دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Randall Allemang. Peter Avitabile
سری:
ISBN (شابک) : 1461445469, 9781461445463
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 1425
[1426]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 45 Mb
در صورت تبدیل فایل کتاب Handbook of Experimental Structural Dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای دینامیک سازه های تجربی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای دینامیک سازه آزمایشی SEM به عنوان یک مرور کلی و مرجع برای موضوع خود است که برای کارگران در تحقیق، طراحی و ساخت محصول، و عمل قابل استفاده است. این هندبوک عمدتاً به حوزههای مکانیک سازهای اختصاص دارد که توسط انجمن مکانیک تجربی IMAC ارائه میشود، مانند تجزیه و تحلیل مودال، ماشینهای دوار، نظارت بر سلامت سازه، شوک و ارتعاش، حسگرها و ابزار دقیق، آئروالاستیسیته، آزمایش زمین، تکنیکهای اجزای محدود، به روز رسانی مدل، تجزیه و تحلیل حساسیت، تأیید و اعتبارسنجی، زیرساختار دینامیک تجربی، کمی کردن حاشیه و عدم قطعیت، و آزمایش زیرساخت های عمرانی. فصلها پوشش جامع و مفصلی از دههها پیشرفت علمی و فناوری ارائه میدهند و همگی یک دیدگاه تجربی را نشان میدهند. چندین بخش به طور خاص انواع مختلف آزمایشهای آزمایشی و شیوههای رایج مورد استفاده در صنایع خودروسازی، هوافضا، و سازههای عمرانی را مورد بحث قرار میدهند.
· تاریخچه مکانیک سازههای تجربی< /p>
· روشهای DIC - فتوگرامتری دینامیک
· روشهای LDV
· سیگنال دیجیتال کاربردی پردازش
· مقدمهای بر طیفی - اندازهگیریهای پایه
· اندازهگیریهای ساختاری - FRF
< p>· تست تصادفی و شوک· روشهای تحلیل سیستم چرخشی
· ابزار دقیق تنظیم سیگنال سنسورها span>
· طراحی آزمونهای معین
· روشهای آزمایشی مودال
· ارزیابی پارامترهای مودال تجربی
· روشهای تحلیل مودال عملیاتی
· زیر ساختار عددی تحلیلی
< p>· همبستگی مدل اجزای محدود· بهروزرسانی مدل
· میرایی مواد و سازهها
· کالیبراسیون و اعتبارسنجی مدل در سازهها
· کمیت عدم قطعیت: UQ، QMU و آمار
< p>· روشهای تحلیل غیرخطی سیستم (تجربی)· پایش سلامت سازه و تشخیص آسیب
· آزمایشی مدلسازی زیرساخت
· مدلسازی مودال
· مدلسازی پاسخ (امپدانس)
· تکنیکهای تحلیل حالت عادی غیرخطی (تحلیلی)· مدلسازی مودال با عناصر اتصال غیرخطی (تحلیلی)
· آکوستیک سیستمهای سازهای (VibroAcoustics)
· تست سازه خودرو
· تست سازههای عمرانی</ p>
· دیدگاه هوافضا برای مدلسازی و اعتبارسنجی
· تست تجهیزات ورزشی
· ریاضی کاربردی برای مکانیک سازه تجربی
مشارکتها نظریه مهمی را در پس روشهای تجربی مرتبط و همچنین کاربرد و فناوری ارائه میکنند. نویسندگان موضوعی بر روشهای اثباتشده تاکید و تشریح میکنند و جزئیاتی را فراتر از بررسی ساده ادبیات ارائه میدهند. علاوه بر این، فصل ها نیازهای عملی دانشمندان و مهندسانی را که در این زمینه جدید هستند، پوشش می دهد. در اغلب موارد، نه نظریه مربوطه و نه به طور خاص، مسائل عملی به طور رسمی در کتب درسی فعلی دانشگاهی ارائه نشده است. هر فصل در کتاب راهنما بیانگر یک «باید خوانده شود» برای فردی که تازه به آن موضوع میپردازد یا برای کسی که پس از غیبت به این رشته بازمیگردد. فهرستهای مرجع در هر فصل شامل مقالات اصلی در ادبیات است.
این کتاب به موازات کتاب راهنمای مکانیک جامدات تجربی SEM است، جایی که این کتاب بر روی دینامیک تجربی تمرکز دارد. ساختارهایی در مقیاس کلان اغلب شامل اجزا و مواد متعددی هستند که در آن کتاب راهنمای مکانیک جامدات تجربی SEM بر روی مکانیک تجربی مواد در مقیاس نانو و/یا مقیاس میکرو تمرکز دارد.
< /p>
The SEM Handbook of Experimental Structural Dynamics stands as a comprehensive overview and reference for its subject, applicable to workers in research, product design and manufacture, and practice. The Handbook is devoted primarily to the areas of structural mechanics served by the Society for Experimental Mechanics IMAC community, such as modal analysis, rotating machinery, structural health monitoring, shock and vibration, sensors and instrumentation, aeroelasticity, ground testing, finite element techniques, model updating, sensitivity analysis, verification and validation, experimental dynamics sub-structuring, quantification of margin and uncertainty, and testing of civil infrastructure. Chapters offer comprehensive, detailed coverage of decades of scientific and technologic advance and all demonstrate an experimental perspective. Several sections specifically discuss the various types of experimental testing and common practices utilized in the automotive, aerospace, and civil structures industries.
· History of Experimental Structural Mechanics
· DIC Methods - Dynamic Photogrammetry
· LDV Methods
· Applied Digital Signal Processing
· Introduction to Spectral - Basic Measurements
· Structural Measurements - FRF
· Random and Shock Testing
· Rotating System Analysis Methods
· Sensors Signal Conditioning Instrumentation
· Design of Modal Tests
· Experimental Modal Methods
· Experimental Modal Parameter Evaluation
· Operating Modal Analysis Methods
· Analytical Numerical Substructuring
· Finite Element Model Correlation
· Model Updating
· Damping of Materials and Structures
· Model Calibration and Validation in Structures
· Uncertainty Quantification: UQ, QMU and Statistics
· Nonlinear System Analysis Methods (Experimental)
· Structural Health Monitoring and Damage Detection
· Experimental Substructure Modeling
· Modal Modeling
· Response (Impedance) Modeling
· Nonlinear Normal Mode Analysis Techniques (Analytical)· Modal Modeling with Nonlinear Connection Elements (Analytical)
· Acoustics of Structural Systems (VibroAcoustics)
· Automotive Structural Testing
· Civil Structural Testing
· Aerospace Perspective for Modeling and Validation
· Sports Equipment Testing
· Applied Math for Experimental Structural Mechanics
Contributions present important theory behind relevant experimental methods as well as application and technology. Topical authors emphasize and dissect proven methods and offer detail beyond a simple review of the literature. Additionally, chapters cover practical needs of scientists and engineers who are new to the field. In most cases, neither the pertinent theory nor, in particular, the practical issues have been presented formally in current academic textbooks. Each chapter in the Handbook represents a ’must read’ for someone new to the subject or for someone returning to the field after an absence. Reference lists in each chapter consist of the seminal papers in the literature.
This Handbook stands in parallel to the SEM Handbook of Experimental Solid Mechanics, where this Handbook focuses on experimental dynamics of structures at a macro-scale often involving multiple components and materials where the SEM Handbook of Experimental Solid Mechanics focuses on experimental mechanics of materials at a nano-scale and/or micro-scale.
Preface and Introduction Contents About the Editors Contributors Part I Sensors and Measurements 1 Recent History of Experimental Structural Dynamics Contents Nomenclature 1 Introduction 2 Timeline History 3 Technology Developments 3.1 Sensors 3.1.1 Resistance Technology 3.1.2 Bonded Strain Gage Technology 3.1.3 Piezoelectric Crystal Technology 3.1.4 Inductance and Capacitance Technology 3.1.5 Optical Technology 3.2 Data Acquisition 3.2.1 Analog Technology 3.2.2 Digital Technology 4 Experimental Structural Dynamics Methods 1965–1985 4.1 Classification Methods 4.2 Data Acquisition Classification 4.2.1 Sinusoidal Input-Output Method 4.2.2 Frequency Response Function Method 4.2.3 Damped Complex Exponential Methods 4.2.4 Mathematical Input-Output Model Method 4.3 Summary 5 Conferences 5.1 ISMA 5.2 IMAC 5.3 Other Conferences 6 Publications and Books 7 Pioneers/Contributors 7.1 Pioneers: Experimental Structural Dynamics 7.2 Contributors: Handbook 7.3 Contributors: SEM IMAC 7.3.1 IMAC Advisory Board 8 Summary/Conclusions References 2 Sensors and Their Signal Conditioning for Dynamic Acceleration, Force, Pressure, and Sound Applications Contents 1 Sensing Technologies 1.1 Piezoelectricity 1.2 Metal Strain Gages 1.3 Semiconductor, Piezoresistive, and MEMS Strain Gages 1.4 Piezoelectric Strain Gages 1.5 Capacitance 2 Sensor Dynamic Models 2.1 Strain Gage 2.2 Pressure, Force, and Acceleration Transducers 3 Sensor Selection and Use 3.1 Piezoelectric Accelerometers 3.2 Force Sensors 3.3 Impedance Heads 3.4 Pressure Measurements 3.5 Pressure Transducers 4 Sensor Systems 4.1 Sensor System Architecture 5 Signal Conditioning 5.1 Types of Amplifiers 5.2 Filters 5.3 Analog-to-Digital Conversion 6 Other Considerations 6.1 Grounding 6.2 Cabling 6.3 Ground Loops 6.4 Triboelectric Effects 6.4.1 Connectors 7 Data Validation 7.1 Examples References 3 Laser Doppler Vibrometry Measurements in StructuralDynamics Contents Nomenclature 1 Theory of Vibrometry 1.1 Lasers Sources and Doppler Effect 1.2 From Interferometers to Vibrometers 1.2.1 Optical Homodyne and Heterodyne 1.2.2 Michelson Interferometer 1.2.3 Mach-Zehnder Interferometer 1.2.4 Self-Mixing 1.3 Demodulation of Doppler Signals 1.4 Noise and Resolution 1.5 Critical Aspects in Laser Vibrometry 1.5.1 Backscatter Issues 1.5.2 Speckle Noise 1.5.3 Measuring in Media and Through Windows 1.6 Signal Enhancement Approaches 1.6.1 Tracking Filter 1.6.2 Diversity Combining 1.7 Uncertainty and Calibration 1.8 Laser Safety and Standards 2 Instrumentation, Measurement Issues, and Applications 2.1 Single-Point Vibrometers 2.2 Optical Fiber Vibrometers 2.3 Differential Vibrometers 2.4 Rotational Vibrometers 2.5 In-Plane Vibrometers 2.6 Scanning Vibrometers 2.6.1 Step Scan Vibrometers (Single DoF) 2.6.2 Special Solutions Continuous-Scan LDV LDV Strategies on Rotating/Moving Structures Scanning Laser Doppler Vibrometry with Optical Derotator Tracking Laser Doppler Vibrometry 2.6.3 3D Scanning Vibrometer 2.7 Multi-beam 3 Conclusions References 4 Applied Digital Signal Processing Contents 1 Overview 2 Deterministic Signals and Traditional Fourier Analysis 2.1 Periodic Signals and Fourier Series 2.2 Transient Signals and the Fourier Transform 2.3 Discrete-Time Signals and Digital Implementation 3 Experimental Signals and Stochastic Signal Modelling 3.1 Time-Varying Distributions: Ensemble Versus Time Quantities 3.2 Stationary Signal Model 3.3 Cyclostationary Signal Model 3.3.1 CS1 Model 3.3.2 CS2 Model 3.4 Cyclo-non-stationarity 3.5 Transient Signal Model 4 Scaling and Dimensions for Various Versions of the Fourier Transform 4.1 Periodic and Quasi-periodic Signals 4.2 Stationary Random Signals, Power Spectral Density (PSD) 4.3 Deterministic Transient Signals, Energy Spectral Density (ESD) 5 Choosing the Right Model for an Experimental Signal 5.1 Modal Analysis 5.2 Condition Monitoring for Rotating/Reciprocating Machines 5.2.1 Typical Rotor Problems 5.2.2 Gear Faults 5.2.3 Bearing Faults 5.2.4 Internal Combustion Engines 6 Signal Extraction and Separation 6.1 General Introduction 6.2 Signal Extraction 6.3 Reference-Based Filtering 6.4 Filtration 6.5 Blind Extraction 6.5.1 Blind Extraction of Impulsive Signals 6.5.2 Blind Extraction of Cyclostationary Signals 6.6 Blind Deconvolution 6.7 Discrete-Random Separation 6.7.1 Extraction of Periodic Signals with Known Periods: Synchronous Averaging 6.7.2 Extraction of Periodic Signals with Unknown Periods 6.8 Blind Source Separation 6.8.1 The Notion of a Source 6.8.2 Problem Statement 6.8.3 Types of Mixture 6.8.4 General Principles Separation Operator Separation Criteria Optimization Algorithm 6.9 Blind Separation of Structural Modes 6.9.1 Context 6.9.2 Principle 6.9.3 Example of Application 7 Time-Frequency Representations 7.1 STFT 7.2 Wigner-Ville Distribution (WVD) 7.3 Wigner-Ville Spectrum (WVS) 7.4 Wavelets 7.4.1 Constant Percentage Bandwidth 7.4.2 Wavelet Packets 8 Specialized Analysis 8.1 Order Analysis 8.1.1 Computed Order Tracking 8.2 Second-Order Cyclostationary Indicators 8.3 The Envelope Spectrum 8.4 The Cyclic Modulation Spectrum 8.5 The Spectral Correlation Density 8.6 The Relationship Between Kurtosis, Envelope, and CS2 Indicators 9 Typical Diagnostic Examples 9.1 Rolling Element Bearings 9.2 Gears 9.3 Reciprocating Machines and Engines 10 Cepstrum 10.1 Background and Definitions 10.2 Cepstrum Liftering 10.2.1 Comb Notch Lifter 10.2.2 Exponential Lifter 10.2.3 Modal Suppression 10.2.4 Longpass Lifter 10.3 Cepstrum for Machine Diagnostics 10.3.1 Changes due to Forcing Functions 10.3.2 Changes due to Structural Response 10.3.3 Example of Cepstrum Pre-whitening for the Diagnostic of Rolling Element Bearings in Variable Speed Conditions 10.4 Cepstrum for Modal Analysis 10.4.1 Full OMA Procedure 10.4.2 Cepstral Pre-processing for Other OMA Procedures References 5 Introduction to Spectral and Correlation Analysis: Basic Measurements and Methods Contents 1 Introduction 1.1 Properties of Linear Systems 1.2 Common Applications in Experimental Structural Dynamics 2 Signal Classes and Their Spectra 2.1 Periodic Signals 2.2 Random Signals 2.2.1 Correlation Functions 2.2.2 Spectral Density Functions 2.3 Transient Signals 2.4 Double-Sided Versus Single-Sided Spectra 3 Frequency Analysis 3.1 Spectrum Analysis Principle 3.2 The Discrete Fourier Transform (DFT) 3.2.1 Leakage and Windowing 3.2.2 Cyclic Convolution and Zero Padding 3.2.3 Window Scaling Factors 4 Block-Based Spectrum and Correlation Estimation 4.1 The Linear (RMS) Spectrum 4.2 The Phase Spectrum 4.3 Welch's PSD and CSD Estimates 4.4 Energy Spectral Density Estimates 4.5 Welch's Correlation Function Estimates 5 Periodogram-Based Spectrum and Correlation Estimation 5.1 The Periodogram 5.2 The Smoothed Periodogram PSD Estimate 5.3 The Periodogram Correlation Estimate 5.4 Dealing with Harmonics in Correlation Functions 6 Summary References 6 Frequency Response Function Estimation Contents Nomenclature 1 Introduction 2 Frequency Response Function Development 3 Frequency Response Function Estimation 3.1 Noise/Error Minimization 3.2 Single Input FRF Estimation 3.2.1 H1 Algorithm: Minimize Noise on Output (η) 3.2.2 H2 Algorithm: Minimize Noise on Input (υ) 3.2.3 Hv Algorithm: Minimize Noise on Input and Output (η and υ) 3.2.4 Ordinary Coherence 3.3 Multiple Input FRF Estimation 3.3.1 Multiple Input Versus Single Input 3.3.2 H1 Algorithm: Minimize Noise on Output ( η ) 3.3.3 H2 Algorithm: Minimize Noise on Input (υ) 3.3.4 Hv Algorithm: Minimize Noise on Input and Output (υ and η) 3.4 Coherence: Ordinary, Multiple, and Conditioned 3.4.1 Ordinary Coherence 3.4.2 Multiple Coherence 3.4.3 Conditioned Coherence Conditioned Coherences Which Retain Physical Source Reference Partial Coherence Cumulative Coherence Conditioned Coherences Which Utilize Virtual Source Reference Fractional Coherence Virtual Coherence Two DOF Illustration Ordinary coherence (output p and Input 1): Ordinary coherence (output p and input 2): Ordinary Coherence (Input 1 and Input 2): Multiple Coherence Summary of Methods 3.5 Multiple Input Force Analysis/Evaluation 3.5.1 Ordinary and Partial Coherence Functions 3.5.2 Principal/Virtual Input Forces (Virtual Forces) 3.5.3 Optimum Number Of Inputs 4 Averaging 4.1 General Averaging Methods 4.1.1 Linear Averaging 4.1.2 Magnitude Averaging 4.1.3 Root Mean Square (RMS) Averaging 4.1.4 Exponential Averaging 4.1.5 Stable Averaging 4.1.6 Peak Hold 4.2 Estimation of Frequency Response Functions 4.2.1 Asynchronous Signal Averaging 4.2.2 Synchronous Signal Averaging 4.2.3 Cyclic Signal Averaging Theory of Cyclic Averaging Practical Example 4.3 Special Types of Signal Averaging 4.3.1 Overlap Processing 4.3.2 Random Decrement 5 Excitation 5.1 Excitation Assumptions 5.2 Excitation Terminology and Nomenclature 5.2.1 Signal Type 5.2.2 Frequency Shaping 5.2.3 Contiguous Blocks 5.2.4 Capture Blocks 5.2.5 Window Function 5.2.6 Ensemble or Average 5.2.7 Excitation Signal 5.2.8 Burst Length 5.2.9 Power Spectral Average 5.2.10 Excitation Terminology Illustration 5.3 Classification of Excitation 5.4 Random Excitation Methods 5.4.1 Pure Random Signal 5.4.2 Pseudorandom Signal 5.4.3 Periodic Random Signal 5.4.4 Burst Random Signal 5.4.5 Slow Random Signal 5.4.6 MOOZ Random Signal 5.4.7 Hybrid Random Signal 5.5 Deterministic Excitation Methods 5.5.1 Slow Swept Sine Signal 5.5.2 Periodic Chirp Signal 5.5.3 Impact Signal Impact Testing Force Window Response (Exponential) Window Response (Exponential) Window Correction 5.5.4 Step Relaxation Signal 5.5.5 Summary of Excitation Signal Characteristics 5.6 Excitation Example: H-Frame 6 Structural Testing Conditions 7 Practical Measurement Considerations 8 Summary References 7 Random Vibration and Mechanical Shock Contents Nomenclature 1 Introduction 2 Mathematical Foundations of Structural Dynamics 2.1 Single-Degree-of-Freedom Structures 2.1.1 Structural Dynamics in the Time Domain 2.1.2 Structural Dynamics in the Frequency Domain 2.2 Multiple-Degree-of-Freedom Structures 2.2.1 Structural Dynamics in the Time and Frequency Domains 2.3 Random Processes 2.4 Random Vibration 2.5 Mechanical Shock 3 Random Vibration Testing 3.1 Random Processes and the Autospectral Density 3.2 Random Test Control Loop 3.3 Test Setup and Instrumentation 3.4 Conducting a Random Vibration Test 4 Shock Testing on Shakers 4.1 Time History Synthesis 4.1.1 Basic Shaker Limitations 4.1.2 Classification of Waveforms 4.1.3 Matching a Required Shock Response Spectrum 4.1.4 Time History Synthesis Using Oscillatory Waveforms 4.1.5 Problems with Synthesis 4.2 Time History Reproduction 4.2.1 Classical Theory 4.2.2 Duration of a Transient Waveform 4.2.3 Measurement of the System Frequency Response Function 4.2.4 Why Things Do Not Always Work 4.2.5 Why Things Do Not Always Work, an Extreme Example 4.2.6 Improving Your Chances for a Good Test 4.3 Conclusion 5 Closure References 8 DIC and Photogrammetry for Structural Dynamic Analysis and High-Speed Testing Contents 1 Introduction and Relation to Prior Related Work on DIC and Point Tracking 1.1 Photogrammetry Techniques 1.1.1 Point Tracking 1.1.2 Digital Image Correlation (DIC) 1.1.3 Target-Less Approaches 1.2 DIC Hardware 1.3 DIC Software 1.4 Patterning 1.5 Calibration 1.6 Measurement and Applications 2 Overview of Modal Testing and Requirements 2.1 Frequency Response Function Measurement Considerations 2.2 Fourier Transformation and Leakage Considerations 2.3 Curve Fitting Considerations 3 The Distinction Between Operating Shapes and Mode Shapes 4 DIC Measurement Resolution in Relation to Structural Dynamic Testing/Modal Analysis 5 DIC Measurement Range in the Context of Structural Motion and Frequency 6 Analysis in the Temporal Versus Frequency Domains 7 Identifying the Number of Images Needed 7.1 Sampling Theory Relationships 7.2 Selecting Proper Sampling Parameters 7.3 Dealing with Long Sampling Requirements 8 Sources of Measurement Error and Best Practices 8.1 Modes of the Stereo System Hardware and iIts Measurement Effect 8.2 Aliasing 8.2.1 Description of Temporal Aliasing for Image Processing 8.2.2 Mitigating Aliasing with a Single Point Measurement 8.3 Artificial Aliasing to Enhance Measurement 8.3.1 Stroboscope Lights and High-Speed Measurements 8.3.2 Phase Stepping 8.4 Lighting Requirements, Shutter Time, and Lens Adjustment 8.4.1 Lens Adjustment 8.4.2 Blurring 8.4.3 Lighting 8.4.4 Heating Effects Due to Lighting 9 Excitation Strategies for Modal Testing and Application to DIC Measurements 9.1 Impact Testing 9.2 Shaker Testing 9.2.1 Sine Excitation 9.2.2 Swept Sine/Chirp Excitation 9.2.3 Pure Random Excitation 9.2.4 Pseudo Random Excitation 9.2.5 Periodic Random Excitation 9.2.6 Burst Random 9.3 Recommended Inputs for DIC Testing 10 DIC and Photogrammetry Measurement Range and Noise Floor 10.1 Pre-measurement Parameters 10.1.1 Camera Setup and Calibration 10.1.2 Blurring 10.1.3 Speckle Pattern and Target Shape 10.1.4 Camera Angle 10.1.5 Air Turbulence 10.2 Image Correlation and Data Processing Parameters 10.2.1 Data Processing Parameters 11 Strain Mode Shapes 12 Projected Patterns Pros and Cons 12.1 Projected Speckle Patterns 12.2 Deflectometry 13 Rotating Optical Measurements 13.1 Frequency of Measurement, Duration, and Shutter Time 13.2 Camera Setup 13.3 Rigid Body Correction 13.4 Mode Extraction Challenges and Effects of Harmonics 14 Some Experimental Case Studies 14.1 Comparison bBetween 3D Scanning Laser Doppler Vibrometry and 3D Stereo-DIC 15 DIC Comparison to Traditional Modal Analysis Sensing 16 DIC for High Rate Testing 16.1 Definition of High-Rate Testing 16.2 High-Rate Camera Selection 16.3 2D Versus 3D Stereo-DIC 16.4 Environmental Concerns 16.5 Camera Motion 16.6 Camera Protection 16.7 Extended Noise Floor Measurements 16.8 Camera Calibration 16.9 Lighting Techniques 16.9.1 Polarization 16.9.2 Motion Blur 16.10 Camera Synchronization 16.10.1 IRIG (Inter-Range Instrumentation Group) Timing 16.11 Painting Techniques 16.12 Conclusion References Part II Modal Model Development 9 Design of Modal Tests Contents Acronyms 1 Introduction 2 Excitation Techniques 2.1 General Considerations 2.1.1 Frequency Range 2.1.2 Excitation Level 2.1.3 Linearity of Structure 2.1.4 Damping of Structure 2.1.5 Simulation of Operational Loads 2.2 Artificial Input 2.2.1 Impulsive Inputs Impact Inputs Step Inputs Damping and Nonlinearities 2.2.2 Controlled Inputs 2.2.3 Multiple Inputs 2.3 Natural or Operational Inputs 3 Response Measurements 3.1 Transducers 3.2 Number of Degrees of Freedom to Measure 3.3 Acquisition Methods 3.4 Geometry Definition 3.4.1 Accuracy of Location Measurements 3.4.2 Layout and Documentation 3.4.3 Test Display Model 4 Support Conditions 4.1 Approximating Free Boundary Conditions, and the Resulting Compromises 4.2 Suspension System Design, Low Spring Rates 4.3 Constrained Support, Built-In, and Other Boundary Conditions 4.4 Operating Environments 5 Measurement Quality Criteria 6 Modal Tests for Model Validation 6.1 Selecting Response Locations 6.1.1 Modal Kinetic Energy 6.1.2 Effective Independence 6.1.3 Min-MAC 6.1.4 Aerospace Cross-Orthogonality; TAMs 6.2 Selecting Input Locations, Directions, and Number 6.2.1 General Guidelines 6.2.2 Selection of Locations 6.3 Planning the Criteria for “Test Exit” 7 Closure References 10 Experimental Modal Analysis Methods Contents Nomenclature 1 Introduction 2 Modal Parameter Estimation: Background 2.1 Assumptions, Definitions, and Concepts 2.1.1 Assumptions 2.1.2 Definition: Modal Parameters Modal Vector Normalization 2.1.3 Definition: Degrees of Freedom (DOFs) 2.1.4 Concept: Experimental Modal Parameter Estimation 2.1.5 Concept: Data Domain 2.1.6 Concept: Characteristic Space 2.1.7 Concept: Data Dimensionality 2.1.8 Concept: Generalized Frequency 2.1.9 Concept: Kernel Equations 2.1.10 Concept: Overdetermined Linear Models 2.1.11 Concept: General (Two-Stage) Solution Procedure 2.1.12 Concept: Equation Normalization 2.2 Analytical Models 2.2.1 [M] [C] [K] Models 2.2.2 [A] [B] Models 2.2.3 [A] [B] [C] [D] Models 2.2.4 Eigen-Solutions, Orthogonality and Modal Scaling Orthogonality Modal Scaling 2.3 Experimental Models 2.3.1 Polynomial Models Frequency Domain Time Domain 2.3.2 Companion Matrix 2.3.3 Partial Fraction Models: Residues and Residuals Residues Residues from Single Reference FRFs Residues from Multiple Reference FRFs Residues from IRFs Residuals from FRFs 2.3.4 Modal Vectors and Modal Scaling from Residues 2.3.5 Other Experimental Model Methods 3 Single Degree of Freedom Methods 3.1 SDOF Algorithms: Overview 3.2 Operating Vector (Peak-Pick) Estimation 3.2.1 Half-Power Bandwidth Method 3.2.2 Logarithmic Decrement Method 3.3 Complex Plot (Circle Fit) Method 3.4 Two-Point Finite Difference Formulation 3.5 Least-Squares (Local) SDOF Method 3.6 Least-Squares (Global) SDOF Method 3.7 Other SDOF Methods 4 Multiple Degree of Freedom Methods 4.1 General (Two-Stage) Solution Procedure 4.1.1 Consistency Diagrams 4.2 Current MPE Methods 4.3 Kernel Equations: Time Domain Algorithms 4.3.1 High-Order Methods 4.3.2 Low-Order Methods: First Order 4.3.3 Low-Order Methods: Second Order 4.4 Kernel Equations: Frequency Domain Algorithms 4.4.1 Generalized Frequency 4.4.2 High-Order Methods 4.4.3 Low-Order Methods: First Order 4.4.4 Low-Order Methods: Second Order 4.5 Residue (Modal Vector) Estimation 4.5.1 Time Domain Methods 4.5.2 Frequency Domain Methods 5 Differences in MPE Algorithms 5.1 Polynomial Coefficient Estimation 5.2 Generalized Frequency 5.2.1 Normalized Frequency 5.2.2 Orthogonal Polynomials Discrete Orthogonal Polynomials 5.2.3 Complex Z Mapping 5.3 Data Sieving/Filtering/Decimation 5.4 Coefficient Condensation (Virtual DOFs) 5.4.1 Eigenvalue Decomposition 5.4.2 Singular Value Decomposition 5.4.3 Virtual FRFs 5.5 Equation Condensation 6 Summary References 11 Experimental Modal Parameter Evaluation Methods Contents Nomenclature 1 Introduction 2 Background: Modal Parameter Estimation Methods 2.1 Assumptions, Definitions, and Concepts 2.1.1 Assumptions 2.1.2 Definition: Modal Parameters Modal Vector Normalization 2.1.3 Definition: Degrees of Freedom (DOFs) 2.1.4 Concept: Experimental Modal Parameter Estimation 2.1.5 Concept: Experimental Modal Parameter Methods 2.1.6 Concept: Data Domain 2.1.7 Concept: Characteristic Space 2.1.8 Concept: Data Dimensionality 2.1.9 Concept: Generalized Frequency 2.1.10 Concept: Kernel Equations Frequency Domain Time Domain 2.1.11 Concept: Overdetermined Linear Models 2.1.12 Concept: General (Two-Stage) Solution Procedure 2.1.13 Concept: Equation Normalization 2.1.14 Concept: Modal Vectors, Modal Scaling, Residues 3 Modal Frequency Evaluation/Validation Tools 3.1 Model Order Relationships 3.2 Auto Moment Functions 3.3 Mode Indication Functions 3.3.1 Complex Mode Indication Function 3.3.2 Multivariate Mode Indication Function 3.4 Consistency Diagrams 3.4.1 Alternate Consistency Diagram 3.5 Pole Surface Consistency Plots 3.6 Modal Parameter Clustering 4 Modal Vector Evaluation/Validation Tools 4.1 Modal Vector Conditioning 4.1.1 Vector Normalization 4.1.2 Real Normalization 4.1.3 Central Axis Rotation 4.1.4 Vector Complexity 4.1.5 Modal Vector Complexity Plots Case 6 Case 8 Case 10 4.2 Modal Vector Validation: eFRF 4.2.1 eFRF: Theoretical Definition 4.2.2 eFRF: Historical Development 4.2.3 eFRF: FRF SVD Development 4.3 Weighted Modal Vector Orthogonality 4.3.1 Weighted Orthogonality of Modal Vectors 4.4 Weighted Pseudo Orthogonality of Modal Vectors 4.5 Modal Vector Consistency 4.5.1 Modal Vector Linearity or Consistency Consistency of Modal Vectors Modal Assurance Criterion (MAC) Zero Modal Assurance Criterion (MAC) Unity 4.5.2 Cross Modal Assurance Criterion (Cross MAC) 4.5.3 Pole-Weighted or State Vector MAC 4.5.4 Other Similar Assurance Criteria Weighted Modal Analysis Criterion (WMAC) Partial Modal Analysis Criterion (PMAC) Modal Assurance Criterion Square Root (MACSR) Scaled Modal Assurance Criterion (SMAC) Modal Assurance Criterion Using Reciprocal Vectors (MACRV) Modal Assurance Criterion with Frequency Scales (FMAC) Coordinate Modal Assurance Criterion (COMAC) Enhanced Coordinate Modal Assurance Criterion (ECOMAC) Mutual Correspondence Criterion (MCC) Modal Correlation Coefficient (MCC) Inverse Modal Assurance Criterion (IMAC) Frequency Response Assurance Criterion (FRAC) Complex Correlation Coefficient (CCF) Frequency Domain Assurance Criterion (FDAC) Coordinate Orthogonality Check (CORTHOG) 4.5.5 Uses of the Modal Assurance Criterion 4.5.6 Misuse/Abuse of the Modal Assurance Criterion 5 Autonomous Modal Parameter Estimation 5.1 Current Approaches 5.2 Common Statistical Subspace Autonomous Mode Identification (CSSAMI) 6 Summary References 12 Damping of Materials and Structures Contents Nomenclature 1 Classification and Survey 1.1 Introduction 1.2 The Notion of Damping 1.3 Classification of Damping Phenomena 1.4 Notes on Modern, Computer-Based Analytical and Measurement Programs 2 Damping of Solids 2.1 Physical Phenomena 2.2 Linear Models 2.2.1 Three-Parameter Models 2.2.2 Three-Parameter Models in the Standard Test 2.2.3 N-Parameter Model 2.2.4 Operator Notation 2.2.5 Creep and Relaxation 2.2.6 Harmonic Stress and Strain Function 2.2.7 Three-Dimensional Stress State 2.2.8 Temperature Dependence of Viscoelastic Material Properties 2.2.9 Thermo-Rhoelogical Simple Materials 2.3 Nonlinear Models 2.3.1 Models for Static Hysteresis Point-Symmetrical Hysteresis Without Reversal Points General Shape of Hysteresis Curves 2.3.2 Models for Nonlinear Viscoelasticity 2.3.3 Models for Static Hysteresis and Viscoelasticity Rheological Models Mathematical Model 3 Damping of Assemblies 3.1 From Material Description to Complete Homogeneous Component 3.2 Laminated Components 3.3 Damping in Joints 3.3.1 Description by a Functional Equation 3.3.2 Description in Terms of Springs and Coulomb Elements 3.3.3 Description in Terms of Equivalent Spring and Equivalent Damper 3.3.4 Description Using Finite Element Models 3.4 Damping Due to Fluids 3.4.1 Interaction Between a Structure and the Surrounding Medium 3.4.2 Radiation Efficiency, Logarithmic Radiation Efficiency, and Radiation Loss Factor 3.4.3 Elementary Radiators Monopole or Zero-Order Spherical Radiator (Breathing Sphere) Dipole or First-Order Radiator (Vibrating Rigid Sphere) Plane Radiator (Piston) 19:19-1:bib31 3.4.4 Damping of Bending Vibrations of Plates Radiation loss Factor of Homogeneous, Constant Thickness Plates Infinite Homogeneous Plate of Constant Thickness Homogeneous Rectangular Plate of Constant Thickness Rectangular Plates Supported on All Sides Other Boundary Conditions Ribbed Plates 3.4.5 Damping of Vibrating Pipes Infinite Regular Cylindrical Pipe Bending Vibrations of Long Regular Cylindrical Pipes Bending Vibrations of Long Pipes with Elliptical or Rectangular Cross Section 3.4.6 References to Nonlinearities 3.5 Damping by Displacement 3.5.1 Damping by Air Displacement 3.5.2 Journal Bearings, Squeeze Film Dampers Journal Bearings 3.5.3 Squeeze Film Dampers 3.6 Assemblies 4 Models for Damped Structures 4.1 Basic Model 4.1.1 Free Vibrations with F(t) = 0 4.1.2 Forced Vibrations Where F(t)≠0 4.1.3 Dynamic Compliance (Receptance) 4.1.4 Dynamic Stiffness 4.1.5 Mobility (Admittance) 4.1.6 Mechanical Impedance 4.1.7 Accelerance 4.1.8 Dynamic Mass or Inertance 4.2 Structures with a Finite Number of Degrees of Freedom 4.2.1 N-Parameter Model for Viscoelastic Material Behavior Differential Operator Formulation 4.2.2 Memory Integral Formulation 4.2.3 2-Parameter Model According to Kelvin-Voigt, Viscous Damping 4.2.4 Damping with Given Frequency Dependence 4.2.5 Calculation of Viscoelastic Components by the Boundary Element Method 5 Experimental Techniques for the Determination of Damping Characteristics 5.1 Experimental Techniques 5.1.1 Basic Procedures 5.1.2 External Damping 5.1.3 Applicability of Results 5.2 Experimental Techniques and Types of Apparatus 5.2.1 Survey of Experimental Techniques 5.2.2 Quasi-Static Methods for the Determination of Material Properties 5.2.3 Experimental Determination of Damping in Solid Bodies with a Low Shear Modulus 5.2.4 Experimental Determination of Damping in Solid Bodies with a High Shear Modulus 5.2.5 Experimental Determination of Damping in Viscous Liquids 5.2.6 Determination of Damping in Uniformly Rotating Specimens 5.2.7 Determination of Damping in the Case of Free Vibrations with One Degree of Freedom 5.2.8 Determination of Damping via Specification of Harmonic Deformations 5.2.9 Measurement of the Oscillation Amplitude in Vicinity of Resonance (Determination of Halfwidth Value) 5.2.10 Measurement of Amplitudes and Phase Angles 5.2.11 Determination of Damping via Thermal Energy Balances 5.2.12 Energy Balances at the Subsystem Boundaries of Multicomponent Systems 5.2.13 Force and Displacement Measurements at Subsystem Boundaries 5.3 Special Experimental Techniques for Determining Damping Under Difficult Conditions 5.3.1 Systems with High Damping 5.3.2 Flexural Vibrations of Lamellar Specimens Homogeneous Strips Laminated Strips 5.3.3 Longitudinal Waves in Bars 5.4 Experimental Modal Analysis 5.4.1 Discrete Equivalent Model 5.4.2 Basic Principles in the Measurement of Complex Frequency Responses 5.4.3 Evaluation of Measured Frequency Responses at an Isolated Resonance Point Idealization as Vibrator with One Degree of Freedom Approximative Inclusion of the Other Degrees of Freedom 5.4.4 Approximation of Measured Frequency Responses in an Interval with Several Resonance Points Incomplete Equivalent Model Generalization of the Method for Isolated Resonance Points General Approximation of the Frequency Response 5.5 Experimental Techniques for Measuring Soil Damping 6 Application of Fractional Calculus to Viscoelastically Damped Structures in the Finite Element Method 6.1 Grünwald Definition of Fractional Derivatives 6.2 Numerical Calculation of Fractional Derivatives 6.3 Fractional-Order Constitutive Equations 6.4 Finite Element Formulation and Implementation 6.5 Parameter Identification: A Case Study with DelrinTM 6.6 Finite Element Calculations and Comparison of the Different Concepts 7 Conclusion Technical Standards References 13 Modal Analysis of Nonlinear Mechanical Systems Contents 1 Nonlinear Normal Modes: A Brief Historical Perspective 2 Nonlinear Normal Modes: What Are They? 2.1 Definition of a Nonlinear Normal Mode 2.1.1 Rosenberg's Definition 2.1.2 The Invariant Manifold Approach 2.2 Fundamental Properties 2.2.1 Frequency-Energy Dependence 2.2.2 Modal Interactions: Internally Resonant Nonlinear Normal Modes 2.2.3 Mode Bifurcations and Stability 3 Nonlinear Normal Modes: How to Compute Them? 3.1 Analytical Techniques 3.1.1 An Energy-Based Formulation 3.1.2 The Invariant Manifold Approach 3.2 Numerical Techniques 3.3 Assessment of the Different Methodologies 4 Nonlinear Normal Modes: Why Are They Useful? 4.1 ``Linear'' Modal Analysis 4.2 Nonlinear Modal Analysis 4.3 Reduced-Order Modeling 5 Closure References Part III Analytical/Experimental Modeling Applications 14 Substructuring Concepts and Component Mode Synthesis Contents 1 Model Reduction: General Concepts 1.1 Reduction by Projection 1.2 The Guyan–Irons Method 1.3 Model Reduction Through Substructuring 2 Numerical Techniques for Model Reduction of Substructures 2.1 The Hurty/Craig–Bampton Method 2.2 Substructure Reduction Using Free Interface Modes 2.2.1 Rubin Method (RM) 2.2.2 MacNeal Method (MNM) 2.2.3 Dual Craig–Bampton Method (DCBM) 2.3 Numerical Examples of Different Substructure Reduction Techniques 2.4 Other Reduction Techniques for Substructures 3 Interface Reduction with the Hurty/Craig–Bampton Method: Characteristic Constraint Modes 3.1 Interface Reduction Approaches 3.2 System-Level Characteristic Constraint (S-CC) Modes References 15 Finite Element Model Correlation Contents Acronyms Nomenclature 1 Introduction/Background 2 Theory 2.1 Model Reduction 2.1.1 Guyan Reduction 2.1.2 Improved Reduced System (IRS) 2.1.3 Dynamic Condensation 2.1.4 System Equivalent Reduction Expansion Process (SEREP) 2.1.5 Modal TAM 2.1.6 Hybrid 2.2 Model Expansion (Vector Expansion) 2.2.1 Guyan Expansion 2.2.2 Improved Reduced System (IRS) 2.2.3 Dynamic Expansion 2.2.4 System Equivalent Reduction Expansion Process (SEREP) 2.2.5 Modal 2.2.6 Hybrid 2.2.7 Model Reduction Considerations for Sensor Locations 2.3 Test Data Considerations 2.4 Vector Correlation 2.4.1 Modal Assurance Criteria (MAC) 2.4.2 Orthogonality Checks 2.4.3 Coordinate Modal Assurance Criteria (CoMAC) 2.4.4 Frequency Response Assurance Criteria (FRAC) 2.4.5 Response Vector Assurance Criteria (RVAC) 2.4.6 Test Response Assurance Criteria (TRAC) 2.4.7 CORTHOG 3 Closing Remarks References 16 Model Updating Contents Nomenclature 1 Introduction 2 Parameter Estimation 3 Modeling Errors and Measurement Inaccuracy 4 Sensitivity Analysis 4.1 Undamped Eigenvalue Residual 4.2 Undamped Mode-Shape Residual 4.3 Frequency-Domain Displacement Response Residual 5 Regularization 5.1 Example: Two Degree-of-Freedom Statically Loaded System 6 Parameterization 6.1 Mass, Damping, and Stiffness Matrix Multipliers 6.2 Material Properties, Thicknesses, and Sectional Properties 6.3 Offset Nodes 6.3.1 Example: Parameterization of a “T” Joint 6.4 Generic Elements 6.4.1 Example: Eigenvalue Decomposition of a Beam Element 6.4.2 Example: Generic Element Parameters for a Pinned-Pinned Beam 6.4.3 Example: Updating a System of Three Beams with Offset Central Span 7 Stochastic Model Updating 7.1 Example: Stochastic Model Updating of a Three Degree-of-Freedom System 7.2 Example: Parameter Selection for Stochastic Model Updating 8 Validation of Updated Models 8.1 Benchmark Data 8.2 Summary of Model Validation Results 9 Industrial Example Problem 9.1 Automotive Example Problem 9.1.1 Component Level 9.1.2 Subassembly Level 10 Conclusions References 17 Nonlinear System Analysis Methods Contents Nomenclature 1 Introduction 2 Experimental Setup 3 Methods for Nonlinear Characterization 3.1 Coherence 3.1.1 Example: Undamaged Panel Versus Panel with Disbond 3.2 Frequency Response Function Distortion 3.2.1 Example: Undamaged Panel Versus Panel with Disbond 3.3 Higher-Order FRFs 3.3.1 Example: Panel with Disbond 3.4 Hilbert Transform in the Time Domain 3.5 Hilbert Transform in the Frequency Domain 3.6 Restoring Force Method 3.6.1 Example: Panel with Disbond 3.7 Vibro-Acoustic Modulation 3.7.1 Example: Undamaged Panel Versus Panel with Disbond 4 Methods for Parameter Estimation 4.1 Nonlinear Autoregressive Moving Average with Exogenous Inputs (NARMAX) 4.1.1 Example: Panel with Disbond 4.2 Direct Parameter Estimation 4.3 Reverse Path 4.3.1 Example: Panel with Disbond 4.4 Nonlinear Identification Through Feedback of the Outputs (NIFO) 4.4.1 Example: Panel with Disbond 5 Summary References 18 Structural Health Monitoring and Damage Identification Contents 1 Introduction 1.1 Motivation and Definition of SHM 1.2 Statistical Pattern Recognition Approach to SHM 1.2.1 Operational Evaluation 1.2.2 Data Acquisition, Normalization, and Cleansing 1.2.3 Feature Extraction and Information Condensation 1.2.4 Statistical Model Development 1.3 Fundamental Axioms of SHM 1.4 Historical Overview 2 SHM Data and Damage-Sensitive Features 2.1 Vibration 2.1.1 Ways to Measure Vibration 2.1.2 Damage-Sensitive Features from Vibration 2.1.3 Coherence 2.2 Acoustic Emissions (AE) 2.3 Guided Waves 2.4 Performance, Operational, and Environmental Parameters 3 Advanced Topics in Signal Processing and Feature Extraction 3.1 Inference via the Kalman Filter 3.1.1 Inference for Parameter Identification 3.2 Recursive Estimation in the Nonlinear Case 4 Statistical Pattern Recognition for Damage Identification 4.1 Pattern Recognition for Feature Discrimination 4.2 Data-Driven Models in SHM: Learning and Prediction 4.2.1 Acoustic Emission Dataset 4.3 Outlier Analysis for Damage Identification 4.3.1 Statistical Outlier Analysis 4.3.2 Outlier Analysis as One-Class Classifiers 4.4 The Problem of Inclusive Outliers: Robust Outlier Analysis 4.4.1 The Minimum Covariance Determinant 4.5 Probabilistic Classification through Supervised Learning 4.6 The Problem of Feature Dimensionality 4.7 Outstanding Challenges in Data-Driven SHM 5 SHM in Changing Environmental and Operational Conditions 5.1 Removing Confounding Influences 5.2 Linear and Nonlinear Cointegration 5.2.1 Using Cointegration for SHM 5.3 Nonlinear Cointegration 6 Physics-Based Models in SHM 6.1 Inverse Model-Driven SHM 6.2 Forward Model-Driven SHM 7 Summary 7.1 Applications References 19 Experimental Dynamic Substructures Contents Nomenclature 1 Introduction 2 Experimental Substructure Technology 2.1 Connecting Substructures with Compatibility and/or Equilibrium Equations 2.2 Connecting Substructures in the Physical Domain 2.3 Connecting Substructures in the Modal Domain: Component Mode Synthesis 2.4 Connecting Substructures in the Frequency Domain: Frequency-Based Substructuring 3 Dealing with Experimental Difficulties 3.1 Common Experimental Difficulties 3.1.1 Measuring Rigid Body Modes 3.1.2 Modal Fitting of Nonlinear Response 3.1.3 Mass Errors Introduced by Sensors 3.1.4 Modal Truncation Errors 3.1.5 Measuring Rotational DOF Motion and Forces 3.1.6 Continuity of the Attachment Interface 3.1.7 Difficulty in Mounting Sensors at Connection Locations 3.1.8 Dynamic Effects in the Joints 3.1.9 Experimental Errors 3.2 The Transmission Simulator Approach to Mitigate Traditional Experimental Difficulties 3.3 An Example Using the Transmission Simulator Approach 3.4 Transmission Simulator Theory 3.4.1 Preparation to Implement Transmission Simulator Theory 3.4.2 Transmission Simulator Method Using CMS 3.4.3 Transmission Simulator Method Using FBS 3.5 Practical Guidance Using the Transmission Simulator Approach References 20 Structural Dynamics Modification and Modal Modeling Contents 1 Modal Models 2 Design Modifications 3 Eigenvalue Modification 4 Measurement Chain to Obtain an EMA Modal Model 4.1 Critical Issues in the Measurement Chain 4.2 Calculating FRFs from Experimental Vibration Data 4.3 Sensing Force and Motion 4.4 Sensitivity Flatness 4.5 Transverse Sensitivity 4.6 Sensor Linearity 4.7 Sensor Mounting 4.8 Leakage Error 4.9 Finite Length Sampling Window 4.10 Leakage-Free Spectrum 4.11 Leakage-Free Signals 4.12 Reduced Leakage 4.13 Linear Versus Nonlinear Dynamics 4.14 Random Excitation and Spectrum Averaging 4.15 Curve Fitting FRFs 4.16 Modal Models and SDM 5 Structural Dynamic Models 5.1 Structural Resonances 5.2 Truncated Modal Model 5.3 Sub-structuring 5.4 Rotational DOFs 6 Time Domain Dynamic Model 6.1 Finite Element Analysis (FEA) 6.2 FEA Modes 7 Frequency Domain Dynamic Model 8 Parametric Models Used for Curve Fitting 8.1 Rational Fraction Polynomial Model 8.2 Partial Fraction Expansion Model 8.3 Experimental FRFs 9 FRF-Based Curve Fitting 9.1 Modal Frequency and Damping 9.2 Modal Residue 10 Transformed Equations of Motion 11 Dynamic Model in Modal Coordinates 11.1 Damping Models 11.2 Lightly Damped Structures 12 Scaling Mode Shapes to Unit Modal Masses 12.1 Modal Mass Matrix 12.2 Modal Stiffness Matrix 12.3 Modal Damping Matrix 12.4 Unit Modal Masses 13 SDM Dynamic Model 14 SDM Equations Using UMM Mode Shapes 15 Scaling Residues to UMM Mode Shapes 15.1 Driving Point FRF Measurement 15.2 UMM Mode Shape 15.3 Triangular FRF Measurements 16 Integrating Residues to Displacement Units 17 Effective Mass 18 Diagonal Mass Matrix 18.1 Checking the Engineering Units 19 Effective Mass Example 20 SDM Example 20.1 Cap Screw Stiffnesses 21 EMA Mode Shapes of the Plate 22 FEA Mode Shapes of the Plate 22.1 Mode Shape Comparison 22.2 Modal Frequency Comparison 22.3 Hybrid Modal Model 22.4 RIB FEA Model 22.5 RIB Impact Test 22.6 Hybrid Modal Model of the RIB 23 Substructure Modal Model 23.1 Block Diagonal Format 24 Calculating New Modes with SDM 25 SDM Versus FEA Modes: Plate and RIB 25.1 SDM Mode Shapes 26 SDM Versus EMA Modes: Plate and RIB 27 Conclusions 28 Modeling a Tuned Vibration Absorber with SDM 29 Adding a Tuned Absorber to the Plate and RIB 30 Modal Sensitivity Analysis 30.1 EMA Modes of the Plate and RIB 30.2 Using SDM to Explore Joint Stiffnesses 30.3 Current Versus Target Frequency 30.4 Solution Space 31 FEA Modal Updating 32 Difference Between Modal Sensitivity and FEA Model Updating References 21 Toward Robust Response Models: Theoretical and Experimental Issues Contents 1 Introduction 1.1 Foreword 1.2 Classification of the Models 1.2.1 The Spatial Model 1.2.2 The Response Model 1.2.3 The Modal Model 1.2.4 Relation Among the Models 2 Coupling/Uncoupling Techniques 2.1 Coupling 2.2 Uncoupling 3 Measurement of Rotational Degrees of Freedom 3.1 Introduction 3.2 Experimental Methods for Measuring Rdofs 3.2.1 Indirect Techniques for Measuring Rdofs Block Excitation Mass Additive Technique Finite Difference Technique Finite Difference Transformation Matrices for First-Order Approximation Finite Difference Transformation Matrices for Second-Order Approximation Laser Doppler Vibrometer PZTs and Strain Gauge Transducers 3.2.2 Direct Techniques Angular Transducers Micro-Electro-Mechanical-Sensor (MEMS) Direct Piezoelectric Rotational Accelerometers 3.3 Experimental Methods for Exciting Rdofs 3.3.1 Indirect Techniques to Apply a Moment Excitation 3.3.2 Direct Techniques to Apply a Moment Excitation 4 Condensation (Reduction) Versus Expansion 4.1 Model Reduction 4.1.1 Guyan Reduction 4.1.2 Dynamic Reduction 4.1.3 Improved Reduction System (IRS) 4.1.4 System Equivalent Reduction Expansion Process (SEREP) 4.1.5 Modal Truncation 4.1.6 Component Mode Synthesis 4.1.7 Sum of Weighted Accelerations Technique (SWAT) 4.1.8 Reduction of Damped Models 4.2 Expansion of Measured Data 4.2.1 Kidder's Method 4.2.2 Expansion Using Analytical Modes 4.2.3 Expansion of Frequency Response Functions (FRF) 5 Transmissibility as a Means to Estimate the Dynamic Response 5.1 Introduction 5.2 Theoretical Description 5.2.1 Fundamental Formulation 5.2.2 Alternative Formulation 5.2.3 Transmissibility Properties 5.3 Other Possible Applications of Transmissibility References 22 Linear Modal Substructuring with Nonlinear Connections Contents Nomenclature 1 Introduction 2 Theory 2.1 Equations of Motion and Modal Space Representation 2.2 Model Reduction and Model Expansion 2.3 Structural Dynamic Modification and System Modeling 2.4 Mode Contribution Matrix 2.5 Response of Linear Components Interconnected with Nonlinear Connection Elements 2.6 Expansion of Transient Time Response from Reduced Order System Models 3 Test Cases 3.1 Nonlinear Response Prediction (Thibault and Marinone) 3.2 Nonlinear Response Prediction with Expansion for Full Field Dynamic Strain Prediction (Harvie) 3.3 Nonlinear Response Prediction with Embedded Subcomponent Models (Obando) 4 Conclusions References Part IV Applications and Miscellaneous Topics 23 Civil Structural Testing Contents Nomenclature 1 Why Structural Health Monitoring (SHM) for Civil Structures 2 Basic Considerations on Loading and Response 3 Data Acquisition and Sensors 3.1 Sensors 3.2 Selection of Data Acquisition Systems 4 Basic Procedures for SHM in Civil Engineering 4.1 Initial Conditions Testing 4.2 Force Vibration with Shaker 4.3 Ambient Vibrations 5 Identification Methods 5.1 The Fourier Transform and Time-Frequency Analysis 5.2 Extended Logarithmic Decay 5.2.1 Linear Adjustment of the Decay 5.2.2 Nonlinear Adjustment of the Decay 5.3 Eigensystem Realization Algorithm 5.4 The Periodogram 5.5 Frequency Domain Decomposition 5.6 Natural Excitation Technique ERA 5.7 Stochastic Subspace Identification 5.8 Multivariable Output-Error State sPace 5.9 Iterative Modal Identification 6 Stability and Cluster Diagrams 7 Modal Estimation 7.1 Distance Matrices 7.2 Spurious Pole Elimination Using Hard Stability Criteria 7.3 Modal Characterization Based on Parametric Procedures 7.4 Modal Characterization Using Clustering 7.5 Assessing the Number of Modes Using Cluster Validity 7.6 Cluster Representatives as Mode Features' Estimates 8 Modal Tracking 8.1 Problem Statement and Motivation 8.2 Tracking Based on Boundaries 8.3 Cluster-Based Modal Tracking 9 An Important Note to Increase the Speed of Identification 10 Application Examples 10.1 Building Excited by Ambient Vibration 10.1.1 Temporary Testing 10.1.2 Permanent Ambient Vibration Monitoring 10.2 Buildings Earthquake Vibrations 10.3 Base-Isolated Buildings 10.4 Bridges Under Operational and Ambient Excitation 10.4.1 The Suspended 25 de Abril Bridge in Lisbon 10.4.2 Structural Monitoring System and Data 10.4.3 Modal Estimation and Tracking 11 Concluding Remarks References 24 Aerospace Perspective for Modeling and Validation Contents 1 Theoretical Foundations 1.1 Categories of Dynamic Systems 1.2 Variational Principles 1.3 The Finite Element Method 2 Structural Dynamic Models 2.1 Modal Analysis 2.2 Dynamic Bandwidth 2.3 Effective Modeling Guidelines 2.4 Further Thoughts on Structural Dynamic Modeling 3 Matrix Structural Dynamic Analysis 3.1 Guyan Reduction 3.2 The Hurty-Craig-Bampton Method 3.3 The Benfield-Hruda Method 3.4 The MacNeal-Rubin Method 3.5 Application of Hurty-Craig-Bampton and MacNeal-Rubin Methodology 3.6 Detailed Structural Dynamic Loads and the Mode Acceleration Method 4 Verifiction and Validation of Structural Dynamic Models 4.1 System Dynamic Model 4.2 Modal Test Planning and the Test Analysis Model (TAM) 4.3 Target Modes 4.4 Automated Response DOF Selection for Mapping of Experimental Modes 4.5 Measured Data Acquisition, Data Analysis, Experimental Modal Analysis 4.6 Modal Test-Analysis Correlation and U.S. Government Standards 4.7 Overview of Efficient Structural Dynamic Sensitivity Analysis 4.8 Residual Mode Augmentation (RMA) 5 Concluding Remarks References 25 Applied Math for Experimental Structural Dynamics Contents Acronyms 1 Domains and Transforms 1.1 Frequency Domain 1.1.1 Integral Fourier Transform 2 Linear Algebra 2.1 Basic Concepts and Definitions 2.2 Transposition Rules 2.3 Special Matrix Forms 2.4 Symmetric Matrix Rules 2.5 Matrix Measures (Determinant and Trace) 2.6 Vector Space 2.7 Vector Space Applied to Matrices 2.8 Spectral Decomposition 2.9 Singular Value Decomposition 2.10 Eigen Solutions 2.11 Inverse Problems 2.11.1 Solution of Determined Equations 2.12 LU Decomposition 2.12.1 Solution of Underdetermined Equations 2.12.2 Solution of Overdetermined Equations 2.13 Moore-Penrose Generalized Inverse 3 Summary References Index