ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Vol. 3: Sensors, Biosensors and Radiation Detectors

دانلود کتاب Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Vol. 3: حسگرها، حسگرهای زیستی و آشکارسازهای تشعشع

Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Vol. 3: Sensors, Biosensors and Radiation Detectors

مشخصات کتاب

Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Vol. 3: Sensors, Biosensors and Radiation Detectors

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9783031239991, 9783031240003 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 699
[700] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 39 Mb 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Vol. 3: Sensors, Biosensors and Radiation Detectors به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Vol. 3: حسگرها، حسگرهای زیستی و آشکارسازهای تشعشع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Vol. 3: حسگرها، حسگرهای زیستی و آشکارسازهای تشعشع

این مرجع بحث میان رشته ای را برای نیمه هادی های II-VI متنوع با طیف وسیعی از موضوعات فراهم می کند. جلد سوم از یک مجموعه سه جلدی، این کتاب گزارشی به روز از وضعیت فعلی نیمه هادی های چند منظوره II-VI، از علم بنیادی و پردازش گرفته تا کاربردهای آنها به عنوان حسگرهای مختلف، حسگرهای زیستی، و آشکارسازهای تشعشعی و مبتنی بر ارائه می دهد. بر روی آنها برای تدوین اهداف جدید برای تحقیقات بیشتر. فصول این جلد یک نمای کلی از ساخت، پارامترها و اصول عملکرد این دستگاه ها ارائه می دهد. کاربرد این دستگاه ها در زمینه های مختلف مانند پزشکی، کشاورزی، کنترل کیفیت مواد غذایی، نظارت بر محیط زیست و غیره نیز مورد توجه است. تجزیه و تحلیل انجام شده پتانسیل بزرگ حسگرها و آشکارسازهای مبتنی بر نیمه هادی II-VI را برای این کاربردها نشان می دهد. آشکارسازهای تشعشع حالت جامد را بر اساس نیمه هادی های گروه II-VI و کاربردهای آنها در نظر می گیرد. مزایای ترکیبات II-VI را برای توسعه حسگرهای گاز و یون شیمیایی و نوری تجزیه و تحلیل می کند. انواع حسگرهای زیستی مبتنی بر نیمه هادی های II-VI را شرح می دهد و نمونه هایی از کاربرد آنها در زمینه های مختلف را ارائه می دهد.


توضیحاتی درمورد کتاب به خارجی

The reference provides interdisciplinary discussion for diverse II-VI semiconductors with a wide range of topics. The third volume of a three volume set, the book provides an up-to-date account of the present status of multifunctional II-VI semiconductors, from fundamental science and processing to their applications as various sensors, biosensors, and radiation detectors, and based on them to formulate new goals for the further research. The chapters in this volume provide a comprehensive overview of the manufacture, parameters and principles of operation of these devices. The application of these devices in various fields such medicine, agriculture, food quality control, environment monitoring and others is also considered. The analysis carried out shows the great potential of II-VI semiconductor-based sensors and detectors for these applications. Considers solid-state radiation detectors based on semiconductors of II-VI group and their applications; Analyzes the advantages of II-VI compounds to develop chemical and optical gas and ion sensors; Describes all types of biosensors based on II-VI semiconductors and gives examples of their use in various fields.



فهرست مطالب

Preface
Contents
About the Editor
Part I: X-Ray Radiation Detectors
	Chapter 1: Basic Principles of Solid-State X-Ray Radiation Detector Operation
		1.1 Introduction
		1.2 X-Ray Photoconductivity
			1.2.1 X-Ray Interactions with Photoconductor
			1.2.2 Ionization Energy and Signal Formation
			1.2.3 X-Ray Photoconductors
		1.3 X-Ray Spectroscopic Detectors
		1.4 Flat-Panel X-Ray Image Detectors
			1.4.1 Materials and Structures
			1.4.2 Metrics of X-Ray Imaging Performances
				1.4.2.1 X-Ray Sensitivity
				1.4.2.2 Spatial Resolution
				1.4.2.3 Noise and DQE
				1.4.2.4 Image Lag and Ghosting
		1.5 Position-Sensitive Semiconductor Detectors
		References
	Chapter 2: CdTe-/CdZnTe-Based Radiation Detectors
		2.1 Introduction
		2.2 Types of Hard Irradiation Detectors
		2.3 General Criteria for Choosing the Optimal Material for Solid-State Detectors
		2.4 Main Physical Characteristics of CdTe, ZnTe, and CZT and Their Application
		2.5 Methods of Growth of the Bulk CdTe Crystals and Solid Solutions on Their Base
			2.5.1 II-VI Compounds Phase Diagrams Features
			2.5.2 Methods of Single Crystals Growth
				2.5.2.1 Vapour Phase Growth
				2.5.2.2 Solution Growth
				2.5.2.3 Melting Growth
			2.5.3 Structural Features of Single Crystals of CdTe and Its CZT Solid Solutions
		2.6 Hard Irradiation Detectors Based on CdTe and CZT Single Crystals
			2.6.1 X-Ray and Gamma Irradiation Detectors Based on Cadmium Telluride
			2.6.2 Detectors Based on CZT Solid Solutions
		2.7 Main Methods of Obtaining and Using CDTe, CZT, and CMT Films as Radiation Detectors
			2.7.1 Main Methods of Deposition of CdTe, CZT, and CMT Films
			2.7.2 Usage of the CdTe and CZT Films in Ionising Radiation Detectors
		References
	Chapter 3: ZnS-Based Neutron and Alpha Radiation Detectors
		3.1 Introduction
		3.2 Neutron Detection
		3.3 Scintillation Detectors
		3.4 ZnS-Based Phosphors
		3.5 Neutron Detectors
		3.6 Filters for Neutron Detectors
		3.7 Market of Neutron Detectors
		3.8 Fast Neutron Detectors
		3.9 Devices Based on ZnS/6LiF Scintillators
		3.10 Phoswich Detector
		References
	Chapter 4: ZnSe- and CdSe-Based Radiation Detectors
		4.1 Introduction
			4.1.1 Parameters Characterizing Scintillation Radiation Detectors
			4.1.2 Materials Used in the Manufacture of Scintillation Radiation Detectors
		4.2 Crystal-Based Solid Scintillation Detectors
			4.2.1 Planar Detector
			4.2.2 Well-Type Detector
			4.2.3 Through-Hole Detector
		4.3 Single and Polycrystalline ZnSe- and CdSe-Based Scintillators
			4.3.1 Melt Growth Technique-Based Scintillators
			4.3.2 Quantum Dot-Based Scintillators
		4.4 Performance of Doped ZnSe- and CdSe-Based Radiation Detectors
		4.5 Comparison of ZnSe/CdSe with Traditional Scintillators
		4.6 Applications
		4.7 Conclusion
		References
	Chapter 5: Medical Applications of II-VI Semiconductor-Based Radiation Detectors
		5.1 Introduction
		5.2 Nuclear Medicine
			5.2.1 Single-Photon Emission Computed Tomography (SPECT)
			5.2.2 Positron Emission Tomography (PET)
			5.2.3 Computed Tomography (CT)
			5.2.4 Detectors for CT, PET, and SPECT
			5.2.5 Multimodal Systems
		5.3 Radionuclide and Radiation Therapy
			5.3.1 Nuclear Probes
		5.4 Digital Radiography
			5.4.1 Chest X-Ray Imaging
			5.4.2 High-Resolution Dental Digital Radiography Systems
			5.4.3 Mammography
			5.4.4 Bone Densitometry
		References
Part II: Electric and Electronic Chemical Sensors
	Chapter 6: Introduction in Gas Sensing
		6.1 Introduction
		6.2 Gas Sensors Classification
		6.3 II-VI Compounds as Gas-Sensitive Material and Their Gas Sensor Applications
			6.3.1 II-VI Semiconductor-Based Conductometric Gas Sensors
			6.3.2 II-VI Semiconductor-Based Optical Gas Sensors
		References
	Chapter 7: II-VI Semiconductor-Based Thin Film Electric and Electronic Gas Sensors
		7.1 Introduction
		7.2 Synthesis of Gas-Sensitive II-VI Semiconductors Films and Gas Sensor Fabrication
		7.3 II-VI Semiconductors and their Gas Sensing Mechanisms
		7.4 Factors that Influence the Gas Sensing Properties of II-VI Semiconductors
			7.4.1 Size, Morphology, and Structure
			7.4.2 Modifications: Doping, Surface Decoration, and Mixture of Components
			7.4.3 Thermal and Light Activation
			7.4.4 Stability and Operational Conditions
		7.5 Key Metrics of Intrinsic II-VI Semiconductor-Based Gas Sensors
		7.6 Conclusions
		References
	Chapter 8: Nanocomposite and Hybrid-Based Electric and Electronic Gas Sensors
		8.1 Introduction
		8.2 Recent Approaches to the Synthesis of Nanoparticles of II-VI Semiconductors
		8.3 Synthesis of II-VI Semiconductor–Based Nanocomposites
		8.4 Gas Sensors Based on II-VI Semiconductors/Metal Oxide Nanocomposites
			8.4.1 Sensor Properties of II-VI Semiconductors/Metal Oxide Nanocomposites Under Thermal Activation
			8.4.2 Sensor Properties of II-VI Semiconductors/Metal Oxide Nanocomposites Under Photoactivation
		8.5 Gas Sensors Based on II-VI Semiconductors/Non-oxide Materials
		8.6 Summary
		References
	Chapter 9: II–VI Semiconductor-Polymer Nanocomposites and Their Gas-Sensing Properties
		9.1 Introduction
		9.2 Gas Sensors Based on II–VI Compound-Polymer Composites: General Consideration
			9.2.1 Gas-Sensing Mechanism and Measurement Parameters
			9.2.2 Role of II–VI Semiconductor Nanoparticle and Polymer Concentration in Composite
			9.2.3 Methods for the Formation of II–VI Compounds-Polymer Nanocomposite
		9.3 Gas Sensors Based on II–VI Semiconductor-Polymer Nanocomposites
			9.3.1 CdSe-Polymer Nanocomposite
			9.3.2 CdS-Polymer Nanocomposite
			9.3.3 CdTe-Polymer Nanocomposite
			9.3.4 ZnSe-Polymer Nanocomposite
			9.3.5 ZnS-Polymer Nanocomposite
			9.3.6 ZnTe-Polymer Nanocomposite
		9.4 Conclusion
		References
	Chapter 10: Nanomaterial-Based Electric and Electronic Gas Sensors
		10.1 Introduction
			10.1.1 Performance Parameters and Influence Factors for Nanomaterial-Based Electrical and Electronic Gas Sensors
			10.1.2 Influence Factors: Advantages on Using II–VI Semiconductor Nanomaterials in Electric and Electronic Gas Sensors
			10.1.3 Approaches to Optimise Chemical Gas Sensing Devices
		10.2 II–VI Semiconductor Nanomaterials for Chemical Gas Sensors
			10.2.1 0D Nanomaterials
			10.2.2 1D Nanomaterials
			10.2.3 2D Nanomaterials
			10.2.4 3D Nanomaterials
				10.2.4.1 3D Spatial Ensembles of 0D, 1D and 2D NSs
				10.2.4.2 3D Nano- and Mesoporous Structures
			10.2.5 Core/Shell Nanostructures
		10.3 Summary and Outlook
		References
	Chapter 11: II–VI Semiconductor-Based Humidity Sensors
		11.1 Introduction in Humidity Measurements
		11.2 General View on the Mechanisms of Humidity Sensing
		11.3 II–VI-Based Humidity Sensors
			11.3.1 Conductometric RH Sensors
				11.3.1.1 Thin Film RH Sensors
				11.3.1.2 Nanowire-Based Sensors
				11.3.1.3 Paper-Based RH Sensors
			11.3.2 Capacitance RH Sensors
			11.3.3 QCM-Based RH Sensors
		11.4 Outlooks
		References
Part III: Optical Sensors
	Chapter 12: II–VI Semiconductor-Based Optical Gas Sensors
		12.1 Introduction
			12.1.1 Optical Methods for Gas Sensing
			12.1.2 Performance Parameters and Figures of Merit
			12.1.3 Suitability of II–VI Materials for Optical Gas Sensors
		12.2 Photoluminescence-Based Gas Sensors
			12.2.1 1D Nanostructures as Luminescence-Based Gas Sensor
			12.2.2 Surface-Modified Single and Core-Shell (CSh) QDs for Luminescence-Based Gas Sensor
			12.2.3 Embedded 1Ds and QDs, Composites, CSh in Matrix, and Other Special Forms
		12.3 Fluorescence-Based Gas Sensors
			12.3.1 Ratiometric and Colourimetric
		12.4 Other Optical Methods of Gas Sensing
		12.5 Surface Plasmon Resonance-Based Gas Sensors
		12.6 Fibre Optic-Based Gas Sensors
		12.7 Conclusion
		References
	Chapter 13: Spectroscopic Gas Sensing Systems
		13.1 Introduction
		13.2 Principle
			13.2.1 Direct Absorption Spectroscopy
			13.2.2 Wavelength Modulation Spectroscopy
			13.2.3 Frequency Modulation Spectroscopy
		13.3 System Configurations
			13.3.1 Pump Suction System (Sampling Sensing System)
				13.3.1.1 Multipass Cell-Based System
				13.3.1.2 Hollow Waveguide-Based Sensor
			13.3.2 Diffusion Sensors
			13.3.3 Open Path Sensing
				13.3.3.1 Open Path Detection with Retroreflectors
				13.3.3.2 Standoff Sensing Without Retroreflectors
			13.3.4 Spectroscopic Imaging
		13.4 II–VI Laser Application in Spectroscopic Gas Sensing
		13.5 Prospects for II–VI Laser in Spectroscopic Gas Sensing
		References
	Chapter 14: Luminescence and Fluorescence Ion Sensing
		14.1 Introduction
		14.2 Optical QDs-Based Ion Sensors
		14.3 Mechanisms of Operation of Ion Sensors Based on QDs
		14.4 Ratiometric Ion Sensors
		14.5 Implementation of Luminescence and Fluorescence II–VI Semiconductor QDs-Based Ion Sensors
			14.5.1 Cu Ions Sensing
			14.5.2 Hg Ion Detection
			14.5.3 Pb2+ Ion Sensing
			14.5.4 Cr Ion Sensing
			14.5.5 Other Metal Ions
			14.5.6 QD-Based pH Sensing
		14.6 Summary
		References
	Chapter 15: Photoelectrochemical Ion Sensors
		15.1 Introduction
			15.1.1 Photoelectrochemical Sensors
			15.1.2 Principle of Photoelectrochemical Sensor
		15.2 Progress in Photoactive Sensing Materials
			15.2.1 Metal Chalcogenides
				15.2.1.1 CdS
				15.2.1.2 CdSe
				15.2.1.3 CdTe
				15.2.1.4 Other Chalcogenides
				15.2.1.5 II–VI Semiconductor-Based Quantum Dots
			15.2.2 Other Materials
				15.2.2.1 Metal Oxides
				15.2.2.2 Carbon-Based Materials
				15.2.2.3 Dichalcogenides
				15.2.2.4 Hybrid Materials
		15.3 Applications of PEC Sensors-Detection of Heavy Metal Ions
			15.3.1 Lead (Pb) Ions
			15.3.2 Mercury (Hg) Ions
			15.3.3 Chromium (Cr) Ions
			15.3.4 Cadmium (Cd) Ions
			15.3.5 Copper (Cu) Ions
		15.4 Conclusions
		References
	Chapter 16: II–VI Semiconductor-Based Optical Temperature Sensors
		16.1 Introduction
			16.1.1 Principles (Methods) of Operation and Figures of Merit
			16.1.2 Applications of Particularly Optical TS
		16.2 II–VI Materials for Luminescence-Based TS
			16.2.1 Importance and Suitability of II–VI Semiconductors for Luminescence-Based TS
			16.2.2 Single QDs and Core-Shell (CSh) QDs for Luminescence-Based TS
		16.3 Embedded QDs Composites in CSh Matrix for Luminescence-Based TS
		16.4 Ratiometric, Colorimetric and Lifetime Fluorescence-Based Optical TS
		16.5 Fibre Optic and Surface Plasmon Resonance-Based TS
			16.5.1 Fibre Optic-Based TS
			16.5.2 Surface Plasmon Resonance-Based TS
		16.6 Thermal Imaging with II–VI Materials
		16.7 Conclusion and Future Prospective
		References
Part IV: Biosensors
	Chapter 17: Introduction to Biosensing
		17.1 Introduction
		17.2 Biosensors. What Is It?
		17.3 Types of Biosensors
			17.3.1 Electrochemical Biosensors
			17.3.2 Physical Biosensors
			17.3.3 Optical Biosensors
			17.3.4 Sensors Based on Specific Biological Material
				17.3.4.1 Enzyme Biosensor
				17.3.4.2 DNA Biosensors or Aptasensors
				17.3.4.3 Immunosensors or Antibody-Based Biosensors
				17.3.4.4 Protein Biosensors
				17.3.4.5 Cell-Based Biosensors
		17.4 Features of Biosensor Design
			17.4.1 Bio-Interfaces
			17.4.2 Nanomaterial-Based Biosensors
				17.4.2.1 Biosensors Using Semiconductor QDs
			17.4.3 Biosensor Using Metallic Nanoparticles
			17.4.4 Biosensor Using Polymers and Polymeric Nanoparticles
			17.4.5 Biosensor Using Core-Shell Materials
			17.4.6 Biochips
		17.5 Applications of Biosensors
			17.5.1 Biosensor Detection of Diseases
			17.5.2 Biosensor for Detection of Toxins and Pathogens
			17.5.3 Biosensor for Environmental Monitoring
			17.5.4 Biosensor for Food Quality Control and Agriculture
		17.6 Conclusion
		References
	Chapter 18: Fluorescent Biosensors Based on II–VI Quantum Dots
		18.1 Fundamentals of Biosensors and Fluorescence Biosensors
		18.2 Fluorescent Biosensor for Clinical Diagnostics, Treatment of Diseases, and Health Care
			18.2.1 Reading Signals by Measuring the Fluorescence Intensity
			18.2.2 Reading Signals by Imaging the Fluorescence QDs-Bound Analytes
		18.3 Fluorescent Biosensors for Detection of Pesticides and Growth-Promoting Hormone in Agricultural Productions
		18.4 Fluorescent Biosensors for Food Safety
		18.5 Fluorescent Sensors for Detecting Heavy Metals in Environmental Samples
		18.6 Fluorescent Imaging for Forensic Science and Criminal Investigation
		18.7 Conclusions
		References
	Chapter 19: QDs-Based Chemiluminescence Biosensors
		19.1 Introduction
		19.2 QDs and Core/Shell QDs
		19.3 The Functionalisation of Quantum Dots
		19.4 Chemiluminescence Mechanisms of QDs
			19.4.1 Direct Chemiluminescence
			19.4.2 Chemiluminescence Catalysts
			19.4.3 Chemiluminescent Energy Acceptor
		19.5 Advantages and Disadvantages of QD-Based Chemiluminescence Sensors
		19.6 Applications of QDs-Based Chemiluminescence
			19.6.1 Detection of Small Biological Molecules
			19.6.2 Detection of Proteins
			19.6.3 Detection of DNA
			19.6.4 Detection of Metal Ions
			19.6.5 Determination of Enzyme Activity
		19.7 Conclusion
		References
	Chapter 20: Electrochemiluminescent Biosensors Based on II–VI Quantum Dots
		20.1 Introduction
		20.2 ECL Mechanism of II–VI Quantum Dots
		20.3 ECL Signal Transduction Strategy
		20.4 Applications in ECL Biosensor
			20.4.1 Immunosensors
			20.4.2 Aptasensor
			20.4.3 Genosensor
			20.4.4 MIP Sensor
		20.5 Conclusions and Perspectives
		References
	Chapter 21: Electrochemical Biosensors
		21.1 Introduction
		21.2 Electrochemical Techniques Used in Biosensors
			21.2.1 Voltammetry
			21.2.2 Amperometry
			21.2.3 Impedimetry
		21.3 Electrochemical Sensing Platforms
			21.3.1 Non-portable Platforms
			21.3.2 Portable Platforms
			21.3.3 Steps for Fabrication of an Electrochemical Biosensor
		21.4 Role of Nanomaterials in Electrochemical Biosensors
		21.5 Biosensing Applications of II–VI Semiconductor-Based Electrochemical Sensors
		21.6 Conclusion and Future Outlook
		References
	Chapter 22: Photoelectrochemical Biosensors
		22.1 Introduction
		22.2 Cd-Based Semiconductors in Photoelectrochemical Bioanalysis
			22.2.1 Cd-Based Sensors for Nucleic Acids and Other Biological Samples
			22.2.2 Cd-Based PEC Immunosensors and Combination with Immunoassay Tests
			22.2.3 Cd-Based Aptasensors
		22.3 Zn-Based Photoelectrochemical Biosensors
			22.3.1 Zn Sulphides and Selenides for Biological Samples Sensing
			22.3.2 Zn-Based PEC Biosensors Designed for Pollutants
			22.3.3 Zn-Based PEC Immunosensors
		22.4 Concluding Remarks
		References
	Chapter 23: II–VI Semiconductor QDs in Surface Plasmon Resonance Sensors
		23.1 Introduction: Principles of Surface Plasmon Resonance (SPR)
		23.2 SPR-Based Biosensors
		23.3 SPR in II–VI Semiconductor QDs
			23.3.1 Theory for Optical Properties of Core–Shell NP System
		23.4 SPR-Enhanced Optical Gas Sensors Based on II–VI Semiconductor QDs
		23.5 SPR-Based Biosensors Functionalised with II–VI Semiconductor QDs
		23.6 Conclusions and Future Directions
		References
	Chapter 24: Biomarkers and Bioimaging and Their Applications
		24.1 Introduction
		24.2 Research in Upconversion and Downconversion with II–VI Semiconductor Nanophosphors
		24.3 Surface Modification of Luminescent Nanoparticles
		24.4 Biorecognition and Bioimaging for Cell Therapy with Nanophosphors
			24.4.1 In Vitro Bioimaging for Cell Therapy with Nanophosphors
			24.4.2 In Vivo Bioimaging for Cell Therapy with Nanophosphors
		24.5 Band Structure Modelling of Nanophosphors
		24.6 Clinical and Pre-clinical Studies for Bioimaging
		24.7 Future Direction and Conclusion
		References
	Chapter 25: Biosensors Based on II–VI Semiconductor Quantum Dots for Health Protection
		25.1 Introduction: II–VI Semiconductor Quantum Dots-Based Biosensors for Health Protection
		25.2 Biosensors Based on II–VI Semiconductor Quantum Dots for Detection of Pathogenic Bacteria
		25.3 Biosensors Based on II–VI Semiconductor Quantum Dots for Detection of Toxic Materials
		25.4 Biosensors Based on II–VI Semiconductor Quantum Dots for Detection of Environmental Pollutants
		25.5 Biosensors Based on II–VI Semiconductor Quantum Dots for Detection of Pesticide
		25.6 Biosensors Based on II–VI Semiconductor Quantum Dots for Detection of Allergens
		25.7 Summary
		References
	Chapter 26: Application of II–VI Semiconductor-Based Biosensors in Nanomedicine and Bioanalysis
		26.1 Introduction
			26.1.1 Groups II–VI Quantum Dots
		26.2 QDs in Nanomedical and Bioanalytical Applications
			26.2.1 QDs-Based Therapy and Drug Delivery Approaches
			26.2.2 QDs in Biosensing
				26.2.2.1 Electrochemical Applications of QDs in Bioanalysis
				26.2.2.2 Photo-Electrochemical Applications of QDs in Biosensing
				26.2.2.3 Applications of QDs in Optical Biosensing
				26.2.2.4 Detection of Other Specific Targets
		26.3 Conclusions and Perspectives
		References
	Chapter 27: Specific Applications of II–VI Semiconductor Nanomaterials-Based Biosensors for Food Analysis and Food Safety
		27.1 Introduction
		27.2 II–VI Semiconducting Nanomaterials for Food Analysis
			27.2.1 Detection of Pathogenic Bacteria
			27.2.2 Detection of Pesticides
			27.2.3 Detection of Amino Acids
			27.2.4 Detection of Organic Compounds
			27.2.5 Detection of Small Molecules Mycotoxins
			27.2.6 Detection of Other Analytes
		27.3 Challenges and Limitations
		27.4 Conclusions and Future Trends
		References
Index




نظرات کاربران