دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Volume II: Advanced Machine Learning Techniques]
نویسندگان: Saeid Eslamian. Faezeh Eslamian
سری:
ISBN (شابک) : 9780128219614
ناشر: Elsevier
سال نشر: 2023
تعداد صفحات: [420]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 42 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Handbook of HydroInformatics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای هیدروانفورماتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنیکهای یادگیری ماشین پیشرفته: جلد دوم: تکنیکهای یادگیری ماشین پیشرفته هم هنر طراحی الگوریتمهای یادگیری خوب و هم علم تجزیه و تحلیل ویژگیهای محاسباتی و آماری الگوریتم و تضمین عملکرد را ارائه میدهد. مشارکتکنندگان جهانی موضوعات پایه نظری مانند نرخهای همگرایی محاسباتی و آماری، برآورد حداقل و تمرکز اندازهگیری را پوشش میدهند. روشهای پیشرفته یادگیری ماشین مانند تخمین چگالی ناپارامتری، رگرسیون ناپارامتریک و تخمین بیزی، و همچنین چارچوبهای پیشرفتهای مانند حریم خصوصی، علیت و الگوریتمهای یادگیری تصادفی نیز گنجانده شدهاند. سایر روشهای تحت پوشش عبارتند از رایانش ابری و خوشهای، تکنیکهای ترکیب داده، توابع متعامد تجربی و اتصال از راه دور، اینترنت اشیا، مدلسازی مبتنی بر هسته، شبیهسازی گردابی بزرگ، تشخیص الگو، ارزیابی انعطافپذیری مبتنی بر عدم قطعیت، و ساخت این حالت معکوس بر اساس حجم. word یک راهنمای بین رشته ای است که برای فارغ التحصیلان علاقه مند به علوم کامپیوتر، هوش مصنوعی، علوم ریاضی، علوم کاربردی، زمین و علوم زمین، جغرافیا، مهندسی عمران، مهندسی، علوم آب، علوم جوی، علوم اجتماعی، علوم محیطی، منابع طبیعی و مهندسی شیمی. شامل مشارکتهایی از زمینههای تحقیقات مدیریت داده، تغییرات آب و هوا و انعطافپذیری، مشکل دادههای ناکافی، و موارد دیگر است. و همچنین علم تجزیه و تحلیل خواص محاسباتی و آماری الگوریتم و تضمین عملکرد
Advanced Machine Learning Techniques: Volume II: Advanced Machine Learning Techniques presents both the art of designing good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees. Global contributors cover theoretical foundation topics such as computational and statistical convergence rates, minimax estimation and concentration of measure. Advanced machine learning methods such as nonparametric density estimation, nonparametric regression, and Bayesian estimation, as well as advanced frameworks such as privacy, causality and stochastic learning algorithms are also included. Other methods covered include Cloud and Cluster Computing, Data Fusion Techniques, Empirical Orthogonal Functions and Teleconnection, Internet of Things, Kernel-Based Modeling, Large Eddy Simulation, Patter Recognition, Uncertainty-Based Resiliency Evaluation, and Volume-Based Inverse Mode, making this word an interdisciplinary guide that will appeal to post graduates interested in Computer Science, Artificial Intelligence, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources and Chemical Engineering. Contains contributions from the fields of data management research, climate change and resilience, insufficient data problem, and more Presents applied examples and case studies in each chapter, providing the reader with real-world scenarios for comparison Defines both the designing of good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees
Front Cover Handbook of HydroInformatics: Volume II: Advanced Machine Learning Techniques Copyright To Late George Edward Pelham Box (British Statistician: 1919-2013) Contents Contributors About the Editors Preface Chapter 1: Analyzing spatiotemporal variation of land use and land cover data 1. Introduction 2. Data preparation 3. Visual interpretations 4. LULC distribution 5. LULC change detection 6. Image interpretation 7. LAI model 8. Compare the visual interpretation vs image interpretation 9. Conclusions References Chapter 2: Artificial Intelligence-based model fusion approach in hydroclimatic studies 1. Introduction 2. Mathematical concepts 2.1. Ensemble techniques 2.1.1. Bagging 2.1.2. Boosting 2.1.3. Random forest 2.1.4. Extremely randomized trees 2.1.5. Extreme gradient boosting 2.1.6. Simple linear averaging method 2.1.7. Linear weighted averaging method 2.1.8. Bayesian model averaging method 2.1.9. Stacking (nonlinear ensemble method) 2.2. Hybrid techniques 2.2.1. Wavelet-AI methods 2.2.2. ARIMA-AI methods 2.2.3. Clustering-based AI methods 2.2.4. Evolutionary-based AI methods 3. Some applications 3.1. Ensemble techniques 3.2. Hybrid techniques 4. Conclusions References Chapter 3: Computations of probable maximum precipitation estimates 1. Introduction 1.1. Background and importance of PMP estimations 2. Methodology of PMP estimation 2.1. Physical method 2.2. Statistical method 2.3. Multifractal approach 3. Statistical PMP estimates: A case-study 3.1. Hershfield PMP estimates in Malaysia 4. Conclusions References Chapter 4: Deep learning: Long short-term memory in hydrological time series 1. Introduction 2. Model description of long short-term memory (LSTM) 2.1. Neural network 2.2. Recurrent neural network 2.3. LSTM 3. Training network and backpropagation 3.1. Feedforward and backward propagation 3.2. Gradient descent method 3.3. Backpropagation of RNN 3.4. Backpropagation through time of RNN 3.5. Backpropagation through time for LSTM 4. Variants of LSTM 4.1. Peephole LSTM 4.2. Gated recurrent unit 4.3. Multiplicative LSTM 4.4. Sequence-to-sequence (seq2seq) LSTM 4.5. Bidirectional LSTM 5. Normalization and hyperparameter selection 5.1. Normalization 5.2. Estimation of hyperparameters 6. LSTM applications in hydrometeorological variables 6.1. LSTM and its variants for prediction 6.2. Hybrid LSTM 6.3. Simulation modeling with LSTM 7. Employed deep learning programs for LSTM 7.1. Tensorflow and Keras with Python 7.2. Matlab 8. Conclusions References Chapter 5: Dimensionality reduction of correlated meteorological variables by Bayesian network-based graphical modeling 1. Introduction 2. Study area and data used 2.1. Study area 2.2. Data used 3. Methodology 4. Results and discussions 4.1. Directed acyclic graphs obtained from HC and MMHC algorithms 4.2. Utility of the conditional dependence structure 5. Conclusions References Chapter 6: The ecohydrological function of the tropical forest rainfall interception: Observation and modeling 1. Introduction 2. Canopy water balance: concepts and general aspects of the monitoring 2.1. Forest canopy water balance 2.1.1. Rainfall interception 2.1.2. Throughfall 2.1.3. Stemflow 2.2. Water balance in tropical forested watersheds 2.3. Soil moisture in forest areas 2.4. Geochemistry in tropical forests 3. Measurements of the rainfall interception components 3.1. Standard measurements 3.2. Ex situ methods for individual trees 3.3. Forest parameters 4. Rainfall interception modeling 4.1. Conceptual models 4.2. Statistical and machine learning tools for ecohydrological data handling 5. Conclusions References Chapter 7: Emotional artificial neural network: A new ANN model in hydroinformatics 1. Introduction 2. Mathematical concepts of emotional artificial neural network 2.1. Feed forward neural network (FFNN) 2.2. Emotional artificial neural network (EANN) 2.3. Difference between FFNN and EANN 2.4. Data preprocessing and performance evaluation 2.5. Dominant inputs selection 3. Some applications of EANN 4. Conclusions References Chapter 8: Exploring nature-based adaptation solutions for urban ecohydrology: Definitions, concepts, institutional frame ... 1. Introduction 2. Nature-based adaptation solutions (NBaS): Conceptual framework and position 2.1. NBaS: Concepts and terminology 2.2. NBaS in the international, regional, and national frameworks 3. NbaS and ecohydrology 4. The need for physically-based evidence 4.1. Potential and limitations of green roofs 4.1.1. Potentials 4.1.2. Limitations 4.2. Green roofs: A means for hybridizing the gray 5. Conclusions 5.1. Adapt by learning and learning to adapt 5.2. Are NBaS the way forward? References Chapter 9: Fuzzy-based large-scale teleconnection modeling of monthly precipitation 1. Introduction 2. Materials and methods 2.1. Teleconnections impact on hydroclimatologic systems 2.2. Proposed methodology 2.3. Association rule 2.4. Fuzzy logic 2.5. Efficiency criteria 2.6. Study area and data 3. Results and discussion 4. Conclusions References Chapter 10: Hydrologic models classification, calibration, and validation 1. Introduction 2. Hydrological modeling for integrated water management 2.1. Classification of hydrological models 2.2. Description of some common hydrological model types 2.2.1. Physical models 2.2.2. Deterministic models 2.2.3. Black box and statistical models 2.2.4. Conceptual models 2.2.5. Empirical models 2.3. Rainfall runoff transformation methods in physical models 2.4. Hydrologic model components 3. Model calibration and validation 3.1. Model parameterization 3.2. Model calibration 3.2.1. Calibration components 3.2.2. The objective function 3.2.3. Nash criteria 3.3. Optimization methods for model calibration 3.3.1. Manual calibration 3.3.2. Automatic calibration 3.3.3. Genetic algorithms 3.4. Model validation 3.5. Model uncertainties 3.5.1. Data uncertainty 3.5.2. Uncertainty due to parameters estimation 3.5.3. Model uncertainty 3.6. Regionalization methods in rainfall-runoff modeling (case of ungauged basins) 4. Conclusions References Further reading Chapter 11: Identification of soil erosion sites in semiarid zones: Using GIS, remote sensing, and PAP/RAC model 1. Introduction 2. Materials and method 2.1. Study area 2.2. PAP/RAC model application 2.2.1. The predictive phase 2.2.2. The descriptive phase 2.2.3. The integration phase 2.3. The accuracy test 3. Results and discussion 3.1. Predictive phase 3.1.1. The slope map 3.1.2. The lithology map 3.1.3. The erodibility map 3.1.4. Land use map 3.1.5. Vegetation density 3.1.6. The soil protection map 3.1.7. The predictive erosion map 3.2. Descriptive phase 3.3. Integration phase 3.4. Global diagnosis of the test accuracy assessment 4. Conclusions References Chapter 12: Metrics of the water performance engineering modeling 1. Introduction 2. Types of hydro-climatological modeling and metrics 2.1. Point prediction 2.2. Prediction intervals of modeling 2.3. Binary classification 2.4. Input selection methods in modeling 2.5. Decision making models 2.6. Hydrographs in hydrological modeling 2.7. Flow-duration curves 2.8. Information theory 3. Some applications of the metrics 3.1. Application of the point prediction in hydro-climatological modeling 3.2. Application of the PIs in hydro-climatological modeling 3.3. Application of the binary classification in hydro-climatological modeling 3.4. Application of the input selection in hydro-climatological modeling 3.5. Application of the decision making in hydro-climatological modeling 3.6. Application of the hydrographs in hydro-climatological modeling 3.7. Application of the flow-duration curves in hydro-climatological modeling 3.8. Application of the information theory in hydro-climatological modeling 4. Agenda for future studies References Chapter 13: Outlier robust extreme learning machine: Predicting river water temperature in the absence of air temperature 1. Introduction 2. Study area and data 3. Materials and methods 3.1. Outlier robust extreme learning machine(ORELM) 3.2. Performance assessment of the models 4. Results and discussion 5. Conclusions References Chapter 14: Parametric and nonparametric methods for analyzing the trend of extreme events 1. Introduction 2. Trend calculation methods 2.1. Mann-Kendall test (MK) 2.2. Mann-Kendall test with trend-free prewhitening (MK2) 2.3. Modified Mann-Kendall tests (MK3) 2.4. Mann-Kendall test considering LTP (MK4) 2.4.1. Calculation of Hurst coefficient (H) 2.4.2. Significance level of H 2.4.3. Calculation of variance 2.5. Spearmans rho test 2.6. Linear regression method 2.7. Quantile regression method 2.8. Generalized least squares (GLS) regression with AR errors 2.9. T-test for difference between means 3. Case studies 4. Conclusions References Chapter 15: Voting-based extreme learning machine: Potential of linking soil moisture content to soil temperature 1. Introduction 2. Materials and methods 2.1. Study area and available data 2.2. Performance metrics of the models 2.3. Adaptive network based fuzzy inference system (ANFIS) 2.4. Random vector functional link neural networks (RVFL) 2.5. Voting-based extreme learning machines (VELM) 3. Results and discussion 4. Conclusions References Chapter 16: Prediction of reference crop evapotranspiration: Empirical and machine learning approaches 1. Introduction 2. An overview of various empirical methods for reference evapotranspiration estimation 2.1. FAO-56 Hargreaves method 2.2. FAO-24 Blaney-Criddle (temperature-based) method 2.3. FAO-24 radiation method 2.4. Priestley-Taylor method 2.5. Turc radiation-based method 2.6. FAO-56 pan evaporation method 2.7. FAO-24 Penman combination type 2.8. FAO-56 Penman-Monteith method 3. Estimation of ET0 using empirical models 4. Machine learning techniques used for estimation of evapotranspiration 4.1. Artificial neural network 4.2. Genetic algorithm 4.3. Extreme learning machine (ELM) 4.4. Support vector machine (SVM) 4.5. Decision tree 4.6. Bagging technique 4.7. Boosting technique 4.7.1. AdaBoost technique 4.7.2. Gradient boosting 4.7.3. XgBoost technique 4.7.4. Light gradient boosting technique 4.7.5. Gradient boosting with categorical features support (CatBoost) technique 5. Modeling of ET0 using machine learning techniques 6. Deep learning techniques in modeling of ET0 7. Case study 8. Conclusions References Chapter 17: Reference evapotranspiration in water requirement: Theory, concepts, and methods of estimation 1. Introduction 2. Theory of evapotranspiration 2.1. Evaporation 2.2. Transpiration 2.3. Concepts of evapotranspiration 2.4. Reference evapotranspiration 2.5. Reference surface 3. Methods of calculating the reference evapotranspiration 3.1. Direct method of estimating reference evapotranspiration 3.1.1. Drainage lysimeters 3.1.2. Weighting lysimeters 3.2. Indirect methods for estimating the reference evapotranspiration 3.2.1. FAO-Penman-Monteith method Location coordinates Temperature Humidity Radiation Wind speed Latent heat of vaporization Humidity coefficient (γ) Saturated steam pressure Actual steam pressure (ed) Steam pressure deficiency (ea-ed) Steep pressure curve slope (Delta) Extraterrestrial radiation (Ra) Number of hours of daylight (N) Net radiation (Rn) Heat flux into the soil (G) 3.2.2. Most valid indirect methods of estimating reference evapotranspiration Thornthwaite Turc Priestley-Taylor Trajcovic Schendel Berti et al. Ravazzani et al. Mahringer Businger-Van Bavel WMO Romanenko modified Trabert Meyer Romanenko Hargreaves and Samani Dalton Kimberly-Penman Jensen-Haise Szász Caprio Irmak Ritchie McGuinness-Bordne Baier-Robertson Modified Turc Valiantzas Corrected Makkink method FAO-24 Blaney-Criddle Radiation FAO Makkink SCS Blaney-Criddle Linacre 3.2.3. Evaporation pan method Cuenca equation Snyder equation Modified Snyder equation Orang equation 3.2.4. Energy budget models Aerodynamic methods Energy balance methods Combined methods Experimental methods 3.2.5. Case studies 3.2.6. Statistical evaluation indices 4. Conclusions References Chapter 18: Extremely randomized trees versus random forest, group method of data handling, and artificial neural network 1. Introduction 2. Study area and data 3. Methodology 3.1. Multilayer perceptron neural networks (MLPNN) 3.2. Random forest (RF) 3.3. Extremely randomized tree (ERT) 3.4. Group method of data handling (GMDH) 3.5. Performance assessment of the models 4. Results and discussion 5. Conclusions References Chapter 19: Index of resilience and effectiveness of disaster risk management 1. Introduction 2. The disaster risk management index, DRMi 3. Evaluation for Latin America and the Caribbean region 3.1. Risk identification policy 3.2. Risk reduction policy 3.3. Disaster management policy 3.4. Governance and financial protection policy 3.5. DRMi results 4. Conclusions References Chapter 20: Wavelet decomposition based on Gaussian process regression and multiple linear regression: Monthly reservoir ... 1. Introduction 2. Materials and method 2.1. Study area 2.2. Gaussian process regression 2.3. Multi-linear regression 2.4. Wavelet transform 2.5. Feature selection method based on correlation (CFS) 2.6. Proposed methodology 3. Evaluation criteria 4. Results and discussion 4.1. Results of the hybrid models 4.1.1. The results of WGPR-CFS and WMLR-CFS models 5. Conclusions References Chapter 21: Sequential Monte-Carlo methods in hydroclimatology 1. Introduction 2. Bayes theorem 3. Basics of sequential Monte-Carlo methods 3.1. Basic random Monte-Carlo sampling 3.2. Importance sampling (IS) 3.3. The algorithm of particle filter 3.4. Resampling (selection) 3.4.1. Sequential importance resampling (SIR) 3.4.2. Residual resampling 3.4.3. Stochastic universal resampling 3.5. Tiny numerical example 4. Particle filters for high-dimensional geoscience applications 4.1. Proposal density particle filters 4.1.1. Implicit particle filter 4.1.2. Equivalent weights particle filter 4.1.3. Implicit equal weights particle filter 4.2. Localized particle filters 5. Adaptive estimation using particle filter 6. Conclusions References Chapter 22: Smart cities and hydroinformatics 1. The history of urbanization and smart cities 2. Definition of a Smart City 2.1. The technology dimension 2.2. The human dimension 2.3. The institutional dimension 3. Components of a Smart City 3.1. Smart economy 3.2. Smart people 3.3. Smart governance 3.4. Smart mobility 3.5. Smart environment 3.6. Smart living 4. Smart cities and internet of things 4.1. Precision 4.2. Big IoT data 4.3. Compatibility 4.4. Investment 4.5. Security and privacy 5. Smart City strategies 6. Smart cities and hydroinformatics 6.1. Relevant definition of hydroinformatics to smart cities 6.1.1. Spatial data 6.1.2. Digital terrain model (DTM) 6.1.3. Remote sensing data 6.1.4. Local data 6.2. The role of data acquisition 6.3. Data analytics and modeling 6.4. Applications of hydroinformatics to smart cities 6.4.1. Water supply and distribution systems 6.4.2. Wastewater and urban drainage systems 6.4.3. Water quality management 6.4.4. Toward integrated water systems 7. Conclusions References Chapter 23: Support vector regression model optimized with GWO versus GA algorithms: Estimating daily pan-evaporation 1. Introduction 2. Study location and data collection 3. Methodology 3.1. Gamma test 3.2. Support vector regression 3.3. Nature-inspired algorithms 3.3.1. Grey wolf optimizer 3.3.2. Genetic algorithm 3.4. Hybrid SVR models 3.5. Performance measures 4. Results and discussion 4.1. Application of hybrid SVR models 5. Conclusions References Chapter 24: Univariate, multivariate L-moments and copula functions for drought analysis 1. Introduction 2. Materials and methods 2.1. Univariate L-moments 2.2. Multivariate L-moments 2.3. Copula functions 3. Results 3.1. Univariate drought index 3.2. Multivariate drought index 4. Conclusions References Index Back Cover