دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Inamuddin I., Altalhi T. (ed.) سری: ISBN (شابک) : 9780323994293 ناشر: Elsevier سال نشر: 2023 تعداد صفحات: 615 [616] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Green Sustainable Process for Chemical and Environmental Engineering and Science: Carbon Dioxide Capture and Utilization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علوم: جذب و استفاده از دی اکسید کربن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علم: جذب و استفاده از دی اکسید کربن فناوری های پیشرفته مبتنی بر استفاده از CO2 را بررسی می کند. این کتاب مروری بر تبدیل و استفاده از CO2، تکنیکهای استخراج، کاتالیز ناهمگن، حلال سبز، رویکردهای صنعتی و محصولات کالایی از طریق فرآیندهای انرژیبر ارائه میدهد. علاوه بر این، ارزیابی چرخه حیات و استراتژی های بیولوژیکی و مهندسی برای استفاده از CO2 را برجسته می کند. هر فصل چالشهایی را در فرآیندها و دیدگاههای آینده برای استفاده از تبدیل و استفاده CO2 ارائه میکند.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Carbon Dioxide Capture and Utilization explores advanced technologies based on CO2 utilization. The book provides an overview on the conversion and utilization of CO2, extraction techniques, heterogeneous catalysis, green solvent, industrial approaches, and commodity products through energy-intensive processes. In addition, it highlights lifecycle assessment and biological and engineering strategies for CO2 utilization. Each chapter presents challenges in the processes and future perspectives for the application of CO2 conversion and utilization.
Cover Half title Title Copyright Contents Contributors Chapter 1 Carbon dioxide capture and its utilization towards efficient biofuels production 1.1 Introduction 1.2 Utilization of captured carbon dioxide for biofuel production 1.2.1 Photosynthesis and photo oxidation of water 1.2.2 Bio-sequestration of CO2 1.3 Conclusion and future perspectives References Chapter 2 Deep eutectic liquids for carbon capturing and fixation 2.1 Carbon dioxide emissions 2.2 Deep eutectic liquids 2.3 Types of deep eutectic liquids 2.4 Preparation of DELs 2.5 Authentication of DELs 2.6 DEL based CO2 absorption 2.7 Carbon capture efficiency of various HBDs 2.7.1 Urea 2.7.2 Glycerol 2.7.3 Glycerol^^c2^^a0 + ^^c2^^a0L-arginine 2.7.4 Natural organic acids 2.7.5 Dihydric alcohols 2.7.6 Amines 2.7.7 Levulinic acid 2.7.8 Guaiacol 2.7.9 Azoles 2.7.10 Miscellaneous HBD 2.8 CO2 absorption in aqueous solution of DELs 2.9 CO2 absorption in ternary DELs 2.9.1 Alkanolamines 2.9.2 Superbases 2.9.3 Hybrid 2.10 Ammonium-Based DELs 2.10.1 Carboxylic acids 2.11 Phosphonium based DELs 2.12 Azole based DELs 2.13 Bio-phenol derived superbase based DELs 2.14 Hydrophobic DELs 2.15 Non-ionic DELs 2.16 DEL supported membranes 2.17 DELs with multiple sites interaction 2.18 Conclusion and future prospects Acknowledgment References Chapter 3 Cookstoves for biochar production and carbon capture 3.1 Introduction 3.2 Cookstoves designed for biochar production 3.2.1 Top-lit updraft \(TLUD\) stove 3.2.2 Development of TLUD-Akha architecture design 3.2.3 Origins of TLUD-Biochar ^^e2^^80^^98Ecosystem^^e2^^80^^99 3.2.4 Composition of biochar produced from biochar cookstoves 3.2.5 Rural women in carbon capture 3.3 Biochar production and climate-change implications 3.3.1 Biochars and their applications for carbon capture and others 3.3.2 Challenges of biochar cookstoves in rural developing countries 3.4 Conclusion References Chapter 4 Metal support interaction for electrochemical valorization of CO2 4.1 Introduction 4.2 Metal supports for ECR of CO2 4.2.1 Carbon and graphene-based support systems 4.2.2 Titanium nanotubes 4.2.3 Foam electrode 4.2.4 Mesoporous electrode 4.2.5 Hydrogel and aerogel 4.2.6 Gas diffusion electrode 4.3 Conclusion Acknowledgment References Chapter 5 Utilization of carbon dioxide as a building block in synthesis of active pharmaceutical ingredients 5.1 Introduction 5.2 NNucleophile-triggered CO2-incorporated carboxylation to form C^^e2^^80^^93N bonds 5.2.1 Synthesis of carisoprodol 5.2.2 Synthesis of felbamate 5.2.3 Synthesis of furaltadone 5.2.4 Synthesis of oxadiazon 5.2.5 Synthesis of oxazolidinone 5.2.6 Synthesis of toloxatone 5.2.7 Synthesis of doxazosin, bunazosin, and prazosin 5.2.8 Synthesis of zenarestat and KF-31327 5.2.9 Synthesis of tipifarnib 5.2.10 Synthesis of MAO-B inhibitor 5.2.11 Synthesis of URB602 5.2.12 Synthesis of alpha-alanine 5.3 NNucleophile-triggered CO2-incorporated methylation to form C^^e2^^80^^93N bonds 5.3.1 Synthesis of butenafine 5.3.2 Synthesis of methylephedrine 5.3.3 Synthesis of naftifine 5.4 ONucleophile-triggered CO2-incorporated carboxylation to form C^^e2^^80^^93O bonds 5.4.1 Synthesis of atorvastatin 5.5 CO2-catalyzed oxidation of alcohols to form C^^e2^^80^^93O bonds 5.5.1 Synthesis of DMU-212 and combretastatin A-4 5.6 C-Nucleophile-triggered CO2-incorporated reductive carboxylation to form C^^e2^^80^^93C bonds 5.6.1 Synthesis of methionine hydroxy analog 5.6.2 Synthesis of naproxen 5.7 C-nucleophile-triggered CO2-incorporated direct C^^e2^^80^^93H carboxylation to form C^^e2^^80^^93C bond 5.7.1 Synthesis of aspirin 5.7.2 Synthesis of 4-aminosalicylic acid 5.7.3 Synthesis of diflunisal 5.7.4 Synthesis of gentisic acid 5.8 C-nucleophile-triggered CO2-incorporated organozinc-mediated carboxylation to form C^^e2^^80^^93C bonds 5.8.1 Synthesis of tamoxifen 5.8.2 Synthesis of \(E\)^^e2^^88^^923-Benzylidene-2-indolinone 5.8.3 Synthesis of ibuprofen 5.9 C-nucleophile-triggered CO2-incorporated organolithium-mediated carboxylation to form a C^^e2^^80^^93C bond 5.9.1 Synthesis of repaglinide 5.9.2 Synthesis of flurbiprofen 5.9.3 Synthesis of epristeride 5.9.4 Synthesis of mefloquine 5.9.5 Synthesis of amitriptyline 5.9.6 Synthesis of methantheline bromide 5.9.7 Synthesis of garenoxacin 5.9.8 Synthesis of englitazone 5.10 C-Nucleophile-triggered CO2-incorporated organomagnesium-mediated carboxylation to form a C^^e2^^80^^93C bond 5.10.1 Synthesis of enadoline 5.10.2 Synthesis of loxoprofen 5.10.3 Synthesis of lamotrigine 5.10.4 Synthesis of felbinac 5.10.5 Synthesis of spironolactone 5.10.6 Synthesis of finafloxacin 5.11 Conclusion References CHAPTER 6 Electrochemical Carbon Dioxide Detection 6.1 Introduction 6.2 Capture technologies of CO2 6.2.1 Adsorption 6.2.2 Absorption 6.2.3 Separation by membranes 6.2.4 Chemical capture 6.2.5 CO2 sensors 6.3 Fundamentals of electrochemistry 6.3.1 Voltammetry 6.3.2 Potentiometric methods 6.4 Direct potentiometric methods 6.4.1 Potentiometric titrations 6.4.2 Amperometric methods 6.4.3 Conductometric methods 6.4.4 Coulometric analysis methods 6.4.5 Electrodes 6.4.6 Reference electrode 6.4.7 Auxiliary electrode 6.4.8 Potentiometric electrodes 6.4.9 Indicator electrodes 6.4.10 Electrochemical gas sensors 6.4.11 Potentiometric gas sensors 6.4.12 Electrochemical applications 6.5 Summary and conclusion References Chapter 7 Carbon dioxide injection for enhanced oil recovery and underground storage to reduce greenhouse gas 7.1 Introduction 7.1.1 Global carbon management concerns 7.1.2 CO2 availability 7.1.3 Options available for CO2 storage 7.1.4 Comparison of available storage methods 7.2 Oil recovery using CO2 7.2.1 Hydrocarbon miscibility 7.2.2 CO2 miscible injection method 7.2.3 Injection and storage facilities required 7.2.4 Storage capacity calculations 7.2.5 Impact on economics and tax incentives 7.3 Underground storage of CO2 in unconventional reservoirs 7.4 Current status, challenges and future directions 7.5 Conclusions Acknowledgment References Chapter 8 Ionic liquids as potential materials for carbon dioxide capture and utilization 8.1 Introduction 8.2 Types of ILs 8.2.1 Conventional ionic liquids \(CILs\) 8.2.2 Functionalized ionic liquids \(FILs\) 8.2.3 Reversible ionic liquids \(RILs\) 8.2.4 Polymeric ionic liquids \(PILs\) 8.2.5 Supported ionic liquids \(SILs\) 8.2.6 Magnetic ionic liquids \(MILs\) 8.2.7 Task specific ionic liquids \(TSILs\) 8.2.8 Multiphasic ionic liquids \(MILs\) 8.2.9 Switchable polarity ionic liquids \(S-Polymeric ionic liquids\) 8.2.10 Thermoregulated ionic liquids \(TRILs\) 8.2.11 Ionic liquids gel 8.3 Future applications of IL and GR-based IL 8.4 Conclusion References Chapter 9 Recent advances in carbon dioxide utilization as renewable energy 9.1 Introduction 9.2 CO2 utilization technologies 9.2.1 Mineralization 9.2.2 Beverage and food processing 9.2.3 Biological utilization 9.2.4 Oil recovery enhancement, coal bed methane and fracking of CO2 9.2.5 Fuels and chemicals 9.2.6 Principal and favorable utilization technologies 9.3 Developments in worldwide CO2 utilization projects 9.3.1 United states 9.3.2 China 9.3.3 Germany 9.3.4 Australia 9.4 Market scale and value 9.5 Regulation and policy 9.6 Conclusion and future prospects References Chapter 10 Metal Organic Frameworks as an Efficient Method for Carbon dioxide capture 10.1 Introduction 10.2 Metal organic framework \(MOF\) 10.2.1 Conventional synthesis route 10.2.2 Microwave synthesis technique 10.2.3 Sonochemical synthesis 10.2.4 Mechanochemical synthesis 10.2.5 Electrochemical synthesis 10.3 Synthesis of some MOFS 10.4 Properties of MOFs 10.4.1 Chemical and thermal 10.4.2 Mechanical 10.4.3 Thermal conductivity 10.5 CO2 capture using MOF 10.6 Adsorption of carbon dioxide in metal organic frameworks 10.7 Methods to enhance CO2 adsorption 10.8 Methods to enhance MOF stability 10.8.1 Chemical stabilities 10.8.2 Thermal stabilities 10.8.3 Mechanical stability 10.9 Conclusion References Chapter 11 Industrial carbon dioxide capture and utilization 11.1 Introduction 11.1.1 Commercial capturing processes of carbon dioxide gas 11.2 CO2 collection systems based on liquid 11.2.1 Amine-type liquid solvents for capturing CO2 gas 11.2.2 Basic working principle of absorbents based on liquid amines 11.2.3 Advances in amine-type liquid absorbent materials 11.2.4 Mixtures of amine solvents 11.2.5 Overview and prospects for liquid amine-based absorbents 11.3 CO2 capturing with ionic liquid solvents 11.3.1 Working principle of ionic liquid-based absorbents 11.3.2 Advancement in ionic solvents 11.3.3 Overview and prospects of ionic liquid-based solvents 11.4 Applications, implementation and challenges 11.5 Solid CO2 adsorbents for low-temperature applications 11.5.1 Impact of impurities 11.5.2 Solid amine-based adsorbents: introduction and future prospects 11.6 Carbon adsorbents 11.6.1 Tuning of carbon textural properties 11.6.2 Carbon surfaces with chemical modification 11.6.3 Carbon-based hybrid composites fabrication 11.7 Zeolite adsorbents 11.7.1 Adaptations through cation exchange 11.7.2 Amine impregnation 11.7.3 Fabrication of zeolite-based hybrid materials 11.7.4 Overview and prospects for zeolite-based adsorbents 11.8 Adsorbents of the MOF \(metal^^e2^^80^^93organic framework\) type 11.8.1 Functional component integration 11.8.2 Regulation of intrinsic properties 11.8.3 Overview and prospects for MOF-based adsorbents 11.9 Adsorbents predicated on carbonate-based alkalis 11.9.1 Post-combustion applications, difficulties and implementation 11.9.2 Solid CO2 adsorbents for intermediate temperature applications 11.10 Layered double hydroxides \(LDHs\)-based adsorbents 11.10.1 The influence of LDHs' chemical composition and manufacturing methods 11.11 Adsorbents made of magnesium oxide \(MgO\) 11.11.1 Mesoporous structure fabrication 11.11.2 Transformation of molten salts 11.11.3 Overview and prospects for MgO type adsorbent materials 11.12 Solid CO2 sorbents for high-temperature applications 11.12.1 Calcium oxide \(CaO\) sorbents 11.12.2 Improvements in CO2 collecting efficiency 11.12.3 Modifications in sintering-resistance 11.12.4 CaO generated from discarded materials 11.12.5 Granulation of powder 11.12.6 Overview and future prospects for CaO adsorbents 11.13 Pre-combustion applications, implementation and problems 11.14 The utilisation of CO2 in industrial processes 11.14.1 Conversion of CO2 to energy 11.14.2 Thermochemical method for CO2 methanation 11.14.3 The thermochemical method for dry CO2 and methane reforming 11.14.4 RWGS \(reverse water-to-gas shift\) reaction thermo -- chemical methodology 11.14.5 Methanol is produced by the thermochemical electrolysis of water of carbon dioxide 11.14.6 hydrogenation of CO2 to hydrocarbons through a thermochemical process 11.14.7 Carbon dioxide \(CO2\) photochemical conversion 11.14.8 Photocatalytic CO2 reduction perspectives and prospects 11.14.9 A sorting oxidant: CO2 11.5 Conclusions and prospects References Chapter 12 Ionic liquids for carbon capturing and storage 12.1 Introduction 12.2 CO2 capture technologies 12.3 Ionic liquids \(ILs\) 12.4 Features of ILs 12.5 IL as absorbents for CO2 capture 12.5.1 Conventional ionic liquids 12.5.2 ILs based hybridized solvents 12.6 IL hybrids as adsorbents for CO2 capture 12.7 IL hybrids with membranes for CO2 capture 12.8 Ionic liquid supported membrane 12.9 Poly ILs membrane 12.10 Composite membranes 12.11 Conclusion and future insights References Chapter 13 Advances in utilization of carbon-dioxide for food preservation and storage 13.1 Introduction 13.2 Utilization of carbon-dioxide in food preservation 13.2.1 Beverage drink preservation 13.2.2 Drying of vegetables and fruits 13.2.3 Food preservation using dry ice 13.2.4 Animal stunning procedure 13.2.5 Tanning of animal skin 13.3 Utilization of carbon-dioxide in food storage 13.3.1 Control of storage microsphere 13.3.2 Storage equipment disinfection 13.4 Prospects and conclusion References Chapter 14 An insight into the recent developments in membrane-based carbon dioxide capture and utilization 14.1 Introduction 14.2 Carbon dioxide capture technologies 14.3 A brief about membrane technology 14.4 CO2 separation using membranes 14.4.1 Pre-combustion CO2 capture using membranes 14.4.2 Oxy-fuel combustion CO2 capture using membranes 14.4.3 Post-combustion CO2 capture using membranes 14.4.4 Future considerations for membrane-based CO2 capture 14.5 CO2 utilization using membranes 14.6 Conclusions References Chapter 15 Carbon dioxide to fuel using solar energy 15.1 Introduction 15.2 CO2 reduction onto semiconductor surface 15.3 Major bottleneck for CO2 reduction 15.4 Different types of photo catalyst 15.4.1 Homogeneous photo-catalysts 15.4.2 Cu based photo-catalysts 15.5 Reduction of CO2 to methanol using Cu2O as photo catalyst 15.6 Reduction of CO2 to methanol using Cu2O as electro catalyst 15.6.1 Reduced graphene-oxide, Cu2O and amine compounds composite photo catalysts for CO2 reduction 15.7 Benefits of using RGOin the composite catalyst 15.8 Conclusions Acknowledgment References Chapter 16 Adsorbents for carbon capture 16.1 Introduction 16.2 Carbon capture processes 16.2.1 Pre-combustion carbon capture 16.2.2 Post-combustion carbon capture 16.3 Adsorbents for CO2 capture 16.3.1 Materials derived from biomass 16.3.2 Clays 16.3.3 Zeolites 16.3.4 Metal-organic frameworks \(MOFs\) 16.3.5 Covalent-organic frameworks \(COFs\) 16.4 Future perspective and conclusion References Chapter 17 Carbon dioxide capture and utilization in ionic liquids 17.1 Introduction 17.2 Capture of CO2 in ILs 17.2.1 Conventional ionic liquids 17.2.2 CO2 capture by functionalized ionic liquids 17.2.3 Capture CO2 by metal coordination-based \(chelate-based\) ionic liquids 17.2.4 CO2 capture by ILs based mixtures 17.2.5 Polyionic liquid membranes 17.2.6 CO2 captures by supported ionic liquid membranes 17.3 Electroreduction of CO2 in ILs 17.3.1 Electrochemical reduction of CO2 to CO 17.3.2 Electrochemical reduction of CO2 to HCOOH 17.3.3 Electroreduction of CO2 to CH3OH 17.3.4 Electrochemical reduction of CO2 to cyclic carbonate 17.3.5 Electrochemical reduction of CO2 to ketone compounds 17.3.6 Electroreduction of CO2 to urea 17.3.7 Electroreduction of CO2 to carbamate 17.3.8 Electroreduction of CO2 to amides and methylamines 17.3.9 Electrochemical reduction of CO2 to other compounds 17.4 Conclusions Acknowledgments References Chapter 18 Hydrothermal carbonization of sewage sludge for carbon negative energy production 18.1 Introduction 18.2 Sludge as a potential source of alternate energy 18.3 Hydrothermal \(HT\) treatments for the production of fuel 18.3.1 Thermal hydrolysis 18.3.2 Hydrothermal carbonization 18.3.3 Hydrothermal liquefaction 18.3.4 Hydrothermal gasification \(HTG\) 18.4 Hydrothermal carbonization^^c2^^a0+^^c2^^a0gasification^^c2^^a0+^^c2^^a0ccs 18.5 Conclusion Acknowledgement References Chapter 19 Utilization of supercritical CO2 for drying and production of starch and cellulose aerogels 19.1 Introduction 19.2 CO2 application -- Supercritical drying 19.2.1 How does supercritical drying work? 19.3 Starch aerogel and CO2 utilization 19.3.1 Starch specific aerogels 19.3.2 Hybrid starch aerogels 19.3.3 Mechanical properties of starch aerogels 19.3.4 Topology and morphology of starch aerogels 19.4 Cellulose aerogels and CO2 utilization 19.4.1 Cellulose specific aerogels 19.4.2 Cellulose aerogels as thermal insulators 19.4.3 Hybrid cellulose aerogels 19.5 Conclusions Author contributions Ethical approval Declaration of competing interest Acknowledgment References Chapter 20 Advances in carbon bio-sequestration 20.1 Introduction 20.2 Carbon sequestration methods 20.3 Limitations of carbon sequestration methods 20.4 Overview of biological sequestration \(Cycle/Mechanism\) 20.5 Bioresources for carbon bio-sequestration 20.6 Cyanobacteria 20.7 Microalgae 20.8 Plants 20.9 Bacteria 20.10 Nanomaterials in carbon sequestration 20.11 Future perspectives 20.12 Conclusion References Chapter 21 Photosynthetic cell factories, a new paradigm for carbon dioxide \(CO2\) valorization 21.1 Introduction 21.2 Carbon capture, utilization and storage mechanism 21.2.1 Pre-combustion capture 21.2.2 Post-combustion capture 21.2.3 Oxy-fuel combustion 21.2.4 Carbon capture by microalgae 21.3 Biological mechanism of carbon capture 21.4 Products from CCU 21.5 Challenges and opportunities 21.5.1 Pre-Combustion technology 21.5.2 Post-Combustion capture 21.5.3 Oxy-fuel combustion 21.5.4 Bio-carbon capture by microalgae 21.6 Future perspectives and conclusions Funding information References Chapter 22 Carbon dioxide capture and sequestration technologies ^^e2^^80^^93 current perspective, challenges and prospects 22.1 Introduction 22.2 Carbon capture and sequestration \(CCS\) technologies 22.2.1 Carbon capture strategies 22.2.2 Carbon capture technologies 22.3 CO2 transportation, storage and opportunities/applications for CCS technologies 22.3.1 Transportation 22.3.2 Carbon storage 22.4 Current perspective and policies of CSS technologies in various countries throughout the world 22.4.1 Review of CCS policies 22.4.2 Artificial intelligence \(AI\) applications in carbon capture 22.5 Challenges and socio-economic implications of CCS technologies 22.5.1 Post-combustion capture challenges 22.5.2 Geologic storage challenges 22.5.3 Gasification challenges 22.5.4 Environmental impact of CCS technologies 22.5.5 Socio-economic impact of CCS technologies 22.6 Applications and opportunities for CCS techniques 22.6.1 Electricity power generation 22.6.2 Industrial application 22.6.3 Application of CCS techniques in CO2 capture from exhaust gases capture 22.6.4 Application of CCS techniques in CO2 capture from natural gas 22.7 Prospects and future work considerations for CCS approaches 22.8 Conclusion References Chapter 23 Microbial carbon dioxide fixation for the production of biopolymers 23.1 Introduction 23.2 Sources of CO2 emission 23.3 Sequestration methods of CO2 23.4 Carbon concentrating mechanisms 23.5 Advancements in carbon capture and storage & carbon capture utilization 23.6 Carbon dioxide fixation pathways 23.6.1 Calvin cycle 23.6.2 Reductive TCA cycle 23.6.3 Wood-Ljungdahl pathway 23.6.4 Dicarboxylate^^e2^^80^^914-hydroxybutyrate cycle 23.6.5 Malyl Co-A/3-hydroxypropionate pathway \(3-hydroxypropionate bicycle\) 23.6.6 Hydroxy propionate-hydroxybutyrate cycle 23.7 Factors affecting the carbon dioxide biofixation 23.8 Production of biopolymers/bioplastics 23.9 Conclusion References Chapter 24 Carbon dioxide capture and its enhanced utilization using microalgae 24.1 Introduction 24.2 Photosynthesis and CO2 fixation using microalgae 24.2.1 Photosynthesis 24.2.2 CO2 fixation 24.3 Cultivation systems for carbon dioxide capture by microalgae 24.3.1 Physico-chemical properties and carbon dioxide sources 24.3.2 CO2 capture prospects for microalgae cultivation 24.3.3 The impact of cultivation methods on biomass production 24.3.4 Microalgae culture system for CO2 capture 24.4 CO2 capture improvement strategies 24.4.1 CO2 capture can be improved by genetic engineering and metabolic changes 24.5 Conclusion References Chapter 25 Supported single-atom catalysts in carbon dioxide electrochemical activation and reduction 25.1 Introduction 25.2 CO2ERR products 25.3 Single-Atom catalysts efficiency descriptors 25.4 Single-Atom catalyst supports 25.4.1 Two-dimensional \(2D\) metal oxides 25.4.2 Two-dimensional \(2D\) metal chalcogenides 25.4.3 Metal carbides, nitrides \(MXenes\) 25.4.4 Metal-Organic frameworks 25.5 Mechanisms for CO2ERR on single-atom catalysts 25.6 Conclusion References Chapter 26 Organic matter and mineralogical acumens in CO2 sequestration Abbreviations 26.1 Overview 26.2 Introduction 26.3 Geo-sequestration 26.4 Bio-sequestration 26.5 Mechanisms of carbon capture 26.5.1 Pre-combustion 26.5.2 Post-combustion 26.5.3 Oxyfuel combustion 26.6 Transport of carbon dioxide 26.7 Mechanism of carbon accommodation 26.8 Carbon dioxide sequestration in organic matter 26.8.1 Carbon dioxide sequestration in coal 26.8.2 Carbon dioxide sequestration in shale 26.9 Mineralogical acumen of carbon sequestration 26.9.1 An overview 26.9.2 Clay minerals 26.9.3 Swelling properties of clay minerals 26.9.4 Carbon protection capacity of clay minerals 26.9.5 Methods of organic carbon protection by clays 26.9.6 Adsorption of carbon dioxide on clays 26.9.7 Supercritical carbon dioxide sequestration in clays: an additional chronicle 26.9.8 Adverse influences of carbon dioxide sequestration in clays 26.10 A note on CO2 disposal in basalt formations 26.11 Summary References Index