دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3 نویسندگان: Sébastien Marcel, Julian Fierrez, Nicholas Evans سری: Advances in Computer Vision and Pattern Recognition ISBN (شابک) : 9789811952876, 9789811952883 ناشر: Springer سال نشر: 2023 تعداد صفحات: 595 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب Handbook of Biometric Anti-Spoofing. Presentation Attack Detection and Vulnerability Assessment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای بیومتریک ضد جعل. تشخیص حمله و ارزیابی آسیب پذیری ارائه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface List of Reviewers Contents Contributors Part I Fingerprint Biometrics 1 Introduction to Presentation Attack Detection in Fingerprint Biometrics 1.1 Introduction 1.2 Early Works in Fingerprint Presentation Attack Detection 1.3 A Brief View on Where We Are 1.4 Fingerprint Spoofing Databases 1.5 Conclusions References 2 Vision Transformers for Fingerprint Presentation Attack Detection 2.1 Introduction 2.2 Related Works 2.3 Software-Based Solutions for F-PAD 2.3.1 Hand-crafted Texture-Based Solutions for F-PAD 2.3.2 Deep-Learning-Based Solutions for F-PAD 2.4 Data-Efficient Image Transformers (DeiT) for F-PAD 2.5 Databases 2.5.1 LivDet 2015 Database 2.5.2 LivDet 2019 Database 2.5.3 LivDet 2019 Database 2.6 Experiments and Results 2.6.1 Evaluation on LivDet 2015 Dataset with Multiple Known Classes (Combined Set) Training and Few Unknown Classes in Testing 2.6.2 Evaluation on LivDet 2019 Dataset with Multiple Known Classes (combined Set) in Training and All Unknown Classes in Testing 2.6.3 Analysis of Explainability 2.6.4 LivDet 2019—Impact of Limited Seen Classes During Training and Sensor Interoperability 2.6.5 Analysis of Explainability in True Unknown Data Setting 2.7 Conclusion References 3 Review of the Fingerprint Liveness Detection (LivDet) Competition Series: From 2009 to 2021 3.1 Introduction 3.2 Fingerprint Presentation Attack Detection 3.3 The Fingerprint Liveness Detection Competition 3.4 Methods and Dataset 3.4.1 Algorithms part 3.4.2 LivDet Systems 3.4.3 Performance Evaluation 3.5 Examination of Results 3.5.1 Non Consensual Verses Consensual data 3.5.2 Materials Analysis 3.5.3 LivDet Systems Results 3.6 Conclusion References 4 A Unified Model for Fingerprint Authentication and Presentation Attack Detection 4.1 Introduction 4.2 Related Work 4.2.1 Fingerprint Spoof Detection 4.2.2 Fingerprint Matching 4.3 Motivation 4.4 Methodology 4.4.1 DualHeadMobileNet (DHM) 4.4.2 Joint Training 4.5 Experiments and Results 4.5.1 Datasets 4.5.2 Comparison with State-of-the-art Methods 4.5.3 Time and Memory 4.6 Ablation Study 4.6.1 Effect of Varying the Split Point 4.6.2 Effect of Suppression 4.6.3 Evaluation of Matching Feature Vectors 4.6.4 Robustness to Network Architecture 4.6.5 DHR 4.6.6 DHI 4.7 Failure Cases 4.7.1 False Rejects 4.7.2 False Accepts 4.8 Implementation Details 4.9 Conclusion References Part II Iris Biometrics 5 Introduction to Presentation Attack Detection in Iris Biometrics and Recent Advances 5.1 Introduction 5.2 Vulnerabilities in Iris Biometrics 5.2.1 Zero-effort Attacks 5.2.2 Photo and Video Attacks 5.2.3 Contact Lens Attacks 5.2.4 Synthetic Eye Attacks 5.2.5 Cadaver Eye Attacks 5.3 Presentation Attack Detection Approaches 5.3.1 Hardware-Based Approaches 5.3.2 Software-Based Approaches 5.3.3 Challenge–Response Approaches 5.4 Integration with Iris Recognition Systems 5.5 Conclusions References 6 Pupil Size Measurement and Application to Iris Presentation Attack Detection 6.1 Introduction 6.2 Database 6.2.1 Acquisition 6.2.2 Estimation of Pupil Size 6.2.3 Noise and Missing Data 6.2.4 Division of Data and Recognition Scenarios 6.3 Parametric Model of Pupil Dynamics 6.4 Data-Driven Models of Pupil Dynamics 6.4.1 Variants of Recurrent Neural Networks 6.4.2 Implementation and Hyperparameters 6.5 Results 6.6 Open-Hardware and Open-Source Pupil Size Measurement Device 6.6.1 Brief Characteristics 6.6.2 Related Works on Pupillometry 6.6.3 Design 6.6.4 Assembly Details 6.7 Discussion References 7 Review of Iris Presentation Attack Detection Competitions 7.1 Introduction 7.2 Datasets 7.2.1 LivDet-Iris 2013 Data 7.2.2 LivDet-Iris 2015 Data 7.2.3 LivDet-Iris 2017 Data 7.2.4 LivDet-Iris 2020 Data 7.3 Challenges 7.4 Performance Evaluation 7.5 Summary of LivDet-Iris Results 7.5.1 Participants 7.5.2 Trends in LivDet-Iris Across All Competitions 7.6 Conclusions and Future of LivDet-Iris References 8 Intra and Cross-spectrum Iris Presentation Attack Detection in the NIR and Visible Domains 8.1 Introduction 8.2 Related Works 8.3 Methodology 8.3.1 Baseline: DenseNet 8.3.2 Pixel-Wise Binary Supervision Network (PBS) 8.3.3 Attention-Based PBS Network (A-PBS) 8.3.4 Loss Function 8.3.5 Implementation Details 8.4 Experimental Evaluation 8.4.1 Databases 8.4.2 Evaluation Metrics 8.5 Intra-Spectrum and Cross-Database Evaluation Results 8.5.1 Iris PAD in the NIR Spectrum 8.5.2 Iris PAD in the Visible Spectrum 8.6 Cross-Spectrum Evaluation Results 8.7 Visualization and Explainability 8.8 Conclusion 8.9 Glossary References Part III Face Biometrics 9 Introduction to Presentation Attack Detection in Face Biometrics and Recent Advances 9.1 Introduction 9.2 Vulnerabilities in Face Biometrics 9.2.1 Presentation Attack Methods 9.3 Presentation Attack Detection 9.3.1 Software-Based Face PAD 9.4 Face Presentation Attacks Databases 9.5 Integration with Face Recognition Systems 9.6 Conclusion and Look Ahead on Face PAD References 10 Recent Progress on Face Presentation Attack Detection of 3D Mask Attack 10.1 Background and Motivations 10.2 Publicly Available Datasets and Experiments Evaluation Protocol 10.2.1 Datasets 10.2.2 Evaluation Protocols 10.3 Methods 10.3.1 Appearance-Based Approach 10.3.2 Motion-Based Approach 10.3.3 Remote-Photoplethysmography-Based Approach 10.4 Experiments 10.4.1 Intra-Dataset Evaluation 10.4.2 Cross-Dataset Evaluation 10.5 Discussion and Open Challenges References 11 Robust Face Presentation Attack Detection with Multi-channel Neural Networks 11.1 Introduction 11.2 Related Works 11.2.1 RGB Only Approaches (Feature Based and CNNs) 11.2.2 Multi-channel Methods 11.2.3 Open Challenges in PAD 11.3 PAD Approach 11.3.1 Preprocessing 11.3.2 Network Architectures for Multi-channel PAD 11.4 Experiments 11.4.1 Dataset: HQ-WMCA 11.4.2 Protocols 11.4.3 Metricsx 11.4.4 Implementation Details 11.4.5 Baselines 11.4.6 Experiments and Results 11.4.7 Computational Complexity 11.4.8 Discussions 11.5 Conclusions References 12 Review of Face Presentation Attack Detection Competitions 12.1 Introduction 12.2 Review of Recent Face PAD Competitions 12.2.1 Multi-modal Face Anti-spoofing Attack Detection Challenge (CVPR2019) 12.2.2 Cross-Ethnicity Face Anti-spoofing Recognition Challenge (CVPR2020) 12.2.3 CelebA-Spoof Challenge on Face Anti-spoofing (ECCV2020) 12.2.4 LivDet-Face 2021—Face Liveness Detection Competition (IJCB2021) 12.2.5 3D High-Fidelity Mask Face Presentation Attack Detection Challenge (ICCV2021) 12.3 Discussion 12.3.1 General Observations 12.3.2 Lessons Learnt 12.3.3 Summary on Model Architectures 12.3.4 Future Challenges 12.4 Conclusions References Part IV Voice Biometrics 13 Introduction to Voice Presentation Attack Detection and Recent Advances 13.1 Introduction 13.2 Basics of ASV Spoofing and Countermeasures 13.2.1 Impersonation 13.2.2 Replay 13.2.3 Speech Synthesis 13.2.4 Voice Conversion 13.3 Summary of the Spoofing Challenges 13.3.1 ASVspoof 2015 13.3.2 ASVspoof 2017 13.3.3 ASVspoof 2019 13.4 Advances in Front-End Features 13.4.1 Front Ends for Detection of Voice Conversion and Speech Synthesis Spoofing 13.4.2 Front Ends for Replay Attack Detection 13.5 Advances in Back-End Classifiers 13.5.1 Generative Approaches 13.5.2 Discriminative Approaches 13.6 Other PAD Approaches 13.7 Future Directions of Anti-spoofing Research 13.8 Conclusion References 14 A One-class Model for Voice Replay Attack Detection 14.1 Introduction 14.2 PRAD: Dataset for Replay Analysis 14.3 Distribution Analysis 14.3.1 Data Preparation 14.3.2 Analysis on Overall Distributions 14.3.3 Analysis on Important Factors 14.3.4 Analysis on Discrimination and Generalization 14.4 Dataset Analysis 14.4.1 ASVspoof 2019 Physical Access Dataset 14.4.2 ASVspoof 2017 Dataset 14.4.3 Cross Dataset Results 14.5 One-Class Model 14.5.1 Advocate One-Class Model 14.5.2 Model Design 14.5.3 Related Work 14.5.4 Experiments 14.6 Conclusions References 15 Generalizing Voice Presentation Attack Detection to Unseen Synthetic Attacks and Channel Variation 15.1 Introduction 15.2 Generalize to Unseen Synthetic Attacks 15.2.1 One-Class Learning 15.2.2 Experiments 15.2.3 Discussions 15.3 Generalize to Channel Variation 15.3.1 Channel-Robust Strategies 15.3.2 Experiments 15.3.3 Discussions 15.4 Conclusions and Future Directions 15.5 Appendix References Part V Other Biometrics and Multi-Biometrics 16 Introduction to Presentation Attacks in Signature Biometrics and Recent Advances 16.1 Introduction 16.2 Review of PAD in Signature Biometrics 16.3 Presentation Attacks in Signature Biometrics 16.3.1 Types of Presentation Attacks 16.3.2 Synthetic Forgeries 16.4 On-Line Signature Databases 16.4.1 DeepSignDB 16.4.2 SVC2021_EvalDB 16.5 Experimental Work 16.5.1 On-line Signature Verification System 16.5.2 Experimental Protocol 16.5.3 Experimental Results 16.6 Conclusions References 17 Extensive Threat Analysis of Vein Attack Databases and Attack Detection by Fusion of Comparison Scores 17.1 Introduction 17.2 Attack Databases 17.3 Threat Analysis 17.3.1 Threat Evaluation Protocol 17.3.2 Experimental Results 17.4 Attack Detection Using Score Level Fusion 17.4.1 Experimental Results 17.5 Summary References 18 Fisher Vectors for Biometric Presentation Attack Detection 18.1 Introduction 18.2 Related Work 18.2.1 Hardware-Based Approaches 18.2.2 Software-Based PAD Approaches 18.3 Generalisable FV-Based PAD Approach 18.3.1 Reliable Features for Different Biometric Characteristics 18.3.2 Fisher Vector Encoding 18.3.3 Classification 18.4 Experimental Set-up 18.4.1 Databases 18.4.2 Evaluation Metrics 18.5 Experimental Results 18.5.1 Detection of Known PAI Species 18.5.2 Detection of Unknown PAI Species 18.5.3 Cross-Database 18.5.4 Common Feature Space Visualisation 18.6 Conclusion References 19 Smartphone Multi-modal Biometric Presentation Attack Detection 19.1 Introduction 19.2 Related Work 19.2.1 Features of the SWAN Multi-modal Biometric Dataset 19.3 SWAN Multi-modal Biometric Dataset 19.3.1 Database Acquisition 19.3.2 SWAN Multi-modal Biometric Dataset 19.3.3 SWAN-Presentation Attack Dataset 19.3.4 Dataset Distribution 19.4 Experimental Performance Evaluation Protocols 19.5 Baseline Algorithms 19.5.1 Biometric Verification 19.5.2 Presentation Attack Detection Algorithms 19.6 Experimental Results 19.6.1 Biometric Verification Results 19.6.2 Biometric Vulnerability Assessment 19.6.3 Biometric PAD Results 19.7 Conclusions References Part VI Legal Aspects and Standards 20 Legal Aspects of Image Morphing and Manipulation Detection Technology 20.1 Introduction 20.2 Should Image Morphing and Image Manipulation Attack Detection (MAD) have a Legal Definition? 20.3 Privacy and Data Protection Aspects of MAD 20.3.1 The `Rule of Law\' and Legality 20.3.2 Fairness 20.3.3 Transparency 20.3.4 Purpose Limitation and Legitimate Processing 20.3.5 Human Oversight and Intervention 20.4 Conclusion 21 Standards for Biometric Presentation Attack Detection 21.1 Introduction 21.2 International Standards Developed in ISO/IEC JTC 21.3 Development of Presentation Attack Detection Standard ISO/IEC 30107 21.4 Taxonomy for Presentation Attack Detection 21.5 Data Formats 21.6 Testing and Reporting 21.7 Conclusion and Future Work References Appendix Glossary Index