ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Green Sustainable Process for Chemical and Environmental Engineering and Science: Carbon Dioxide Capture and Utilization

دانلود کتاب فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علوم: جذب و استفاده از دی اکسید کربن

Green Sustainable Process for Chemical and Environmental Engineering and Science: Carbon Dioxide Capture and Utilization

مشخصات کتاب

Green Sustainable Process for Chemical and Environmental Engineering and Science: Carbon Dioxide Capture and Utilization

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9780323994293 
ناشر: Elsevier 
سال نشر: 2023 
تعداد صفحات: 615
[616] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 30 Mb 

قیمت کتاب (تومان) : 40,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Green Sustainable Process for Chemical and Environmental Engineering and Science: Carbon Dioxide Capture and Utilization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علوم: جذب و استفاده از دی اکسید کربن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علوم: جذب و استفاده از دی اکسید کربن

فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علم: جذب و استفاده از دی اکسید کربن فناوری های پیشرفته مبتنی بر استفاده از CO2 را بررسی می کند. این کتاب مروری بر تبدیل و استفاده از CO2، تکنیک‌های استخراج، کاتالیز ناهمگن، حلال سبز، رویکردهای صنعتی و محصولات کالایی از طریق فرآیندهای انرژی‌بر ارائه می‌دهد. علاوه بر این، ارزیابی چرخه حیات و استراتژی های بیولوژیکی و مهندسی برای استفاده از CO2 را برجسته می کند. هر فصل چالش‌هایی را در فرآیندها و دیدگاه‌های آینده برای استفاده از تبدیل و استفاده CO2 ارائه می‌کند.


توضیحاتی درمورد کتاب به خارجی

Green Sustainable Process for Chemical and Environmental Engineering and Science: Carbon Dioxide Capture and Utilization explores advanced technologies based on CO2 utilization. The book provides an overview on the conversion and utilization of CO2, extraction techniques, heterogeneous catalysis, green solvent, industrial approaches, and commodity products through energy-intensive processes. In addition, it highlights lifecycle assessment and biological and engineering strategies for CO2 utilization. Each chapter presents challenges in the processes and future perspectives for the application of CO2 conversion and utilization.



فهرست مطالب

Cover
Half title
Title
Copyright
Contents
Contributors
Chapter 1 Carbon dioxide capture and its utilization towards efficient biofuels production
	1.1 Introduction
	1.2 Utilization of captured carbon dioxide for biofuel production
		1.2.1 Photosynthesis and photo oxidation of water
		1.2.2 Bio-sequestration of CO2
	1.3 Conclusion and future perspectives
	References
Chapter 2 Deep eutectic liquids for carbon capturing and fixation
	2.1 Carbon dioxide emissions
	2.2 Deep eutectic liquids
	2.3 Types of deep eutectic liquids
	2.4 Preparation of DELs
	2.5 Authentication of DELs
	2.6 DEL based CO2 absorption
	2.7 Carbon capture efficiency of various HBDs
		2.7.1 Urea
		2.7.2 Glycerol
		2.7.3 Glycerol^^c2^^a0 + ^^c2^^a0L-arginine
		2.7.4 Natural organic acids
		2.7.5 Dihydric alcohols
		2.7.6 Amines
		2.7.7 Levulinic acid
		2.7.8 Guaiacol
		2.7.9 Azoles
		2.7.10 Miscellaneous HBD
	2.8 CO2 absorption in aqueous solution of DELs
	2.9 CO2 absorption in ternary DELs
		2.9.1 Alkanolamines
		2.9.2 Superbases
		2.9.3 Hybrid
	2.10 Ammonium-Based DELs
		2.10.1 Carboxylic acids
	2.11 Phosphonium based DELs
	2.12 Azole based DELs
	2.13 Bio-phenol derived superbase based DELs
	2.14 Hydrophobic DELs
	2.15 Non-ionic DELs
	2.16 DEL supported membranes
	2.17 DELs with multiple sites interaction
	2.18 Conclusion and future prospects
	Acknowledgment
	References
Chapter 3 Cookstoves for biochar production and carbon capture
	3.1 Introduction
	3.2 Cookstoves designed for biochar production
		3.2.1 Top-lit updraft \(TLUD\) stove
		3.2.2 Development of TLUD-Akha architecture design
		3.2.3 Origins of TLUD-Biochar ^^e2^^80^^98Ecosystem^^e2^^80^^99
		3.2.4 Composition of biochar produced from biochar cookstoves
		3.2.5 Rural women in carbon capture
	3.3 Biochar production and climate-change implications
		3.3.1 Biochars and their applications for carbon capture and others
		3.3.2 Challenges of biochar cookstoves in rural developing countries
	3.4 Conclusion
	References
Chapter 4 Metal support interaction for electrochemical valorization of CO2
	4.1 Introduction
	4.2 Metal supports for ECR of CO2
		4.2.1 Carbon and graphene-based support systems
		4.2.2 Titanium nanotubes
		4.2.3 Foam electrode
		4.2.4 Mesoporous electrode
		4.2.5 Hydrogel and aerogel
		4.2.6 Gas diffusion electrode
	4.3 Conclusion
	Acknowledgment
	References
Chapter 5 Utilization of carbon dioxide as a building block in synthesis of active pharmaceutical ingredients
	5.1 Introduction
	5.2 NNucleophile-triggered CO2-incorporated carboxylation to form C^^e2^^80^^93N bonds
		5.2.1 Synthesis of carisoprodol
		5.2.2 Synthesis of felbamate
		5.2.3 Synthesis of furaltadone
		5.2.4 Synthesis of oxadiazon
		5.2.5 Synthesis of oxazolidinone
		5.2.6 Synthesis of toloxatone
		5.2.7 Synthesis of doxazosin, bunazosin, and prazosin
		5.2.8 Synthesis of zenarestat and KF-31327
		5.2.9 Synthesis of tipifarnib
		5.2.10 Synthesis of MAO-B inhibitor
		5.2.11 Synthesis of URB602
		5.2.12 Synthesis of alpha-alanine
	5.3 NNucleophile-triggered CO2-incorporated methylation to form C^^e2^^80^^93N bonds
		5.3.1 Synthesis of butenafine
		5.3.2 Synthesis of methylephedrine
		5.3.3 Synthesis of naftifine
	5.4 ONucleophile-triggered CO2-incorporated carboxylation to form C^^e2^^80^^93O bonds
		5.4.1 Synthesis of atorvastatin
	5.5 CO2-catalyzed oxidation of alcohols to form C^^e2^^80^^93O bonds
		5.5.1 Synthesis of DMU-212 and combretastatin A-4
	5.6 C-Nucleophile-triggered CO2-incorporated reductive carboxylation to form C^^e2^^80^^93C bonds
		5.6.1 Synthesis of methionine hydroxy analog
		5.6.2 Synthesis of naproxen
	5.7 C-nucleophile-triggered CO2-incorporated direct C^^e2^^80^^93H carboxylation to form C^^e2^^80^^93C bond
		5.7.1 Synthesis of aspirin
		5.7.2 Synthesis of 4-aminosalicylic acid
		5.7.3 Synthesis of diflunisal
		5.7.4 Synthesis of gentisic acid
	5.8 C-nucleophile-triggered CO2-incorporated organozinc-mediated carboxylation to form C^^e2^^80^^93C bonds
		5.8.1 Synthesis of tamoxifen
		5.8.2 Synthesis of \(E\)^^e2^^88^^923-Benzylidene-2-indolinone
		5.8.3 Synthesis of ibuprofen
	5.9 C-nucleophile-triggered CO2-incorporated organolithium-mediated carboxylation to form a C^^e2^^80^^93C bond
		5.9.1 Synthesis of repaglinide
		5.9.2 Synthesis of flurbiprofen
		5.9.3 Synthesis of epristeride
		5.9.4 Synthesis of mefloquine
		5.9.5 Synthesis of amitriptyline
		5.9.6 Synthesis of methantheline bromide
		5.9.7 Synthesis of garenoxacin
		5.9.8 Synthesis of englitazone
	5.10 C-Nucleophile-triggered CO2-incorporated organomagnesium-mediated carboxylation to form a C^^e2^^80^^93C bond
		5.10.1 Synthesis of enadoline
		5.10.2 Synthesis of loxoprofen
		5.10.3 Synthesis of lamotrigine
		5.10.4 Synthesis of felbinac
		5.10.5 Synthesis of spironolactone
		5.10.6 Synthesis of finafloxacin
	5.11 Conclusion
	References
CHAPTER 6 Electrochemical Carbon Dioxide Detection
	6.1 Introduction
	6.2 Capture technologies of CO2
		6.2.1 Adsorption
		6.2.2 Absorption
		6.2.3 Separation by membranes
		6.2.4 Chemical capture
		6.2.5 CO2 sensors
	6.3 Fundamentals of electrochemistry
		6.3.1 Voltammetry
		6.3.2 Potentiometric methods
	6.4 Direct potentiometric methods
		6.4.1 Potentiometric titrations
		6.4.2 Amperometric methods
		6.4.3 Conductometric methods
		6.4.4 Coulometric analysis methods
		6.4.5 Electrodes
		6.4.6 Reference electrode
		6.4.7 Auxiliary electrode
		6.4.8 Potentiometric electrodes
		6.4.9 Indicator electrodes
		6.4.10 Electrochemical gas sensors
		6.4.11 Potentiometric gas sensors
		6.4.12 Electrochemical applications
	6.5 Summary and conclusion
	References
Chapter 7 Carbon dioxide injection for enhanced oil recovery and underground storage to reduce greenhouse gas
	7.1 Introduction
		7.1.1 Global carbon management concerns
		7.1.2 CO2 availability
		7.1.3 Options available for CO2 storage
		7.1.4 Comparison of available storage methods
	7.2 Oil recovery using CO2
		7.2.1 Hydrocarbon miscibility
		7.2.2 CO2 miscible injection method
		7.2.3 Injection and storage facilities required
		7.2.4 Storage capacity calculations
		7.2.5 Impact on economics and tax incentives
	7.3 Underground storage of CO2 in unconventional reservoirs
	7.4 Current status, challenges and future directions
	7.5 Conclusions
	Acknowledgment
	References
Chapter 8 Ionic liquids as potential materials for carbon dioxide capture and utilization
	8.1 Introduction
	8.2 Types of ILs
		8.2.1 Conventional ionic liquids \(CILs\)
		8.2.2 Functionalized ionic liquids \(FILs\)
		8.2.3 Reversible ionic liquids \(RILs\)
		8.2.4 Polymeric ionic liquids \(PILs\)
		8.2.5 Supported ionic liquids \(SILs\)
		8.2.6 Magnetic ionic liquids \(MILs\)
		8.2.7 Task specific ionic liquids \(TSILs\)
		8.2.8 Multiphasic ionic liquids \(MILs\)
		8.2.9 Switchable polarity ionic liquids \(S-Polymeric ionic liquids\)
		8.2.10 Thermoregulated ionic liquids \(TRILs\)
		8.2.11 Ionic liquids gel
	8.3 Future applications of IL and GR-based IL
	8.4 Conclusion
	References
Chapter 9 Recent advances in carbon dioxide utilization as renewable energy
	9.1 Introduction
	9.2 CO2 utilization technologies
		9.2.1 Mineralization
		9.2.2 Beverage and food processing
		9.2.3 Biological utilization
		9.2.4 Oil recovery enhancement, coal bed methane and fracking of CO2
		9.2.5 Fuels and chemicals
		9.2.6 Principal and favorable utilization technologies
	9.3 Developments in worldwide CO2 utilization projects
		9.3.1 United states
		9.3.2 China
		9.3.3 Germany
		9.3.4 Australia
	9.4 Market scale and value
	9.5 Regulation and policy
	9.6 Conclusion and future prospects
	References
Chapter 10 Metal Organic Frameworks as an Efficient Method for Carbon dioxide capture
	10.1 Introduction
	10.2 Metal organic framework \(MOF\)
		10.2.1 Conventional synthesis route
		10.2.2 Microwave synthesis technique
		10.2.3 Sonochemical synthesis
		10.2.4 Mechanochemical synthesis
		10.2.5 Electrochemical synthesis
	10.3 Synthesis of some MOFS
	10.4 Properties of MOFs
		10.4.1 Chemical and thermal
		10.4.2 Mechanical
		10.4.3 Thermal conductivity
	10.5 CO2 capture using MOF
	10.6 Adsorption of carbon dioxide in metal organic frameworks
	10.7 Methods to enhance CO2 adsorption
	10.8 Methods to enhance MOF stability
		10.8.1 Chemical stabilities
		10.8.2 Thermal stabilities
		10.8.3 Mechanical stability
	10.9 Conclusion
	References
Chapter 11 Industrial carbon dioxide capture and utilization
	11.1 Introduction
		11.1.1 Commercial capturing processes of carbon dioxide gas
	11.2 CO2 collection systems based on liquid
		11.2.1 Amine-type liquid solvents for capturing CO2 gas
		11.2.2 Basic working principle of absorbents based on liquid amines
		11.2.3 Advances in amine-type liquid absorbent materials
		11.2.4 Mixtures of amine solvents
		11.2.5 Overview and prospects for liquid amine-based absorbents
	11.3 CO2 capturing with ionic liquid solvents
		11.3.1 Working principle of ionic liquid-based absorbents
		11.3.2 Advancement in ionic solvents
		11.3.3 Overview and prospects of ionic liquid-based solvents
	11.4 Applications, implementation and challenges
	11.5 Solid CO2 adsorbents for low-temperature applications
		11.5.1 Impact of impurities
		11.5.2 Solid amine-based adsorbents: introduction and future prospects
	11.6 Carbon adsorbents
		11.6.1 Tuning of carbon textural properties
		11.6.2 Carbon surfaces with chemical modification
		11.6.3 Carbon-based hybrid composites fabrication
	11.7 Zeolite adsorbents
		11.7.1 Adaptations through cation exchange
		11.7.2 Amine impregnation
		11.7.3 Fabrication of zeolite-based hybrid materials
		11.7.4 Overview and prospects for zeolite-based adsorbents
	11.8 Adsorbents of the MOF \(metal^^e2^^80^^93organic framework\) type
		11.8.1 Functional component integration
		11.8.2 Regulation of intrinsic properties
		11.8.3 Overview and prospects for MOF-based adsorbents
	11.9 Adsorbents predicated on carbonate-based alkalis
		11.9.1 Post-combustion applications, difficulties and implementation
		11.9.2 Solid CO2 adsorbents for intermediate temperature applications
	11.10 Layered double hydroxides \(LDHs\)-based adsorbents
		11.10.1 The influence of LDHs' chemical composition and manufacturing methods
	11.11 Adsorbents made of magnesium oxide \(MgO\)
		11.11.1 Mesoporous structure fabrication
		11.11.2 Transformation of molten salts
		11.11.3 Overview and prospects for MgO type adsorbent materials
	11.12 Solid CO2 sorbents for high-temperature applications
		11.12.1 Calcium oxide \(CaO\) sorbents
		11.12.2 Improvements in CO2 collecting efficiency
		11.12.3 Modifications in sintering-resistance
		11.12.4 CaO generated from discarded materials
		11.12.5 Granulation of powder
		11.12.6 Overview and future prospects for CaO adsorbents
	11.13 Pre-combustion applications, implementation and problems
	11.14 The utilisation of CO2 in industrial processes
		11.14.1 Conversion of CO2 to energy
		11.14.2 Thermochemical method for CO2 methanation
		11.14.3 The thermochemical method for dry CO2 and methane reforming
		11.14.4 RWGS \(reverse water-to-gas shift\) reaction thermo -- chemical methodology
		11.14.5 Methanol is produced by the thermochemical electrolysis of water of carbon dioxide
		11.14.6 hydrogenation of CO2 to hydrocarbons through a thermochemical process
		11.14.7 Carbon dioxide \(CO2\) photochemical conversion
		11.14.8 Photocatalytic CO2 reduction perspectives and prospects
		11.14.9 A sorting oxidant: CO2
	11.5 Conclusions and prospects
	References
Chapter 12 Ionic liquids for carbon capturing and storage
	12.1 Introduction
	12.2 CO2 capture technologies
	12.3 Ionic liquids \(ILs\)
	12.4 Features of ILs
	12.5 IL as absorbents for CO2 capture
		12.5.1 Conventional ionic liquids
		12.5.2 ILs based hybridized solvents
	12.6 IL hybrids as adsorbents for CO2 capture
	12.7 IL hybrids with membranes for CO2 capture
	12.8 Ionic liquid supported membrane
	12.9 Poly ILs membrane
	12.10 Composite membranes
	12.11 Conclusion and future insights
	References
Chapter 13 Advances in utilization of carbon-dioxide for food preservation and storage
	13.1 Introduction
	13.2 Utilization of carbon-dioxide in food preservation
		13.2.1 Beverage drink preservation
		13.2.2 Drying of vegetables and fruits
		13.2.3 Food preservation using dry ice
		13.2.4 Animal stunning procedure
		13.2.5 Tanning of animal skin
	13.3 Utilization of carbon-dioxide in food storage
		13.3.1 Control of storage microsphere
		13.3.2 Storage equipment disinfection
	13.4 Prospects and conclusion
	References
Chapter 14 An insight into the recent developments in membrane-based carbon dioxide capture and utilization
	14.1 Introduction
	14.2 Carbon dioxide capture technologies
	14.3 A brief about membrane technology
	14.4 CO2 separation using membranes
		14.4.1 Pre-combustion CO2 capture using membranes
		14.4.2 Oxy-fuel combustion CO2 capture using membranes
		14.4.3 Post-combustion CO2 capture using membranes
		14.4.4 Future considerations for membrane-based CO2 capture
	14.5 CO2 utilization using membranes
	14.6 Conclusions
	References
Chapter 15 Carbon dioxide to fuel using solar energy
	15.1 Introduction
	15.2 CO2 reduction onto semiconductor surface
	15.3 Major bottleneck for CO2 reduction
	15.4 Different types of photo catalyst
		15.4.1 Homogeneous photo-catalysts
		15.4.2 Cu based photo-catalysts
	15.5 Reduction of CO2 to methanol using Cu2O as photo catalyst
	15.6 Reduction of CO2 to methanol using Cu2O as electro catalyst
		15.6.1 Reduced graphene-oxide, Cu2O and amine compounds composite photo catalysts for CO2 reduction
	15.7 Benefits of using RGOin the composite catalyst
	15.8 Conclusions
	Acknowledgment
	References
Chapter 16 Adsorbents for carbon capture
	16.1 Introduction
	16.2 Carbon capture processes
		16.2.1 Pre-combustion carbon capture
		16.2.2 Post-combustion carbon capture
	16.3 Adsorbents for CO2 capture
		16.3.1 Materials derived from biomass
		16.3.2 Clays
		16.3.3 Zeolites
		16.3.4 Metal-organic frameworks \(MOFs\)
		16.3.5 Covalent-organic frameworks \(COFs\)
	16.4 Future perspective and conclusion
	References
Chapter 17 Carbon dioxide capture and utilization in ionic liquids
	17.1 Introduction
	17.2 Capture of CO2 in ILs
		17.2.1 Conventional ionic liquids
		17.2.2 CO2 capture by functionalized ionic liquids
		17.2.3 Capture CO2 by metal coordination-based \(chelate-based\) ionic liquids
		17.2.4 CO2 capture by ILs based mixtures
		17.2.5 Polyionic liquid membranes
		17.2.6 CO2 captures by supported ionic liquid membranes
	17.3 Electroreduction of CO2 in ILs
		17.3.1 Electrochemical reduction of CO2 to CO
		17.3.2 Electrochemical reduction of CO2 to HCOOH
		17.3.3 Electroreduction of CO2 to CH3OH
		17.3.4 Electrochemical reduction of CO2 to cyclic carbonate
		17.3.5 Electrochemical reduction of CO2 to ketone compounds
		17.3.6 Electroreduction of CO2 to urea
		17.3.7 Electroreduction of CO2 to carbamate
		17.3.8 Electroreduction of CO2 to amides and methylamines
		17.3.9 Electrochemical reduction of CO2 to other compounds
	17.4 Conclusions
	Acknowledgments
	References
Chapter 18 Hydrothermal carbonization of sewage sludge for carbon negative energy production
	18.1 Introduction
	18.2 Sludge as a potential source of alternate energy
	18.3 Hydrothermal \(HT\) treatments for the production of fuel
		18.3.1 Thermal hydrolysis
		18.3.2 Hydrothermal carbonization
		18.3.3 Hydrothermal liquefaction
		18.3.4 Hydrothermal gasification \(HTG\)
	18.4 Hydrothermal carbonization^^c2^^a0+^^c2^^a0gasification^^c2^^a0+^^c2^^a0ccs
	18.5 Conclusion
	Acknowledgement
	References
Chapter 19 Utilization of supercritical CO2 for drying and production of starch and cellulose aerogels
	19.1 Introduction
	19.2 CO2 application -- Supercritical drying
		19.2.1 How does supercritical drying work?
	19.3 Starch aerogel and CO2 utilization
		19.3.1 Starch specific aerogels
		19.3.2 Hybrid starch aerogels
		19.3.3 Mechanical properties of starch aerogels
		19.3.4 Topology and morphology of starch aerogels
	19.4 Cellulose aerogels and CO2 utilization
		19.4.1 Cellulose specific aerogels
		19.4.2 Cellulose aerogels as thermal insulators
		19.4.3 Hybrid cellulose aerogels
	19.5 Conclusions
	Author contributions
	Ethical approval
	Declaration of competing interest
	Acknowledgment
	References
Chapter 20 Advances in carbon bio-sequestration
	20.1 Introduction
	20.2 Carbon sequestration methods
	20.3 Limitations of carbon sequestration methods
	20.4 Overview of biological sequestration \(Cycle/Mechanism\)
	20.5 Bioresources for carbon bio-sequestration
	20.6 Cyanobacteria
	20.7 Microalgae
	20.8 Plants
	20.9 Bacteria
	20.10 Nanomaterials in carbon sequestration
	20.11 Future perspectives
	20.12 Conclusion
	References
Chapter 21 Photosynthetic cell factories, a new paradigm for carbon dioxide \(CO2\) valorization
	21.1 Introduction
	21.2 Carbon capture, utilization and storage mechanism
		21.2.1 Pre-combustion capture
		21.2.2 Post-combustion capture
		21.2.3 Oxy-fuel combustion
		21.2.4 Carbon capture by microalgae
	21.3 Biological mechanism of carbon capture
	21.4 Products from CCU
	21.5 Challenges and opportunities
		21.5.1 Pre-Combustion technology
		21.5.2 Post-Combustion capture
		21.5.3 Oxy-fuel combustion
		21.5.4 Bio-carbon capture by microalgae
	21.6 Future perspectives and conclusions
	Funding information
	References
Chapter 22 Carbon dioxide capture and sequestration technologies ^^e2^^80^^93 current perspective, challenges and prospects
	22.1 Introduction
	22.2 Carbon capture and sequestration \(CCS\) technologies
		22.2.1 Carbon capture strategies
		22.2.2 Carbon capture technologies
	22.3 CO2 transportation, storage and opportunities/applications for CCS technologies
		22.3.1 Transportation
		22.3.2 Carbon storage
	22.4 Current perspective and policies of CSS technologies in various countries throughout the world
		22.4.1 Review of CCS policies
		22.4.2 Artificial intelligence \(AI\) applications in carbon capture
	22.5 Challenges and socio-economic implications of CCS technologies
		22.5.1 Post-combustion capture challenges
		22.5.2 Geologic storage challenges
		22.5.3 Gasification challenges
		22.5.4 Environmental impact of CCS technologies
		22.5.5 Socio-economic impact of CCS technologies
	22.6 Applications and opportunities for CCS techniques
		22.6.1 Electricity power generation
		22.6.2 Industrial application
		22.6.3 Application of CCS techniques in CO2 capture from exhaust gases capture
		22.6.4 Application of CCS techniques in CO2 capture from natural gas
	22.7 Prospects and future work considerations for CCS approaches
	22.8 Conclusion
	References
Chapter 23 Microbial carbon dioxide fixation for the production of biopolymers
	23.1 Introduction
	23.2 Sources of CO2 emission
	23.3 Sequestration methods of CO2
	23.4 Carbon concentrating mechanisms
	23.5 Advancements in carbon capture and storage & carbon capture utilization
	23.6 Carbon dioxide fixation pathways
		23.6.1 Calvin cycle
		23.6.2 Reductive TCA cycle
		23.6.3 Wood-Ljungdahl pathway
		23.6.4 Dicarboxylate^^e2^^80^^914-hydroxybutyrate cycle
		23.6.5 Malyl Co-A/3-hydroxypropionate pathway \(3-hydroxypropionate bicycle\)
		23.6.6 Hydroxy propionate-hydroxybutyrate cycle
	23.7 Factors affecting the carbon dioxide biofixation
	23.8 Production of biopolymers/bioplastics
	23.9 Conclusion
	References
Chapter 24 Carbon dioxide capture and its enhanced utilization using microalgae
	24.1 Introduction
	24.2 Photosynthesis and CO2 fixation using microalgae
		24.2.1 Photosynthesis
		24.2.2 CO2 fixation
	24.3 Cultivation systems for carbon dioxide capture by microalgae
		24.3.1 Physico-chemical properties and carbon dioxide sources
		24.3.2 CO2 capture prospects for microalgae cultivation
		24.3.3 The impact of cultivation methods on biomass production
		24.3.4 Microalgae culture system for CO2 capture
	24.4 CO2 capture improvement strategies
		24.4.1 CO2 capture can be improved by genetic engineering and metabolic changes
	24.5 Conclusion
	References
Chapter 25 Supported single-atom catalysts in carbon dioxide electrochemical activation and reduction
	25.1 Introduction
	25.2 CO2ERR products
	25.3 Single-Atom catalysts efficiency descriptors
	25.4 Single-Atom catalyst supports
		25.4.1 Two-dimensional \(2D\) metal oxides
		25.4.2 Two-dimensional \(2D\) metal chalcogenides
		25.4.3 Metal carbides, nitrides \(MXenes\)
		25.4.4 Metal-Organic frameworks
	25.5 Mechanisms for CO2ERR on single-atom catalysts
	25.6 Conclusion
	References
Chapter 26 Organic matter and mineralogical acumens in CO2 sequestration
	Abbreviations
	26.1 Overview
	26.2 Introduction
	26.3 Geo-sequestration
	26.4 Bio-sequestration
	26.5 Mechanisms of carbon capture
		26.5.1 Pre-combustion
		26.5.2 Post-combustion
		26.5.3 Oxyfuel combustion
	26.6 Transport of carbon dioxide
	26.7 Mechanism of carbon accommodation
	26.8 Carbon dioxide sequestration in organic matter
		26.8.1 Carbon dioxide sequestration in coal
		26.8.2 Carbon dioxide sequestration in shale
	26.9 Mineralogical acumen of carbon sequestration
		26.9.1 An overview
		26.9.2 Clay minerals
		26.9.3 Swelling properties of clay minerals
		26.9.4 Carbon protection capacity of clay minerals
		26.9.5 Methods of organic carbon protection by clays
		26.9.6 Adsorption of carbon dioxide on clays
		26.9.7 Supercritical carbon dioxide sequestration in clays: an additional chronicle
		26.9.8 Adverse influences of carbon dioxide sequestration in clays
	26.10 A note on CO2 disposal in basalt formations
	26.11 Summary
	References
Index




نظرات کاربران