.3 UV-Visible Absorbance Detector 247    11.3.1 Fixed Wavelength Detector 249    11.3.2 Variable Wavelength Detector 250    11.4 Photodiode Array Detector (PDA) 251    11.5 Fluorescence Detector 252    11.6 Refractive Index Detector (RID) 255    11.7 Evaporative Light-Scattering Detector 256    11.8 Electrochemical Detector 257    11.9 Charged Aerosol Detection 258    11.10 Conductivity Detector 259    11.11 Coupling Detectors 260    11.12 Comparison of HPLC Detectors 260    References 261    12 pH Effects on Chromatographic Retention Modes 263 Pawe   Wiczling,   ukasz Kubik, and Roman Kaliszan    12.1 Introduction 263    12.2 pH Measurements of Mobile Phase 264    12.3 Effect of pH on Isocratic Retention 266    12.4 pH Effect on Organic Modifier Gradients 268    12.5 pH Gradient 269    12.6 Determination of pKa, log kw (Hydrophobicity), and S 274    12.7 Effect of pH in Normal-Phase Mode 275    12.8 Summary 277    References 277    13 Chemometrics in Data Analysis and Liquid Chromatographic Method Development 279 Biljana Janc  ic   -Stojanovic   and Tijana Rakic       13.1 Introduction 279    13.2 Chemometrics in Data Analysis 280    13.2.1 Data Preprocessing 280    13.2.2 Data Analysis 284    13.3 Chemometrics in LC Method Development 285    13.3.1 Analytical Target Profile and Critical Quality Attributes (Definition of the Objectives of the Method) 286    13.3.2 Quality Risk Assessment and Critical Process Parameters (Definition of Investigated Factors and Their Levels) 287    13.3.3 Investigation of the Knowledge Space (Selection of an Appropriate Experimental Design) 288    13.3.3.1 Screening Designs 289    13.3.3.2 Optimization Designs 291    13.3.4 Critical Quality Attributes Modeling (Creation of Mathematical Models) 293    13.3.5 Design Space 294    13.3.6 Selection of the Working Points 295    13.3.7 Robustness Testing 295    13.4 Conclusions 296    References 296    Index to Volume 1 I1-I18    Volume 2    Part One Special Liquid Chromatography Modes 299    1 Chiral Liquid Chromatography: Recent Applications with Special Emphasis on the Enantioseparation of Amino Compounds 301 Istvan Ilisz    2 Chiral Separation of Some Classes of Pesticides by HPLC Method 321 Imran Ali, Iqbal Hussain, Mohd Marsin Sanagi, and Hassan Y. Aboul-Enein    3 Micellar Liquid Chromatography: Fundamentals 371 Maria C. Garcia-Alvarez-Coque, Maria J. Ruiz-Angel, and Samuel Carda-Broch    4 Micellar Liquid Chromatography: Method Development and Applications 407 Maria C. Garcia-Alvarez-Coque, Maria J. Ruiz-Angel, and Samuel Carda-Broch    5 Affinity Chromatography 461 Erika L. Pfaunmiller, Jesbaniris Bas, Marissa Brooks, Mitchell Milanuk, Elliott Rodriguez, John Vargas, Ryan Matsuda, and David S. Hage    6 Immunoaffinity Chromatography: Advantages and Limitations 483 Nancy E. Thompson and Richard R. Burgess    Part Two Capillary Electromigration Techniques 503    7 Capillary Electromigration Techniques: Capillary Electrophoresis 505 Vaclav Ka  i  ka    8 Modern Injection Modes (Stacking) for CE 531 Joselito P. Quirino    9 Capillary Gel Electrophoresis 555 Marta Kerekgyarto and Andras Guttman    10 Nonaqueous Capillary Electrophoresis 581 Julie Schappler and Serge Rudaz    11 Detectors in Capillary Electrophoresis 607 Petr Tu  ma and Frantis  ek Opekar    12 Trends in CE-MS and Applications 629 Anna Tycova and Frantisek Foret    13 Capillary Electrochromatography 653 Kai Zhang and Ruyu Gao    14 Micellar Electrokinetic Chromatography 675 Paolo Iadarola, Marco Fumagalli, and Simona Viglio    15 Chip-Based Capillary Electrophoresis 707 Yuanhong Xu, Jizhen Zhang and Jingquan Liu    16 Chiral Separations by Capillary Electrophoresis 731 E. Sanchez-Lopez, M. Castro-Puyana, M.L. Marina, and A.L. Crego    Index to Volume 2 I1-I24    Volume 3    1 Gas Chromatography: Theory and Definitions, Retention and Thermodynamics, and Selectivity 775 Glenn E. Spangler    2 Basic Overview on Gas Chromatography Injectors 807 Md. Musfiqur Rahman, A.M. Abd El-Aty, and Jae-Han Shim    3 Basic Overview on Gas Chromatography Columns 823 Md. Musfiqur Rahman, A.M. Abd El-Aty, Jeong-Heui Choi, Ho-Chul Shin, Sung Chul Shin, and Jae-Han Shim    4 Overview of Detectors in Gas Chromatography 835 Md. Musfiqur Rahman, A.M. Abd El-Aty, and Jae-Han Shim    5 Current Use of Gas Chromatography and Applications 849 Walter Vetter    6 Gas Chromatography with Mass Spectrometry (GC-MS) 883 Walter Vetter    7 Chiral GC 927 Volker Schurig    8 New Essential Events in Modern Applications of Inverse Gas Chromatography 979 Adam Voelkel, Henryk Grajek, Beata Strzemiecka, and Katarzyna Adamska    9 Chip-Based Gas Chromatography 999 Hamza Shakeel and Masoud Agah    10 Portable Gas Chromatography 1021 Philip A. Smith    11 Packed Column Sub- and Supercritical Fluid Chromatography 1051 Caroline West, Syame Khater, and Eric Lesellier    12 Instrumentation for Sub- and Supercritical Fluid Chromatography 1075 Taghi Khayamian, Ali Daneshfar, and Hassan Ghaziaskar    Index to Volume 3 I1-I18    Volume 4    1 High-Performance Thin-Layer Chromatography 1093 Vicente L. Cebolla, Luis Membrado, Carmen Jarne, and Rosa Garriga    2 Field Flow Fractionation 1143 Gaetane Lespes, Julien Gigault, and Serge Battu    3 Separations with a Liquid Stationary Phase: Countercurrent Chromatography or Centrifugal Partition Chromatography 1177 Alain Berthod and Karine Faure    4 Preparative Chromatography: Batch and Continuous 1207 Jose P.S. Aniceto and Carlos M. Silva    5 Fast and Miniaturized Chromatography 1315 Barbara Socas-Rodriguez, Antonio V. Herrera-Herrera, Miguel Angel Gonzalez-Curbelo, Javier Gonzalez-Salamo, and Javier Hernandez-Borges    6 Two-Dimensional Liquid Chromatography 1357 Morgan Sarrut, Nicola Marchetti, and Sabine Heinisch    Index to Volume 4 I1-I14    Volume 5    1 Sampling Strategies: Statistics of Sampling 1385 Ma  gorzata Bodnar, Piotr Konieczka, and Jacek Namies  nik    2 Targeted and Non-Targeted Analysis 1401 Luis E. Rodriguez-Saona, Marcal Plans Pujolras, and M. Monica Giusti    3 Conventional Extraction Techniques: Soxhlet and Liquid   Liquid Extractions and Evaporation 1437 Adegbenro Peter Daso and Okechukwu Jonathan Okonkwo    4 Main uses of Microwaves and Ultrasounds in Analytical Extraction Schemes: an Overview 1469 Idaira Pacheco-Fernandez, Providencia Gonzalez-Hernandez, Priscilla Rocio-Bautista, Maria Jose Trujillo-Rodriguez, and Veronica Pino    5 Membrane-assisted Separations 1503 Jan Ake Jonsson    6 Dispersive Solid-Phase Extraction 1525 Barbara Socas-Rodriguez, Antonio V. Herrera-Herrera, Maria Asensio-Ramos, and Javier Hernandez-Borges    7 Solid-Phase Extraction 1571 Nil Ozbek, Asli Baysal, Suleyman Akman, and Mehmet Dogan    8 Solid-Phase Microextraction 1595 Ali Mehdinia and Mohammad Ovais Aziz-Zanjani    9 Liquid-Phase Microextraction 1625 Mohammad Reza Ganjali, Morteza Rezapour, Parviz Norouzi, and Farnoush Faridbod    10 Analytical Supercritical Fluid Extraction 1659 Julian Martinez and Ana Carolina de Aguiar    11 Extraction Methods Facilitated by the use of Magnetic Nanoparticles 1681 Priscilla Rocio-Bautista and Veronica Pino    12 Sample Derivatization in Separation Science 1725 Pascal Cardinael, Herve Casabianca, Valerie Peulon-Agasse, and Alain Berthod    13 Validation of Analytical Methods Based on Chromatographic Techniques: An Overview 1757 Juan Peris-Vicente, Josep Esteve-Romero, and Samuel Carda-Broch    14    Omics    and Biomedical Applications 1809 Pasquale Ferranti, Chiara Nitride, and Monica Gallo    15 Food Applications: Using Novel Sample Preparation Modes 1859 Monica Gonzalez and Venerando Gonzalez    16 Forensic Applications 1877 Matias Calcerrada Guerreiro, Maria Lopez-Lopez, Ma Angeles Fernandez de la Ossa, and Carmen Garcia-Ruiz    17 Environmental Applications of Solid Phase Microextraction Techniques 1897 Sarah Montesdeoca-Esponda, M Esther Torres-Padron, Zoraida Sosa-Ferrera, and Jose Juan Santana-Rodriguez    Index to Volume 5 I1-I20    Index 1929




نظرات کاربران