دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Wenyi Zhao
سری:
ISBN (شابک) : 1032259272, 9781032259277
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 826
[866]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 47 Mb
در صورت تبدیل فایل کتاب Handbook for Chemical Process Research and Development, به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای تحقیق و توسعه فرآیندهای شیمیایی، نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب راهنما طراحی شده است تا به خوانندگان یک رویکرد استراتژی بی سابقه برای توسعه فرآیند هدایت شده توسط مکانیسم ارائه دهد، و به شیمیدانان فرآیند و دانشجویان در شیمی صنعتی کمک می کند تا فرآیندهای شیمیایی را به طور موثر توسعه دهند. آخرین نسخه به مسائل رایج فرآیند مانند ایمنی، هزینه، استحکام و اثرات زیست محیطی می پردازد.
This handbook is designed to provide readers with an unprecedented strategy approach to mechanism-guided process development, helping process chemists and students in industrial chemistry develop chemical processes efficiently. The latest edition addresses common process issues such as safety, cost, robustness, and environmental impact.
Cover Half Title Title Page Copyright Page Table of Contents Preface Author Biography List of Abbreviations Chapter 1 Reaction Solvent Selection 1.1 Ethereal Solvents 1.1.1 Cyclopentyl Methyl Ether 1.1.1.1 Brook Rearrangement 1.1.1.2 N-Alkylation Reaction 1.1.2 Tetrahydrofuran 1.1.2.1 Grignard Reagent Formation 1.1.2.2 Bromination of Ketone 1.1.3 2-Methyl Tetrahydrofuran 1.1.3.1 Control of Impurity Formation 1.1.3.2 Enhancing Reaction Rate 1.1.3.3 Improving Layer Separation 1.1.4 Methyl tert-Butyl Ether 1.1.4.1 Chlorination Reaction 1.1.4.2 Darzens Reaction 1.1.5 Diethoxymethane and Dimethoxyethane 1.2 Protic Solvents 1.2.1 Methanol as a Solvent 1.2.1.1 Leak of Palladium Catalyst 1.2.1.2 Side Product Formation 1.2.1.3 Palladium-Catalyzed Methylation Reaction 1.2.2 Ethanol as a Solvent 1.2.2.1 Catalytic Reduction of Diaryl Methanol 1.2.2.2 SN2 Reaction 1.2.3 2-Propanol as a Solvent 1.2.3.1 Reaction of Acyl Hydrazine with Trimethylsilyl Isocyanate 1.2.3.2 Classical Resolution of Racemic Acid 1.2.3.3 Nickel-Catalyzed Addition Reaction 1.2.4 1-Pentanol 1.2.5 Ethylene Glycol 1.3 Water as Reaction Solvent 1.3.1 Iodination Reaction 1.3.2 Synthesis of Quinazoline-2,4-dione 1.3.3 Synthesis of Pyrrolocyclohexanone 1.3.4 Synthesis of Thiourea 1.3.5 Synthesis of Amide 1.3.6 Synthesis of 1,3/1,4-Diketones 1.4 Non-Polar Solvents 1.4.1 Condensation of Ketone with tert-Butyl Hydrazine Carboxylate 1.4.2 Acid-Catalyzed Esterification 1.5 Polar Aprotic Solvents 1.5.1 Acetone as a Solvent 1.5.1.1 Michael Addition Reaction with Acetone Cyanohydrin 1.5.1.2 SN2 Alkylation Reaction 1.5.1.3 Multi-Component Reactions 1.5.1.4 Amidation Reaction 1.5.2 Acetonitrile as a Solvent 1.5.2.1 Intramolecular Michael Addition Reaction 1.5.2.2 Synthesis of Imidazolines 1.5.2.3 Synthesis of α-Alkylated Ketones 1.5.2.4 Chlorosulfonylation Reaction 1.5.3 N,N-Dimethylformamide as a Solvent 1.5.3.1 Preparation of Alkyl Aryl Ether 1.5.3.2 Preparation of Bisaryl Ether 1.6 Halogenated Solvents 1.6.1 Dichloromethane 1.6.1.1 Reaction with Pyridine 1.6.1.2 Synthesis of Benzo[d]isothiazolone 1.6.2 1,2-Dichloroethane 1.6.3 Trifluoroacetic Acid 1.6.4 (Trifluoromethyl)benzene 1.6.5 Hexafluoroisopropanol 1.6.5.1 Selective Oxidation of Sulfide 1.6.5.2 Cycloaddition Reaction 1.7 Carcinogen Solvent 1.8 Other Solvents 1.8.1 DW-Therm 1.8.2 Dowtherm A 1.8.2.1 Synthesis of 6-Chlorochromene 1.8.2.2 Conrad–Limpach Synthesis of Hydroxyl Naphthyridine 1.8.2.3 Conrad–Limpach Synthesis of Quinolone 1.8.3 Polyethylene Glycol 1.8.4 Propylene Glycol Monomethyl Ether 1.8.5 Sulfolane 1.8.5.1 Bromination/Esterification 1.8.5.2 Fluorine-Exchange Reaction 1.8.6 Ionic Liquids 1.9 Mixture Of Solvents 1.9.1 Aldol Condensation Reaction 1.9.2 Visible-Light Mediated Redox Neutral Reaction 1.10 Solvent-Free Reaction Chapter 2 Reagent Selection 2.1 Inorganic Base 2.1.1 Sodium Bicarbonate 2.1.2 Potassium Carbonate 2.1.2.1 Boc Protection of Amino Group 2.1.2.2 Ring-Opening Iodination 2.1.3 Sodium Hydride 2.1.3.1 SN2 Reaction 2.1.3.2 Addition/Elimination Reaction 2.1.3.3 Nucleophilic Addition Reaction 2.1.4 LiOH/H2O2 Combination 2.1.4.1 Hydrolysis of Chiral Pentanoate 2.1.4.2 Hydrolysis of Chiral Propanoate 2.1.4.3 Hydrolysis of Chiral Amide 2.2 Organic Base 2.2.1 Trialkylamine 2.2.1.1 Diisopropylethylamine 2.2.1.2 Triethylamine 2.2.2 Imidazole 2.2.3 2,6-Dimethylpiperidine 2.2.4 2-(N,N-Dimethylamino)pyridine 2.2.5 Metal Alkoxide Base 2.2.5.1 Potassium tert-Pentylate 2.2.5.2 Lithium tert-Butoxide 2.2.5.3 Potassium tert-Butoxide 2.2.5.4 Potassium Trimethylsilanoate 2.2.5.5 Combination of Potassium tert-Butoxide with tert-Butyllithium 2.2.5.6 Sodium Methoxide 2.3 Reagents For Amide C(O)−N Bond Formation 2.3.1 CDI-Mediated Amide Formation 2.3.1.1 Preparation of Nicotinic Acid Amide 2.3.1.2 Preparation of Ureas 2.3.2 Thionyl Chloride-Mediated Amide Formation 2.3.2.1 Tetramethylurea-Catalyzed Acid Chloride Formation 2.3.2.2 N-Sulfinylaniline-Involved Amide Preparation 2.3.3 Boc2O-Mediated Amide Formation 2.3.4 Schotten–Baumann Reaction 2.3.5 Other Amide Formation Methods 2.3.5.1 Copper (II)-Catalyzed Transamidation 2.3.5.2 Cross-Coupling between Acyltrifluoroborates and Hydroxylamines 2.3.5.3 Catalytic Aminolysis of Ester Chapter 3 Various Reagent Surrogates 3.1 Ammonia Surrogates 3.1.1 Ammonium Hydroxide 3.1.2 Ammonium Acetate 3.1.2.1 Condensation with β-Keto Amide 3.1.2.2 Condensation with Cyclohexanones 3.1.2.3 Consecutive Reductive Amination Reactions 3.1.3 Ammonium Chloride 3.1.4 Hydroxylamine Hydrochloride 3.1.4.1 Reductive Amination 3.1.4.2 Aromatization 3.1.5 O-Benzylhydroxylamine 3.1.6 Hydroxylamine-O-Sulfonic Acid 3.1.6.1 SN2 Reaction with Sulfinate 3.1.6.2 Reaction with Boronic Acid 3.1.7 Hexamethylene Tetramine 3.1.8 Acetonitrile 3.1.9 Chloroacetonitrile 3.1.10 tert-Butyl Carbamate 3.1.11 Diphenylmethanimine 3.1.12 α-Amino Acids 3.1.12.1 Glycine Hydrochloride 3.1.12.2 2,2-Diphenylglycine 3.1.13 Silylated Amines 3.1.14 Allylamines 3.1.15 Isoamyl Nitrite 3.1.16 1,2-Benzisoxazole 3.2 Carbon Monoxide Surrogates 3.2.1 N-Formylsaccharin 3.2.2 Paraformaldehyde 3.2.3 Molybdenum Carbonyl 3.2.4 Phenyl Formate 3.2.5 Benzene-1,3,5-Triyl Triformate (TFBen) 3.2.6 Formic Acid 3.3 Carbon Dioxide Surrogates 3.4 α-Hydroxysulfonates as Aldehyde Surrogates 3.4.1 Oxidation of Aldehyde to Acid 3.4.2 Reductive Amination 3.4.3 Diels–Alder Reaction 3.4.4 Strecker Reaction 3.4.5 Transaminase DKR of Aldehyde 3.4.6 Reduction of Aldehyde to Alcohol 3.5 Sulfur Dioxide Surrogate 3.5.1 Synthesis of Sulfones 3.5.2 Synthesis of Sulfoxides 3.5.3 Synthesis of Sulfonamides 3.6 Miscellaneous Surrogates 3.6.1 Methyl Iodide Surrogate 3.6.2 Cyanide Surrogates 3.6.2.1 2-Methyl-2-Phenyl Malononitrile (MPMN) 3.6.2.2 2-Cyanoisothiazolidine 1,1-Dioxide 3.6.3 Ethylene Surrogates Chapter 4 Modes of Reagent Addition: Control of Impurity Formation 4.1 Direct Addition 4.1.1 Sonogashira Reaction 4.1.2 Michael Reaction 4.1.3 Fisher Indole Synthesis 4.1.4 Amide Formation 4.1.4.1 EEDQ-Promoted Amide Formation 4.1.4.2 CDI-Promoted Amide Formation 4.1.5 Thioamide Formation 4.1.6 C–O Bond Formation 4.1.6.1 SRN2 Reaction 4.1.6.2 Mitsunobu Reaction 4.2 Reverse Addition 4.2.1 Grignard Reaction 4.2.1.1 Reaction with Alkyl Aryl Ketone 4.2.1.2 Grignard Reaction with Aldehydes 4.2.1.3 Reaction of Grignard Reagent with Ester 4.2.2 Copper-Catalyzed Epoxide Ring Opening 4.2.3 Nitration Reaction 4.2.4 Cyclization Reaction 4.2.5 Amide Formation 4.2.5.1 CDI-Promoted Amide Formation 4.2.5.2 Phenyl Chloroformate-Promoted Urea Formation 4.2.6 Reduction of Ketone to Hydrocarbon 4.2.7 1,3-Dipole-Involved Reactions 4.2.7.1 Addition–Elimination/Cyclization 4.2.7.2 [3+2] Cycloaddition 4.3 Other Addition Modes 4.3.1 Sequential Addition 4.3.2 Portionwise Addition 4.3.2.1 Cyclization 4.3.2.2 Deoxychlorination 4.3.3 Slow Release of Starting Material/Reagent 4.3.3.1 Synthesis of Urea 4.3.3.2 Preparation of Alkylamine 4.3.4 Alternate Addition 4.3.5 Concurrent Addition 4.3.5.1 Bromination Reaction 4.3.5.2 Difluoromethylation 4.3.5.3 Diels–Alder Reaction Chapter 5 Process Optimization with Additives 5.1 Acid Additives 5.1.1 Hydrochloric Acid 5.1.1.1 SNAr Reaction 5.1.1.2 Deoxychlorination 5.1.2 Phosphoric Acid 5.1.3 Sulfuric Acid 5.1.3.1 Iodination Reaction 5.1.3.2 Chlorination Reaction with N-Chlorosuccinimide 5.1.3.3 Chlorination Reaction with Phosphorus Trichloride 5.1.3.4 Hydrogenation Reaction 5.1.4 Methanesulfonic Acid 5.1.5 Acetic Acid 5.1.5.1 Condensation Reaction 5.1.5.2 SN2 Reaction 5.1.5.3 Mitsunobu Reaction 5.1.6 Benzoic Acid 5.1.7 Trifluoroacetic Acid 5.1.8 Toluenesulfonic Acid 5.2 Base Additives 5.2.1 Potassium Carbonate 5.2.2 Sodium Hydrogen Carbonate 5.2.3 Diisopropylethylamine 5.2.3.1 Neutralizing AcOH/Replacing Ammonia 5.2.3.2 Stabilizing Intermediate 5.2.4 1,4-Diazabicyclo[2.2.2]octane 5.2.5 N,N’-Dimethylethylenediamine 5.2.6 Potassium tert-Butoxide 5.2.7 Sodium Methoxide 5.2.7.1 Increasing Reaction Rate 5.2.7.2 Improving Product Yield 5.2.8 Sodium Acetate 5.2.8.1 Trapping Hydrogen Iodide 5.2.8.2 Trapping Hydrogen Chloride 5.2.8.3 Improving Conversion 5.2.9 Sodium Acrylate 5.3 Inorganic Salts 5.3.1 Lithium Chloride 5.3.1.1 Increasing Reaction Rate 5.3.1.2 Improving Stereoselectivity 5.3.1.3 Improving Conversion 5.3.2 Lithium Bromide 5.3.3 Sodium Bromide 5.3.3.1 Lowering Reaction Temperature 5.3.3.2 Improving Product Yield 5.3.4 Magnesium Chloride 5.3.5 Magnesium Bromide 5.3.6 Calcium Chloride 5.3.6.1 Reaction with NaBH4 5.3.6.2 Trapping Fluoride 5.3.7 Zinc Chloride 5.3.8 Zinc Acetate 5.4 Assortment of Scavengers 5.4.1 Catechol as Methyl Cation Scavenger 5.4.2 Anisole as Quinone Methide Scavenger 5.4.3 Ethyl Acetate as Hydroxide Scavenger 5.4.4 Ethyl Trifluoroacetate as Hydroxide Scavenger 5.4.5 Ethyl Trifluoroacetate as Benzylamine Scavenger 5.4.6 Ethyl Pivalate as Hydroxide Scavenger 5.4.7 Trimethyl Orthoformate as Water Scavenger 5.4.8 Thionyl Chloride as Water Scavenger 5.4.9 1-Hexene 5.4.9.1 As HCl Scavenger 5.4.9.2 As Diimide (NH=NH) Scavenger 5.4.10 Epoxyhexene as HBr Scavenger 5.4.11 Acetic Anhydride as Aniline Scavenger 5.4.12 Amberlite CG50 as Ammonia Scavenger 5.4.13 3-Pentanone as HCN Scavenger 5.5 Other Additives 5.5.1 Imidazole 5.5.2 Triethylamine Hydrochloride 5.5.3 Methyl Trioctylammonium Chloride 5.5.4 Chlorotrimethylsilane 5.5.4.1 Julia Olefination 5.5.4.2 Michael Addition 5.5.5 Chlorotriethylsilane 5.5.6 Bis(trimethylsilyl)acetamide 5.5.7 Water 5.5.7.1 Wadsworth–Emmons Reaction 5.5.7.2 O-Alkyation 5.5.7.3 Methylation Reaction 5.5.7.4 Enolization Reaction 5.5.7.5 Pyrazole Synthesis 5.5.7.6 Copper-Mediated Intramolecular Cyclization 5.5.7.7 Crystallization-Induced Dynamic Resolution of Amine 5.5.8 Hydroquinone 5.5.8.1 Preclusion of Oxidation 5.5.8.2 Preclusion of Polymerization 5.5.9 Trimethyl Borate 5.5.10 Isobutanoic Anhydride 5.5.11 1,1-Dimethyl-2-Phenylethyl Acetate 5.5.12 Alcohols 5.5.12.1 Ethanol 5.5.12.2 2-Propanol 5.5.12.3 tert-Butanol 5.5.12.4 Ethylene Glycol 5.5.12.5 1,2-Propanediol 5.5.12.6 Neopentyl Glycol 5.5.13 1,4-Dioxane 5.5.14 Benzotriazole 5.5.15 1-Hydroxybenzotriazole 5.5.16 1,4-Dibromobutane 5.5.17 Diethanolamine 5.5.17.1 Improving Selectivity 5.5.17.2 Boranate Ester Exchange 5.5.18 Trimethyl Phosphite 5.5.19 Diethyl Phosphite 5.5.20 4-Trifluoromethyl Benzaldehyde Chapter 6 Process Optimization of Catalytic Reactions 6.1 Suzuki–Miyaura Reaction 6.1.1 Catalyst Poisoning 6.1.1.1 Catalyst Poisoning by Sulfhydryl Group 6.1.1.2 Catalyst Poisoning by Unknown Impurities 6.1.2 Catalyst Precipitation 6.1.3 Instability of Arylboronic Acids 6.1.3.1 Buchwald’s Precatalyst 6.1.3.2 Tridentate Ligand 6.1.3.3 Alternative Negishi Coupling Reaction 6.1.3.4 Alternative Kumada Coupling Reaction 6.1.3.5 Using Protecting Group 6.1.3.6 Using Trifluoroborate Salt 6.1.4 Problems Associated with Base 6.1.4.1 Protodeboronation 6.1.4.2 Formation of Carbamate 6.1.5 Dimer Impurity 6.1.5.1 Reducing Arylboronic Acid Concentration 6.1.5.2 Reducing Free Pd(II) Concentration 6.2 Negishi Reaction 6.2.1 Poor Product Yield 6.2.2 Thick Reaction Mixture 6.3 Heck Reaction 6.3.1 Enhancing Palladium-Catalyst Stability 6.3.2 Improving Selectivity 6.4 Sonogashira Reaction 6.4.1 Reducing Palladium-Catalyst Loading 6.4.2 Improving Reactivity 6.5 Catalytic Deprotection 6.5.1 Debenzylation 6.5.1.1 Catalyst Poisoning 6.5.1.2 Erosion of Chiral Purity 6.5.2 Catalytic Removal of Cbz Group 6.5.2.1 Impurity Formation 6.5.2.2 Pd(OAc)2/Charcoal System 6.6 Catalytic Hydrogenation 6.6.1 Reduction of Nitro Group 6.6.1.1 Palladium-Catalyzed Hydrogenation 6.6.1.2 Nickel-Catalyzed Hydrogenation 6.6.1.3 Platinum-Catalyzed Hydrogenation 6.6.1.4 Catalytic Transfer Hydrogenation 6.6.2 Reduction of Pyridine Ring 6.6.3 Reduction of α,β-Unsaturated Compounds 6.6.4 Enantioselective Reduction of Quinolines 6.6.5 Reduction of Nitrile 6.6.6 Reduction of Azide 6.7 Other Catalytic Reactions 6.7.1 Cu(I)-Catalyzed Reaction 6.7.2 Decarboxylative Bromination 6.7.3 Formation of Acid Chloride 6.7.4 Catalytic Dechlorination 6.7.5 Two-Phase Reactions 6.7.5.1 Enhancement of Reaction Rate 6.7.5.2 Suppressing Side Reactions 6.7.5.3 Reducing the Amount of Toxic Sodium Cyanide 6.7.5.4 Replacing DMSO Solvent in SNAr Reaction 6.7.5.5 Two-Phase Reactions without PTC 6.7.6 Deoxybromination 6.7.7 Regioselective Chlorination 6.7.8 Regioselective Magnesiation 6.7.9 Amide Preparation 6.7.9.1 NaOMe as Catalyst 6.7.9.2 HOBt as Catalyst 6.7.10 Synthesis of Indole 6.7.11 N-Methylation Reaction 6.7.12 Baylis−Hillman Reaction 6.7.13 Catalytic Wittig Reaction 6.7.14 Palladium-Catalyzed Rearrangement Chapter 7 Process Optimization of Problematic Reactions 7.1 Temperature Effect 7.1.1 Metal–Halogen/Hydrogen Exchange 7.1.1.1 Magnesium–Bromine Exchange 7.1.1.2 Lithium–Bromine Exchange 7.1.1.3 Lithium–Hydrogen Exchange 7.1.2 Ring Expansion 7.1.3 Synthesis of Pyrazole 7.1.4 Synthesis of Oxadiazole 7.1.5 Cross-Coupling Reaction 7.1.6 Vilsmeier Reaction 7.1.7 Oxidative Hydrolysis 7.2 Pressure Effect 7.2.1 Nitrile Reduction 7.2.2 [3+2]-Cycloaddition 7.3 Low Product Yields 7.3.1 Incomplete Reactions 7.3.1.1 Poor Mass Transfer 7.3.1.2 Undesired Physical Properties 7.3.1.3 High Flow Rate of Nitrogen 7.3.2 Loss of Product During Isolation 7.3.3 Side Reactions of Starting Materials 7.3.3.1 Decomposition of N-Oxide 7.3.3.2 Decomposition of Hydrazone 7.3.3.3 Hydrolysis of Chlorotriazine 7.3.4 Side Reactions of Intermediates 7.3.4.1 Sandmeyer Reaction 7.3.4.2 Hofmann Rearrangement 7.3.4.3 Tosylation/Amination Reactions 7.3.4.4 Synthesis of Cyclic Sulfimidate 7.3.4.5 Cyclization/Ring Expansion 7.3.4.6 Michael Addition 7.3.5 Side Reactions of Products 7.3.5.1 Decomposition of Amide 7.3.5.2 Side Reactions of 1,4-Isochromandione 7.3.5.3 Side Reactions of Oxirane 7.4 Reaction Problems Associated with Impurities 7.4.1 Residual MTBE 7.4.2 Residual Water 7.4.2.1 Bromination Reaction 7.4.2.2 SNAr Fluorination Reaction 7.4.2.3 Copper-Catalyzed C−N Bond Formation 7.4.3 Residual Oxygen 7.4.3.1 Oxidative Dimerization 7.4.3.2 Oxidation of Phenylenediamine 7.4.4 Residual Zinc 7.5 Reactions with Poor Selectivity 7.5.1 CIDR to Improve cis/trans Selectivity 7.5.2 Two-Step Process to Mitigate Racemization 7.5.3 Reduction of Carboxylic Acid 7.5.4 Sacrificial Reagent in Regioselective Acetylation 7.5.5 Converting Side Product to Product 7.5.6 Enamine Exchange 7.5.7 Carry-Over Approach 7.5.8 Friedel–Crafts Reaction 7.5.9 Reduction of Carbon–Carbon Double Bond 7.5.10 Reduction of Nitrile 7.6 Protecting Group 7.6.1 Acetyl Group 7.6.2 Trimethylsilyl Group 7.6.2.1 Protection of Terminal Alkyne 7.6.2.2 Protection of Enolate 7.6.2.3 Protection of Hydroxyl Group 7.6.3 Cyanoethyl Group 7.6.4 Benzhdryl Group 7.7 Polymerization Issues 7.7.1 Polymerization of Chloroacetyl Chloride 7.7.2 Polymerization of Acid Chloride 7.7.3 Polymerization of Chloroacrylonitrile 7.7.4 Polymerization of Enone 7.7.5 Polymerization of Pentasulfide 7.8 Activation of Functional Groups 7.8.1 Activation of Aniline Nitrogen 7.8.2 Activation of Amide 7.8.3 Activation of Lactol 7.8.4 C–H Bond Activation 7.9 Deactivation of Functional Groups 7.9.1 Deactivation of Amino Group 7.9.2 Deactivation of Sulfonyl Chloride 7.10 Optimization of Telescoped Process Chapter 8 Hazards of Oxidation and Reduction Reactions 8.1 Oxidation Reactions 8.1.1 Oxidation of Olefins 8.1.1.1 Oxidation with mCPBA 8.1.1.2 Oxidation with Sodium Perborate 8.1.1.3 Oxidation with Ozone 8.1.1.4 Oxidation with KMnO4 8.1.1.5 Oxidation with 9-BBN/H2O2-NaOH 8.1.2 Oxidation of Alcohols 8.1.2.1 Py·SO3/DMSO System 8.1.2.2 Ac2O/DMSO System 8.1.2.3 TFAA/DMSO/TEA System 8.1.2.4 TEMPO/NaOCl System 8.1.2.5 RuCl3/NaOCl System 8.1.2.6 Sulfinimidoyl Chloride 8.1.2.7 2-Amadamantane N-Oxide/CuCl 8.1.3 Oxidation of Aldehydes to Acids 8.1.4 Oxidation of Sulfides to Sulfoxides 8.1.5 Oxidation of Sulfides to Sulfones 8.1.5.1 Oxidation with Oxone 8.1.5.2 Oxidation with Sodium Perborate 8.1.5.3 Oxidation with Sodium Periodate 8.1.5.4 Oxidation with NaOCl 8.1.5.5 Oxidation with H2O2/Na2WO4 8.1.5.6 Oxidation with TMSCl/KNO3 8.1.6 Other Oxidative Reactions 8.1.6.1 Dakin Oxidation 8.1.6.2 Hydroxylation 8.1.6.3 Oxidation of Phosphite 8.2 Reduction Reactions 8.2.1 Reduction with NaBH4-Based Agents 8.2.1.1 Reduction of Acids 8.2.1.2 Reduction of Esters 8.2.1.3 Reduction of Amides 8.2.1.4 Reduction of Imine 8.2.2 Reduction with Borane 8.2.2.1 BH3·THF Complex 8.2.2.2 BH3·DMS Complex 8.2.2.3 BH3·Amine Complex 8.2.3 Reduction with Lithium Aluminum Hydride Chapter 9 Other Hazardous Reactions 9.1 Catalytic Cross-Coupling Reactions 9.1.1 Heck Reaction 9.1.2 Negishi Cross-Coupling Reaction 9.2 Blaise Reaction 9.3 Ritter Reaction 9.4 Hydrogen–Lithium Exchange 9.5 Halogenation Reactions 9.5.1 Chlorination Reaction 9.5.2 Fluorination Reactions 9.5.2.1 Deoxyfluorination 9.5.2.2 Hydrofluorination of Aziridines 9.5.2.3 Electrophilic Fluorination 9.5.3 Deoxychlorination 9.5.3.1 Deoxychlorination of Triazinone 9.5.3.2 Deoxychlorination of Quinazolone 9.5.3.3 Deoxychlorination of Triazine 9.5.3.4 Deoxychlorination of 4,6-Dihydroxypyrimidine 9.5.3.5 Deoxychlorination of 6,7-Dihydrothieno[3.2-d]pyrimidine-2,4-diol 9.5.3.6 Deoxychlorination of 6-Chlorophthalazin-1-ol 9.6 Thiocyanation 9.7 Gas-Involved Reactions 9.7.1 Boc Protection 9.7.2 N-Acetylation 9.7.3 Boc Deprotection 9.7.3.1 Selective Deprotection with TFA 9.7.3.2 Deprotection with NaOH 9.7.4 N-tert-Butylamide Formation 9.7.5 Deprotection of N-tert-Butyl Group 9.7.6 Decarboxylative Ethoxide Elimination 9.7.7 Deprotonation 9.7.8 SN2 Reaction 9.7.9 Chlorination Reaction 9.8 Darzens Reaction 9.9 Hofmann Rearrangement 9.10 Friedel–Crafts Reaction Chapter 10 Hazardous Reagents 10.1 Diazonium Salts 10.1.1 Hydrolysis of Diazonium Salt 10.1.2 Diazonium Salt-Involved Cyclization 10.1.3 Nitroindazole Formation 10.1.4 Synthesis of Trifluoromethyl-Substituted Cyclopropanes 10.1.5 Sandmeyer Reaction 10.2 Azide Compounds 10.2.1 Nucleophilic Displacement 10.2.1.1 Synthesis of 3,4-Dihydropyrrole 10.2.1.2 Synthesis of 3-(1,2-Diarylbutyl) Azide 10.2.1.3 Preparation of Aryl (Alkyl) Azides 10.2.2 Nucleophilic Addition 10.2.2.1 Synthesis of Tetrazole 10.2.2.2 Synthesis of Triazole 10.2.2.3 Synthesis of Carbamate 10.2.2.4 Curtius Rearrangement 10.3 Hydrazine 10.3.1 Wolff–Kishner Reduction 10.3.1.1 Reduction of Asymmetric Ketone 10.3.1.2 Reduction of Symmetric Ketone 10.3.1.3 Synthesis of Indazole 10.3.1.4 Synthesis of Pyrazole 10.3.1.5 Preparation of Alkylamine 10.3.2 Preparation of Aryl (or Alkyl) Hydrazines and Related Reactions 10.3.2.1 Preparation of 5-Hydrazinoquinoline 10.3.2.2 Synthesis of Aminopyrazole 10.3.2.3 Fischer Indole Synthesis 10.4 Hydroxylamine 10.5 Oxime 10.6 N-Oxide 10.7 Nitro Compounds 10.7.1 Preparation of Nitro Compounds by Nitration 10.7.1.1 NaNO3/TFA/TFAA Nitration System 10.7.1.2 KNO3/TFA Nitration System 10.7.1.3 Use of Acetyl Nitrate 10.7.1.4 NaNO3/Py∙SO3 System 10.7.1.5 Stepwise Nitration 10.7.1.6 Use of Chlorotrimethylsilane and Nitrate Salt 10.7.1.7 Metal-Catalyzed Nitration 10.7.1.8 N-Nitro Intermediate Rearrangement 10.7.2 Hazardous Reactions of Nitro Compounds 10.7.2.1 Unstable Nitrophenate 10.7.2.2 Accumulation of Reactant 10.8 Volatile Organic Compounds 10.8.1 Ethylene Oxide 10.8.2 Acetylene 10.8.3 Halogenated Methyl Ethers 10.8.3.1 Bis(bromomethyl)ether 10.8.3.2 Chloromethyl Ethyl Ether 10.8.4 Methyl Iodide 10.8.4.1 N-Methylation of Heterocycles 10.8.4.2 N-Methylation of Amide 10.8.4.3 N-Methylation of 2-Methoxypyridine Derivative 10.8.5 Methyl Bromide 10.9 High Energy Compounds 10.9.1 5-Hydroxybenzofurazan 10.9.2 1-Hydroxybenzotriazole (HOBt) 10.9.2.1 Ethyl Acetate/Water Two-Phase System 10.9.2.2 Replacement of HOBt with 2-Hydroxypyridine 10.9.2.3 Replacement of HOBt with 2-Chloro-4,6-dimethoxy-1,3,5-triazine 10.10 Toxic Compounds 10.10.1 Zinc Cyanide 10.10.2 Potassium Ferrocyanide 10.10.3 Acetone Cyanohydrin 10.10.3.1 Epoxide Opening 10.10.3.2 Michael Addition 10.11 Corrosive Reagent Chapter 11 Grignard Reagent and Related Reactions 11.1 Preparation Of Grignard Reagents 11.1.1 Use of Chlorotrimethylsilane 11.1.1.1 Preparation of 4-Fluoro-2-methylphenylmagnesium Bromide 11.1.1.2 Preparation of (4-(2-(Pyrrolidin-1-yl)ethoxy)phenyl)magnesium Bromide 11.1.2 Use of Diisobutylaluminum Hydride 11.1.3 Use of Diisobutylaluminum Hydride/Iodine 11.1.4 Use of Grignard Reagents 11.1.4.1 Use of MeMgCl 11.1.4.2 Use of EtMgBr 11.1.4.3 Use of Heel 11.1.5 Use of Alkyl Halides 11.1.5.1 Use of Iodomethane 11.1.5.2 Use of 1,2-Dibromoethane 11.1.6 Halogen–Magnesium Exchange 11.1.6.1 Preparation of Trifluoromethyl Substituted Aryl Grignard Reagents 11.1.6.2 Preparation of N-Methylpyrazole Grignard Reagent 11.1.6.3 Preparation of (4-Bromonaphthalen-1-yl)magnesium Chloride 11.1.6.4 Magnesium-ate Complex 11.1.6.5 Alkylmagnesium Alkoxides 11.2 Reactions of Grignard Reagents 11.2.1 Reactions with Ketones 11.2.1.1 Vinyl Grignard Reagents 11.2.1.2 Aryl Grignard Reagents 11.2.1.3 Methylmagnesium Bromide 11.2.2 Reaction with Acid Chloride 11.2.3 Reaction with Dimethylformamide 11.2.4 Reaction with Weinreb Amide 11.2.5 Michael Addition 11.2.6 Reaction with Epoxide 11.2.7 Other Grignard Reagent-Involved Reactions 11.2.7.1 Ramberg−Bäcklund Reaction 11.2.7.2 Synthesis of Chiral δ-Ketoamides 11.2.7.3 Access to o-Quinone Methide Intermediates Chapter 12 Challenging Reaction Intermediates 12.1 Effect of Intermediates 12.1.1 In Telescoping Steps 12.1.2 In Designing Synthetic Route 12.1.3 In Agitation 12.1.4 In Product Isolations/Purifications 12.1.4.1 Pictet–Spengler Reaction 12.1.4.2 Imide Reduction 12.1.5 In Improving Product Yields 12.1.5.1 Amide Formation 12.1.5.2 Synthesis of Hydroxybenzisoxazole 12.1.5.3 Synthesis of Vinyl Bromide 12.1.6 In Improving Operational Profile 12.2 MONITORING INTERMEDIATES 12.2.1 Direct Monitoring Intermediate 12.2.2 Indirect Monitoring Intermediates 12.2.2.1 Derivatization of Acylimidazolide 12.2.2.2 Derivatization of N-Methylene Bridged Dimer Chapter 13 Protecting Groups 13.1 Protection of Hydroxyl Group 13.1.1 Prevention of Side Reactions 13.1.1.1 Friedel–Crafts Alkylation 13.1.1.2 Removal of Trifluoromethanesulfonyl Group 13.1.1.3 SN2 Reaction 13.1.2 Increasing Catalyst Activity 13.1.3 Separation of Diol Diastereomers 13.1.4 Developing Telescoped Process 13.2 Protection of Amino Group 13.2.1 Protection with (4-Nitrophenyl)sulfonyl Group 13.2.2 Protection with 2,5-Hexanedione 13.2.3 Protection with Aldehyde 13.2.4 Protection with 4-Methyl-2-Pentanone 13.2.5 Protection with Methylene Group 13.2.6 Protection with tert-Butyloxycarbonyl Group 13.2.7 Protection with 2,2,6,6-Tetramethylpiperidin-1-yloxycarbonyl Group 13.2.8 Protection with Trimethylsilyl Group 13.3 Protection of Carboxylic Acid 13.4 Protection of Aldehydes And Ketones 13.4.1 Protection of Aldehyde 13.4.2 Protection of Ketones 13.4.2.1 Protection with Methanol 13.4.2.2 Protection with Ethylene Glycol 13.4.2.3 Using Internal Protection Approach 13.5 Protection of Acetylene 13.6 Unusual Protecting Groups 13.6.1 Boron-Containing Protecting Groups 13.6.1.1 Borane Complex 13.6.1.2 Boronic Acids 13.6.2 N-Nitro Protecting Group 13.6.2.1 Regioselective Nitration 13.6.2.2 Activation of Aniline 13.6.3 Halogen as Protecting Group 13.6.3.1 Bromine Protecting Group 13.6.3.2 Chlorine Protecting Group Chapter 14 Telescope Approach 14.1 Improving Process Safety 14.1.1 Chloroketone Intermediate 14.1.2 Lachrymatory Chloromethacryate Intermediate 14.1.3 Chloromethyl Benzoimidazole 14.1.4 Pyridine N-Oxide 14.1.5 Benzyl Bromide 14.1.6 Methyl Iodide 14.2 Processing Problematic Intermediates 14.2.1 Oily Intermediates 14.2.2 Hygroscopic Intermediate Solid 14.2.3 Hygroscopic Amine Salt 14.2.4 High Water-Soluble Intermediate 14.2.5 Unstable Intermediates 14.2.5.1 Heteroaryl Chloride 14.2.5.2 Toluenesulfonate Intermediate 14.2.5.3 Aldehyde Intermediates 14.2.5.4 Unstable Alkene Intermediates 14.2.5.5 Unstable β-Hydroxyketone 14.3 Improving Filtration 14.3.1 Preparation of Amide 14.3.2 Synthesis of β-Nitrostyrene 14.4 Telescoping Catalytic Reactions 14.4.1 Imine Reduction/Debenzylation 14.4.2 Debromination/Suzuki Cross-Coupling Reaction 14.5 Improving Overall Product Yields 14.5.1 Synthesis of Spirocyclic Hydantoin 14.5.2 Transition Metal-Catalyzed Cross-Coupling Reaction 14.6 Reduction In Processing Solvents 14.6.1 Toluene as the Common Solvent 14.6.2 DMF as the Common Solvent 14.6.3 EtOAc as the Common Solvent 14.6.4 THF as the Common Solvent 14.6.5 EtOH/THF as the Common Solvent 14.7 Other Telescope Processes 14.7.1 Bromination/Isomerization Reactions 14.7.2 Fisher Indole Synthesis/Ring Rearrangemet 14.7.3 Ylide Formation/Wittig Reaction/Cycloaddition 14.7.4 Overman Rearrangement 14.7.5 Acylation/Reduction/O-Alkylation/Bromination 14.7.6 Synthesis of (–)-Oseltamivir 14.8 Limitation of the Telescope Approach 14.8.1 Lack of Purity Control 14.8.2 Poor Product Yield 14.8.3 Lack of Compatibility Chapter 15 Design of New Synthetic Route 15.1 Improving Process Safety 15.1.1 Toxic Reagents and Intermediates 15.1.1.1 Trimethylsilyl Cyanide as Cyanide Source 15.1.1.2 CuCN in Sandmeyer Reaction 15.1.1.3 Toxic Reagent (HF) 15.1.1.4 Toxic Benzyl Halides 15.1.1.5 Phosphorus Oxychloride 15.1.1.6 Sulfonyl Chloride Intermediate 15.1.2 High Energy Reagents 15.1.2.1 Azide-Involved Cycloaddition 15.1.2.2 Diazonium Salt-Involved Indazole Formation 15.1.2.3 Lithium Aluminum Hydride Reduction 15.1.3 Undesired Reaction Conditions 15.1.3.1 Acylation Reaction 15.1.3.2 SNAr Reaction 15.2 Improving Product Yield 15.2.1 Cycloaddition Reaction 15.2.2 Resolution/Amide Formation/Cyclization 15.2.3 Chlorine Replacement 15.2.4 Wittig Reaction 15.3 Improving Reaction Selectivity 15.3.1 Chlorination 15.3.2 Iodination 15.3.3 N-Alkylation Reaction 15.3.4 Formation of Seven-Membered Ring 15.4 Other Route Design Strategies 15.4.1 Using Less Expensive Starting Material 15.4.2 Using Convergent Approach 15.4.2.1 Decarboxylative Cross-Coupling Reaction 15.4.2.2 Synthesis of Chiral Amide 15.4.3 Step-Economy Synthesis 15.4.3.1 Synthesis of Keto–Sulfone Intermediate 15.4.3.2 Synthesis of Bendamustine 15.4.4 Atom-Economy Synthesis 15.4.4.1 Synthesis of Carboxylic Acid 15.4.4.2 Stereoselective Synthesis of Diol 15.4.5 Alternating Bond-Formation Order 15.4.6 Minimizing Oxidation Stage Change 15.4.6.1 Minimizing Nitrogen Oxidation Stage Adjustment 15.4.6.2 Minimizing Carbon Oxidation Stage Adjustment 15.4.7 Coupling Reagent-Free Amide Formation 15.4.8 Preventing Etching of Glass Reactor Chapter 16 Stereochemistry 16.1 Asymmetric Synthesis 16.1.1 Asymmetric Catalysis 16.1.1.1 Desymmetrization of Anhydride 16.1.1.2 Asymmetric Reduction of Enone 16.1.1.3 Sharpless Asymmetric Dihydroxylation 16.1.1.4 Enantioselective Alkylation 16.1.1.5 Enantioselective Protonation of Enamines 16.1.1.6 CuH-Catalyzed Synthesis of 2,3-Disubstituted Indolines 16.1.1.7 CuH-Catalyzed Synthesis of Chiral Amines 16.1.2 Chiral Pool Synthesis 16.1.2.1 Condensation of Indoline with Benzaldehyde 16.1.2.2 Claisen Rearrangement 16.1.3 Use of Chiral Auxiliaries 16.1.3.1 Diastereoselective Diels–Alder Reaction 16.1.3.2 Diastereoselective Synthesis of Boronic Acid 16.1.3.3 Synthesis of Chiral (S)-Pyridyl Amine 16.1.3.4 Synthesis of L-Carnitine 16.2 Kinetic Resolution 16.2.1 Hydrolytic Kinetic Resolution of Epoxide 16.2.2 Resolution of Diol via Stereoselective Esterification 16.2.3 Resolution of Phosphine Ligand via Stereoselective Ligand Exchange 16.2.4 Resolution of Diastereomeric Mixture via Salt Formation 16.3 Enzymatic Resolution 16.3.1 Resolution of Esters 16.3.1.1 Resolution of Methyl Piperidine-4-Carboxylate 16.3.1.2 Resolution of Ethyl α-Amino Acetate 16.3.1.3 Resolution of Diazepane Acetate 16.3.2 Resolution of Amino Acids 16.3.3 Resolution Secondary Alcohols 16.4 Separation with Chiral Chromatography 16.5 Classical Resolution 16.5.1 Resolution of Racemic Acid 16.5.2 Resolution of Racemic Bases 16.5.2.1 Use of Optical Pure tert-Leucine Derivative 16.5.2.2 Use of di-p-Toluoyl-D-Tartaric Acid 16.5.2.3 Use of bis((S)-Mandelic Acid)-3-Nitrophthalate 16.5.3 Resolution of Ketone 16.5.4 Resolution of Racemic Ammonium Salt 16.5.5 Diastereomer Salt Break 16.5.6 Examples of Diastereomeric Salts 16.6 Dynamic Kinetic Resolution 16.6.1 DKR via Imine Intermediates 16.6.1.1 3,5-Dichlorosalicylaldehyde Catalyst 16.6.1.2 2-Hydroxy-6-(hydroxymethyl)benzaldehyde Catalyst 16.6.1.3 Picolinaldehyde Catalyst 16.6.1.4 DRK without Catalyst 16.6.1.5 Iridium-Involved DKR 16.6.2 DKR via Enolate Intermediates 16.6.2.1 Enolization with Base 16.6.2.2 Enolization without Base 16.6.3 DKR via Diastereomeric Salt Formation 16.6.4 DKR of Six-Membered Ring Systems 16.6.4.1 Epimerization of cis-Isomer to trans-Isomer 16.6.4.2 Isomerization of Cyclohexane Derivative 16.6.4.3 Fischer Indole Synthesis 16.6.5 DKR via Reversible Bond Formation 16.6.5.1 Reversible C−C Bond Formation 16.6.5.2 Reversible C−N Bond Formation 16.6.5.3 Reversible C−O Bond Formation 16.6.5.4 Reversible C−S Bond Formation 16.6.6 Other DKR Methods 16.6.6.1 Bromide-Catalyzed DKR 16.6.6.2 Resolution of Sulfoxide 16.6.6.3 Dynamic Kinetic Isomerization via Ir-Catalyzed Internal Redox Transfer Hydrogenation 16.6.6.4 Vinylogous Dynamic Kinetic Resolution 16.6.7 Various DKR Examples Chapter 17 Various Quenching Strategies 17.1 Acidic Quenching 17.1.1 Removal of Magnesium Salts 17.1.1.1 Reaction of Grignard Reagent with Weinreb Amide 17.1.1.2 Weinreb Amide Formation 17.1.2 Removal of Zinc 17.2 Basic Quenching 17.2.1 Suppressing Thiadiazole Isomerization 17.2.2 Prevention of Etching Glass Reactor 17.2.2.1 Quenching with Sodium Bicarbonate 17.2.2.2 Quenching with Sodium Hydroxide 17.3 Anhydrous Quenching 17.3.1 Removal of Zinc By-Product 17.3.2 Avoiding Insoluble Organic Mass 17.3.3 Avoiding Degradation of Product 17.3.3.1 Use of Ethyl Acetate 17.3.3.2 Use of Diisopropylethylamine 17.3.4 Decomposition of Excess Reagent 17.3.4.1 Use of Methanol 17.3.4.2 Use of Silicon Dioxide 17.4 Oxidative Quenching 17.4.1 Oxidation of Hydrogen Iodide 17.4.2 Oxidation of Pinacol 17.5 Reductive Quenching 17.5.1 Restroying tert-Butyl Hydroperoxide 17.5.2 Destroying Hydrogen Peroxide 17.5.3 Destroying Oxone 17.5.4 Destroying Halogens 17.5.4.1 Use of Ascorbic Acid to Destroy Bromine 17.5.4.2 Use of Ascorbic Acid to Destroy Iodine 17.6 Disproportionation Quenching 17.7 Reverse Quenching 17.7.1 Control of Impurity Formation 17.7.1.1 Preparation of Ketone 17.7.1.2 Preparation of Aldehyde 17.7.1.3 Grignard Reaction 17.7.2 Removal of Excess Reagent 17.7.3 Increase in Conversion 17.7.4 Suppressing Product Hydrolysis 17.7.5 Prevention of Product Decomposition 17.7.6 Prevention of Emulsion 17.7.6.1 Copper-Catalyzed Amination 17.7.6.2 Lithium Aluminum Hydride Reduction 17.7.7 Prevention of Exothermic Runaway 17.8 Concurrent Quenching 17.9 Double Quenching 17.9.1 Acetone/HCl Combination 17.9.1.1 Ketone Reduction 17.9.1.2 SNAr Reaction 17.9.2 Acetone/Citric Acid Combination 17.9.3 Acetone/MeOH/H2O Combination 17.9.4 Ethyl Acetate/Water Combination 17.9.5 Ethyl Acetate/Tartaric Acid Combination 17.9.6 Ethyl Acetate/Aqueous Sodium Bicarbonate Combination 17.9.7 Isopropanol/Citric Acid Combination 17.9.8 Methyl Formate/Aqueous HCl Combination 17.10 Reactive Quenching Chapter 18 Various Isolation and Purification Strategies 18.1 Extraction 18.1.1 Aqueous Extractions 18.1.1.1 Use of Methyl tert-Butyl Ether 18.1.1.2 Use of 2-Methyltetrahydrofuran 18.1.1.3 Use of Ethyl Acetate 18.1.1.4 Use of Dodecane 18.1.1.5 Use of n-Butanol 18.1.2 Anhydrous Extraction 18.1.2.1 Heptane/Acetonitrile System 18.1.2.2 Heptane–Cyclohexane/N-Methyl-2-pyrrolidone System 18.1.3 Double Extraction 18.2 Direct Isolation 18.2.1 Use of Cooling 18.2.1.1 Direct Isolation from Isopropanol 18.2.1.2 Direct Isolation from Ethyl acetate 18.2.1.3 Direct Isolation from Isopropyl Acetate 18.2.1.4 Direct Isolation from Acetonitrile 18.2.2 Use of Anti-Solvent 18.2.2.1 Adding Water to Acetic Acid 18.2.2.2 Addition of Water to Dimethylformamide 18.2.2.3 Addition of Water to Dimethylacetamide 18.2.2.4 Addition of Water to Dimethylsulfoxide 18.2.2.5 Addition of Methanol to Dimethylsulfoxide 18.2.3 Use of Cooling and Anti-Solvent 18.2.3.1 Isolation of Sonogashira Product 18.2.3.2 Isolation of 6-Chlorophthalazin-1-ol 18.2.3.3 Isolation of SNAr Product 18.2.4 Use of Neutralization 18.2.5 Use of Salt Formation 18.2.6 Other Direct Isolation Approaches 18.2.6.1 Direct Drop Process 18.2.6.2 Removal of By-Product by Direct Drop Approach 18.3 Filtration Problems 18.3.1 Metal-Related Filtration Problems 18.3.1.1 Copper-Related Filtration Problems 18.3.1.2 TiCl4-Related Problems 18.3.2 Small Particle Size 18.3.2.1 Addition of Acetic Acid 18.3.2.2 Addition of Isopropanol 18.3.2.3 Temperature Control 18.3.2.4 Polymorph Transformation 18.3.3 Low-Melting Solid 18.4 Purification Strategies 18.4.1 Use of Salt Formation 18.4.1.1 Hydrochloric Acid Salts 18.4.1.2 Acetic Acid Salt 18.4.1.3 (R)-Mandelate Salt 18.4.1.4 L-Tartaric Acid Salt 18.4.1.5 2-Picolinic Acid Salt 18.4.1.6 Toluenesulfonic Acid Salts 18.4.1.7 Sodium Salt 18.4.1.8 Potassium Salt 18.4.1.9 Magnesium Salt 18.4.1.10 Dicyclohexylamine Salts 18.4.1.11 Quaternary Salt 18.4.2 Derivatization 18.4.2.1 Isolation/Purification of Aldehydes 18.4.2.2 Isolation/Purification of Amine 18.4.2.3 Isolation/Purification of Diol 18.4.2.4 Isolation/Purification of Amino Diol 18.4.3 Various Approaches for Impurity Removal 18.4.3.1 Removal of Ammonium Chloride 18.4.3.2 Removal of 9-BBN 18.4.3.3 Removal of Acetic Acid 18.4.3.4 Removal of (1E,3E)-Dienol Phosphate 18.5 Crystallization 18.5.1 Seed-Induced Crystallization 18.5.1.1 Avoiding Uncontrolled Crystallization 18.5.1.2 Avoiding Oiling Out 18.5.1.3 Control of Exothermic Crystallization 18.5.1.4 Control of Polymorph 18.5.2 Reactive Crystallization 18.5.2.1 Deprotection/Salt Formation 18.5.2.2 Enamine Preparation 18.5.2.3 Free Acid Formation 18.5.2.4 Boc Protection 18.5.2.5 Limitations of Reactive Crystallization 18.5.3 Other Crystallization Approaches 18.5.3.1 Addition of Water 18.5.3.2 Addition of Polymer 18.5.3.3 Crystallization from Extraction Solvent 18.5.3.4 Three-Solvent System 18.5.3.5 Derivatization 18.5.3.6 Control of Crystal Size Distribution 18.5.3.7 Cocrystallization Chapter 19 Methods for Residual Metal Removal 19.1 Removal of Residual Palladium 19.1.1 Crystallization 19.1.1.1 Crystallization in the Presence of Cysteine 19.1.1.2 Crystallization in the Presence of N-Acetylcysteine 19.1.2 Extraction 19.1.2.1 Liquid–Liquid Transportation 19.1.2.2 Extractive Precipitation 19.1.3 Adsorption 19.1.3.1 Activated Carbon 19.1.3.2 MP–TMT 19.1.3.3 Deloxan THP-II 19.1.3.4 Smopex 110 19.1.4 Distillation 19.1.5 Other Methods 19.1.5.1 Adsorption–Crystallization 19.1.5.2 Adsorption–TMT Wash 19.1.5.3 Protecting Group 19.1.5.4 Salt Formation 19.1.6 Conclusion 19.2 Removal of Residual Copper 19.2.1 Use of Aqueous Ammonia 19.2.2 Use of Thiourea 19.2.3 Use of 2,4,6-Trimercaptotriazine 19.3 Removal of Residual Rhodium 19.3.1 Use of Smopex-234 19.3.2 Use of Ecosorb C-941 19.4 Removal of Residual Ruthenium 19.4.1 Use of Activated Carbon 19.4.2 Use of Supercritical Carbon Dioxide 19.5 Removal of Zinc 19.5.1 Extraction with Trisodium Salt of EDTA 19.5.2 Use of Ethylenediamine 19.6 Removal of Magnesium 19.7 Removal of Aluminum 19.7.1 Use of Triethanolamine 19.7.2 Use of Crystallization 19.8 Removal of Iron And Nickel 19.8.1 Removal of Iron 19.8.2 Removal of Nickel Chapter 20 Methods for Impurity Removal 20.1 Removal of Fluoride 20.1.1 Use of Aqueous Wash 20.1.2 Use of CaCl2 20.1.3 Use of CaCO3 20.2 Removal of Iodide 20.3 Removal of High-Boiling Dipolar Aprotic Solvents 20.3.1 Wash with Aqueous Solution 20.3.2 Extraction with Heptane 20.4 Removal of Triphenylphosphine Oxide 20.4.1 Wash with Ethyl Acetate 20.4.2 Precipitation of Ph3PO with MgCl2 20.4.3 Precipitation of Ph3PO with ZnCl2 20.4.4 Precipitation of Ph3PO with Heptane 20.5 Use of Sodium Bisulfate 20.5.1 Removal of Methacrylic Acid from Acid Product 20.5.2 Removal of Alcohol from Aldehyde Product 20.5.3 Removal of Excess Formaldehyde 20.5.4 Removal of Ketone Intermediate 20.6 Removal of Excess Reagents 20.6.1 Use of Dimethylamine to Remove Excess Formaldehyde 20.6.2 Use of N-Methylpiperazine to Remove Boc Anhydride 20.6.3 Use of CO2 to Remove Excess Piperazine 20.6.4 Use of Succinic Anhydride to Remove 1-(2-Pyrimidyl)piperazine 20.6.5 Use of Pivalaldehyde to Remove 4-Chlorobenzylamine 20.6.6 Use of DABCO to Remove Benzyl Bromide 20.6.7 Use of Aqueous Ammonia to Remove Diethyl Sulfate 20.6.8 Use of Hydrogen Peroxide to Oxidize Ph3P 20.7 Conversion of Impurity To Starting Material 20.8 Conversion of Impurity To Product 20.8.1 Deoxychlorination 20.8.2 Cycloaddition Reaction 20.9 Removal of Other Impurities 20.9.1 Removal of Polymeric Material 20.9.2 Use of Sodium Periodate to Remove Diol 20.9.3 Use of Phenylboronic Acid to Remove Diol 20.9.4 Use of Sodium Dithionate to Reduce Nitro Group 20.9.5 Use of Polymeric Resin to Remove Hydrazide Chapter 21 Pharmaceutical Salts 21.1 Salts of Basic Drug Substances 21.1.1 Hydrochloride Salts 21.1.2 Hemisulfate Salt 21.1.3 Citric Acid Salt 21.1.4 Various Pharmaceutical Salts 21.2 Salts of Acidic Drug Substances 21.2.1 Use of Inorganic Bases 21.2.1.1 Sodium Salts 21.2.1.2 Potassium Salts 21.2.1.3 Calcium Salts 21.2.1.4 Various Inorganic Salts 21.2.2 Use of Organic Bases Chapter 22 Solid Form 22.1 Polymorphism 22.1.1 Control of Polymorph by Seeding 22.1.1.1 Use of Direct Addition 22.1.1.2 Use of Reverse Addition 22.1.2 Control of Polymorph by Temperature 22.1.3 Control of Polymorph by Slurrying 22.1.4 Control of Polymorph by Aging 22.1.5 Control of Polymorph by Adding Polymer 22.1.6 Polymorph Transformation 22.2 Cocrystals 22.2.1 Cocrystal with L-Phenylalanine 22.2.2 Cocrystal with L-Pyroglutamic Acid 22.2.3 Cocrystal with Phosphoric Acid 22.2.4 Cocrystal with L-Proline 22.2.5 Cocrystal with Adipic Acid 22.3 Api Particle Size 22.4 Amorphous Solids 22.4.1 Use of Spray Drying 22.4.2 Use of Solvent-Induced Method 22.4.3 Use of Hot-Melt Extrusion Index