ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Solvents and Extraction Technology

دانلود کتاب فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علوم: حلال‌های سبز و فناوری استخراج

Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Solvents and Extraction Technology

مشخصات کتاب

Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Solvents and Extraction Technology

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9780323951562 
ناشر: Elsevier 
سال نشر: 2023 
تعداد صفحات: 470
[471] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 Mb 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Solvents and Extraction Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علوم: حلال‌های سبز و فناوری استخراج نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علوم: حلال‌های سبز و فناوری استخراج

فرآیند پایدار سبز برای مهندسی شیمی و محیط زیست و علم: حلال‌های سبز و فناوری استخراج اطلاعاتی در مورد استفاده از حلال‌های سبز ارائه می‌دهد و انواع حلال‌های سبز را همراه با کاربردها در سنتز داروهای دارویی، تبدیل انرژی، و ذخیره‌سازی، کاتالیزور، بیودیزل مورد بحث قرار می‌دهد. سنتز، واکنش‌های چند جزئی، ارزش‌گذاری زباله، و غیره. این کتاب شامل فصل‌های مقدماتی مرتبط با کاربرد حلال‌های سبز برای توسعه‌های پایدار، روندهای تحقیقاتی، توسعه فنی، مسائل زیست‌محیطی و نگرانی‌های مرتبط است. استفاده از فناوری استخراج برای توسعه پایدار، از جمله استخراج نانوسلولز از ضایعات کشاورزی، استخراج پلی ساکاریدها، استخراج فنولیک، استخراج آنتی اکسیدان ها از سبزیجات، استخراج بیومولکول ها، استخراج حلال های سبز از زیست توده، و استخراج فلزات گرانبها با استفاده از حلال های سبز مورد بحث قرار می گیرد. مروری بر کاربرد حلال‌های سبز برای توسعه پایدار ارائه می‌کند ادبیات عمیق دلورز در مورد استفاده از حلال‌های سبز برای فرآیندهای صنعتی موارد برجسته مربوط به روند تحقیقات، توسعه پایدار و محیط‌زیست تمرکز بر فناوری استخراج مروری کلی از استفاده را ارائه می‌کند. استخراج مبتنی بر حلال سبز ادبیات عمیقی را در مورد استخراج انواع مواد با استفاده از حلال های سبز ارائه می کند.


توضیحاتی درمورد کتاب به خارجی

Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Solvents and Extraction Technology provides information on the use of green solvents and discusses a variety of green solvents together with applications in the synthesis of pharmaceutical drugs, energy conversion, and storage, catalysis, biodiesel synthesis, multicomponent reactions, waste valorisation, etc. The book comprises introductory chapters related to the applications of green solvents for sustainable developments, research trends, technical development, environment issues, and related concern. It discusses the application of extraction technology for sustainable development, including extraction of nanocellulose from agricultural wastes, polysaccharides extraction, extraction of phenolic, antioxidants extraction from vegetable, extraction of biomolecules, green solvents extractions from biomass, and extraction of precious metals using green solvents. Provides an overview of the applicability of green solvents for sustainable development Delvers in-depth literature on the use of green solvents for industrial processes Highlights issues related to research trends, sustainable development, and the environment Focuses on the extraction technology Offers an overview of the use of green solvent-based extraction Presents in-depth literature on the extraction of a variety of substances using green solvents



فهرست مطالب

Cover



Contributors
CONTENTS
Chapter 1 - Utilization of green solvents for synthesis of biodiesel
	1.1 Introduction
	1.2 Feedstocks
		1.2.1 Conventional feedstocks for production of biodiesel
		1.2.2 Green feedstocks for production of biodiesel
			1.2.2.1 Algae: feedstock for biodiesel production
	1.3 Biodiesel production technologies
		1.3.1 Utilization of conventional catalysts
		1.3.2 Utilization of green catalysts
	1.4 Biodiesel reaction medium
		1.4.1 Possible conventional organic solvents
		1.4.2 Green solvents for production of biodiesel
			1.4.2.1 Supercritical carbon dioxide
			1.4.2.2 Ionic liquids
			1.4.2.3 Deep eutectic solvents
	1.5 Conclusions
	References
Chapter 2 - Chemistry of ionic liquids in multicomponent reactions
	2.1 Introduction
	2.2 Three-component reactions using ionic liquids as solvents
	2.3 Three-component reactions using ionic liquids as catalysts
	2.4 Four-component reactions in ionic liquids as solvents
	2.5 Four-component reactions in ionic liquids as catalysts
	2.6 Solid support ionic liquids
	2.7 Biodegradable ionic liquids
	2.8 Ionic liquids in nanoform
	2.9 Conclusion
	Abbreviations
	References
Chapter 3 - Green solvents in polymer synthesis
	3.1 Introduction
	3.2 Ionic liquids
		3.2.1 Radical polymerization in ionic liquids
			3.2.1.1 Free radical polymerization
			3.2.1.2 Controlled radical polymerizations in ionic liquids
				3.2.1.2.1 Atom transfer radical polymerization
				3.2.1.2.2 Reversible addition–fragmentation chain transfer polymerization
		3.2.2 Metathesis polymerizations in ionic liquids
			3.2.2.1 Ring-opening polymerizations
			3.2.2.2 Cationic ring-opening polymerizations
		3.2.3 Anionic/cationic polymerizations in ionic liquids
		3.2.4 Polycondensation in ionic liquids
	3.3 Supercritical carbon dioxide
		3.3.1 Polymerization reactions in supercritical carbon dioxide
		3.3.2 Polycondensation reactions in supercritical carbon dioxide
	3.4 Polymerization reactions in water
		3.4.1 Homogenous radical polymerization reactions
		3.4.2 Heterogeneous radical polymerization systems
	3.5 Conclusions
	References
Chapter 4 - Click reaction in micellar media: A green and sustainable approach toward 1,2,3-triazoles synthesis
	4.1 Introduction
		4.1.1 An overview on solvent and its impact
		4.1.2 In-water and on-water reactions
	4.2 Amphiphiles—a brief idea
		4.2.1 Different classes of amphiphiles
			4.2.1.1 Surfactants
			4.2.1.2 Micelles
			4.2.1.3 Vesicles and Langmuir monolayers
		4.2.2 Characterization of micellar system
		4.2.3 Use of surfactants in catalysis
	4.3 Click reaction
		4.3.1 An overview
		4.3.2 Classification of click reaction
			4.3.2.1 Cycloadditions
			4.3.2.2 Nucleophilic ring-openings
			4.3.2.3 Carbonyl chemistry of the nonaldol type
			4.3.2.4 Additions to carbon–carbon multiple bonds
		4.3.3 Micelle promoted click reaction
			4.3.3.1 Cu catalyzed azide–alkyne cycloaddition (CuAAC) reaction under micellar media
			4.3.3.2 Click reaction enabled by Cu nanoparticles (CuNPs) in micellar media
			4.3.3.3 Micelle promoted multicomponent click reaction
			4.3.3.4 Copper-free micelle promoted click reaction
			4.3.3.5 Micelle catalyzed strain promoted azide–alkyne cycloaddition
	4.4 Conclusions
	References
Chapter 5 - Industrial application of green solvent for energy conversion and storage
	5.1 Introduction
	5.2 Green solvents
		5.2.1 Water
		5.2.2 Solvent-free conditions
		5.2.3 Ionic liquids
		5.2.4 Supercritical carbon dioxide
		5.2.5 Supercritical water
	5.3 Applications
		5.3.1 Energy conversion
		5.3.2 Energy storage
	5.4 Conclusion
	References
Chapter 6 - Applications of ionic liquids as green solvents in enhanced oil recovery
	6.1 Introduction
	6.2 Properties of ionic liquids
	6.3 Ionic liquids in enhanced oil recovery
		6.3.1 Reduction of interfacial tension
		6.3.2 Alteration of wettability by ionic liquids
		6.3.3 Adsorption onto reservoir rock surface
		6.3.4 Phase behaviors of ionic liquid microemulsions
		6.3.5 Ionic liquids in additional oil recovery
	6.4 Advantages and disadvantages of ionic liquids
	6.5 Future prospects and challenges
	6.6 Summary and conclusions
	Acknowledgments
	References
Chapter 7 - Solvation within deep eutectic solvent-based systems: A review
	7.1 Introduction
	7.2 Spectroscopy within DESs
	7.3 Polarity of and solvation within DES-based systems
		7.3.1 Neat DESs
		7.3.2 Cosolvent-modified DESs
		7.3.3 Carbon dioxide capture within DESs
	7.5 Thermosolvatochromism within DES-based systems
	7.6 Conclusion
	Acknowledgments
	References
Chapter 8 - Introductory chapter: Understanding green chemistry principles for extraction of green solvents
	8.1 Introduction
	8.2 Basic green chemistry principles
		8.2.1 Waste prevention: plan ahead and select appropriate chemical reagents and processes so as to minimize or prevent waste
		8.2.2 Atom economy: design chemical processes to utilize the maximum number of atoms while making up the final product, th ...
		8.2.3 Formulating less hazardous chemical synthesis
		8.2.4 Design safer chemicals and products: minimize toxicity at the molecular level throughout the chemical process and ma ...
		8.2.5 Use of safer solvents and auxiliary chemicals: the selection of solvents and other ancillary chemical substances sho ...
		8.2.6 Designing energy-efficient techniques: operate the chemical processes at ambient temperature and pressure and incorp ...
		8.2.7 Use of renewable feedstocks: promote the use of renewable feed materials wherever possible rather than using depleti ...
		8.2.8 Reduce/avoid the use of derivatives: avoid or minimize the unnecessary chemical modifications such as blocking/prote ...
		8.2.9 Promote catalysts: enable the use of catalysts in the chemical process wherever possible rather than the use of stoi ...
		8.2.10 Design for degradation: design and develop the chemical products in such way that they are broken down easily into  ...
		8.2.11 Monitor and control pollution in real-time: monitor the chemical processes in real-time so as to identify the relea ...
		8.2.12 Minimize the risk of accidents: design and develop chemical procedures so as to minimize the occurrence of accident ...
	8.3 Conclusions
	Abbreviations
	References
Chapter 9 - Ionic liquids for phenolic compounds removal and extraction
	9.1 Introduction
	9.2 Physicochemical properties of phenols
	9.3 Faith and degradation of phenols
	9.4 Reactivity of phenolic compounds in aquatic system
	9.5 Toxicity of phenolic compounds
	9.6 Methods for the phenolic compounds removal
		9.6.1 Adsorption
		9.6.2 Chemical oxidation process
		9.6.3 Catalytic wet air oxidation process
		9.6.4 Fenton and electro‐Fenton method
		9.6.5 Membrane separation technique
		9.6.6 Biological treatment technique
		9.6.7 Extraction method
			9.6.7.1 Method of solid-phase extraction
			9.6.7.2 Liquid–liquid extraction using ionic liquid solvents
	9.7 Conclusions
	References
Chapter 10 - Recovery of natural polysaccharides and advances in the hydrolysis of subcritical, supercritical water and eu ...
	10.1 Introduction
	10.2 Importance and applications of natural polysaccharides
	10.3 Main techniques for polysaccharides extraction
		10.3.1 Hot water extraction
		10.3.2 Chemical extraction (alkaline and acid solution)
		10.3.3 Enzyme-assisted, ultrasound, and microwave extraction methods
	10.4 Extraction of polysaccharides with subcritical and supercritical fluid
		10.4.1 Subcritical and supercritical water
		10.4.2 Process temperature increases extraction yield
		10.4.3 Pressure contributes to the medium acidification
		10.4.4 Viscosity and diffusivity affect solubility
		10.4.5 Extraction mechanisms
	10.5 Polysaccharides extraction, pretreatment, and modifications with eutectic solvents
	10.6 Hydrolysis of polysaccharides with subcritical, supercritical water, and eutectic solvents
		10.6.1 Biomass hydrolysis with subcritical, supercritical water, and deep eutectic solvents
		10.6.2 Hydrolysis kinetics may increase degradation products production
		10.6.3 Fundamentals of lignocellulosic biomass hydrolysis
	10.7 Conclusive observations
	Additional reading
	Author contributions
	Ethical approval
	Declaration of competing interest
	Acknowledgment
	References
Chapter 11 - Green strategies for extraction of nanocellulose from agricultural wastes—Current trends and future perspectives
	11.1 Introduction
	11.2 Agricultural waste—a major source of cellulose
		11.2.1 Cellulose
		11.2.2 Nanocellulose
	11.3 Green approach for extraction of nanocellulose
		11.3.1 Mechanical methods
			11.3.1.1 Ultrafine friction grinding/supermass colloider
			11.3.1.2 High-intensity ultrasonication
			11.3.1.3 Cryocrushing
			11.3.1.4 Twin screw extrusion
			11.3.1.5 Ball milling
		11.3.2 Pressure-induced methods
			11.3.2.1 Steam explosion
			11.3.2.2 High pressure homogenization
			11.3.2.3 Microfluidization
			11.3.2.4 Aqueous counter collision
			11.3.2.5 Subcritical water method
		11.3.3 Enzyme-assisted process
			11.3.3.1 Static culture method
			11.3.3.2 Stirred culture method
		11.3.4 Green catalyst strategies
			11.3.4.1 Using phosphotungstic acid
			11.3.4.2 Using Preyssler heteropolyacids
			11.3.4.3 Ionic liquids as effective solvent
			11.3.4.4 Organoclick strategy
		11.3.5 One pot green synthesis
		11.3.6 Deep eutectic solvent method
		11.3.7 Ammonium persulfate oxidation
		11.3.8 (2,2,6,6-Tetramethylpiperidin-1-oxyl)-mediated oxidation
		11.3.9 American value-added pulping technology
	11.4 Application of nanocellulose
	11.5 Conclusions and future scope
	Acknowledgments
	References
Chapter 12 - Antioxidants extraction from vegetable matrices with green solvents
	12.1 Introduction
	12.2 Antioxidants
	12.3 Antioxidant extraction techniques with green solvents
		12.3.1 Supercritical fluid extraction
		12.3.2 Subcritical Water Extraction
		12.3.3 Pressurized liquid e xtraction
		12.3.4 Microwave-assisted extraction
		12.3.5 Ultrasound-assisted extraction
	12.4 Main methods for in vitro antioxidant activity quantification
		12.4.1 TEAC method
		12.4.2 FRAP method
		12.4.3 DPPH method
		12.4.4 ORAC method
	12.5 Considerations
	Acknowledgments
	References
Chapter 13 - Green methods for extraction of biomolecules
	13.1 Introduction
	13.2 Carbohydrates extraction
		13.2.1 Pressurized liquid extraction
		13.2.2 Supercritical fluid extraction
		13.2.3 Enzyme-associated extraction
		13.2.4 Microwave-assisted extraction
	13.3 Protein extraction
		13.3.1 Gel electrophoresis
		13.3.2 Affinity chromatography
		13.3.3 Salting out technique
		13.3.4 Gel filtration chromatography
		13.3.5 Isoelectric focusing
	13.4 Lipid extraction
		13.4.1 Folch’s method
		13.4.2 Bligh and Dyer method
		13.4.3 Bume method
		13.4.4 MTBE method
	13.5 Nucleic acid extraction
		13.5.1 Alkaline extraction
		13.5.2 Cesium chloride gradient centrifugation with ethidium bromide
		13.5.3 CATB extraction
		13.5.4 Chelex extraction
		13.5.5 Silica materials
		13.5.6 Diatomaceous earth
		13.5.7 Magnetic bead-based method
	13.6 Anions-exchange materials
		13.6.1 Glass particles
	13.7 Conclusion
	Summary
	Conflict of interest
	References
Chapter 14 - Extraction of phenolic compounds
	14.1 Introduction
	14.2 Chemistry of phenolic compounds
	14.3 Factors affecting extraction of phenolic compounds
		14.3.1 Nature and concentration of solvent
		14.3.2 Time
		14.3.3 Temperature
		14.3.4 Solid to solvent ratio
	14.4 Extraction techniques of phenolic compounds
		14.4.1 Conventional extraction techniques
			14.4.1.1 Maceration
			14.4.1.2 Decoction
			14.4.1.3 Infusion
			14.4.1.4 Soxhlet
			14.4.1.5 Percolation
		14.4.2 Nonconventional extraction techniques
			14.4.2.1 Microwave-assisted extraction
			14.4.2.2 Ultrasound-assisted extraction
			14.4.2.3 Accelerated solvent extraction
			14.4.2.4 Supercritical fluid extraction
			14.4.2.5 Pulsed-electric field extraction
			14.4.2.6 Enzyme-assisted extraction
	14.5 Conclusion
	References
Chapter 15 - Extraction of phenolic compounds by conventional and green innovative techniques
	15.1 Introduction
	15.2 Classification and properties of phenolic compounds
	15.3 Conventional extraction methods
		15.3.1 Soxhlet or hot continuous extraction
		15.3.2 Maceration
		15.3.3 Percolation
		15.3.4 Decoction
		15.3.5 Hydrodistillation
		15.3.6 Reflux extraction
	15.4 Concept of green technologies
		15.4.1 Modern extraction methods
			15.4.1.1 Ultrasound-assisted extraction
			15.4.1.2 Microwave-assisted extraction
			15.4.1.3 Supercritical fluid extraction
			15.4.1.4 Subcritical water extraction
			15.4.1.5 Pressurized liquid extraction
			15.4.1.6 Pulsed electric field extraction
			15.4.1.7 High hydrostatic pressure extraction
	15.5 Conclusion and future perspectives
	References
Chapter 16 - Application of ionic liquids for extraction of phenolic compounds and dyes: A critical review
	16.1 Introduction
		16.1.1 Dyes
		16.1.2 Phenolic compounds
	16.2 Determination of dyes and phenolic compounds in various matrices
		16.2.1 Ionic liquids in extraction methods
			16.2.1.1 Ionic liquid-assisted liquid–liquid extraction of dyes and phenolic compounds
			16.2.1.2 Ionic liquid-assisted solid phase extraction of dyes and phenolic compounds
			16.2.1.3 Ionic liquid in biphasic extraction methods
	16.3 Summary
	16.4 Conclusion
	Acknowledgments
	References
Chapter 17 - Green methods for extraction of phenolic compounds
	17.1 Introduction
	17.2 Methods of extractions of phenolic compounds
		17.2.1 Liquid–liquid extraction
		17.2.2 Solid-phase extraction
		17.2.3 Supercritical fluid extraction
		17.2.4 Pressurized liquid extraction
		17.2.5 Microwave-assisted extraction
		17.2.6 Ultrasound-assisted extraction
	17.3 Conclusion
	17.4 Summary
	Conflict of interest
	References
Chapter 18 - Current prospective of green chemistry in the pharmaceutical industry
	18.1 Introduction
	18.2 Design of green chemistry
		18.2.1 Choice of starting material
			18.2.1.1 Choice of reagent
		18.2.2 Choice of solvent
		18.2.3 Choice of catalyst
	18.3 Applications of green chemistry in pharmaceuticals
		18.3.1 Green solvents
		18.3.2 Green catalyst
		18.3.3 Waste water treatment
		18.3.4 Safer chemical
		18.3.5 Renewable feedstock
		18.3.6 Synthesis of carbon dots
			18.3.6.1 Organic solvent recovery
		18.3.7 Separation of natural products from agrochemical
		18.3.8 Sonochemistry
		18.3.9 Green chemistry considerations in APIs
			18.3.9.1 Atorvastatin
			18.3.9.2 Montelukast
	18.4 Conclusion
	Acknowledgments
	Abbreviations
	References
Index




نظرات کاربران