ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Green Energy to Sustainability

دانلود کتاب انرژی سبز به پایداری

Green Energy to Sustainability

مشخصات کتاب

Green Energy to Sustainability

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9781119152040, 1119152046 
ناشر: John Wiley & Sons, Incorporated 
سال نشر: 2020 
تعداد صفحات: 942 pages
[705] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 Mb 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Green Energy to Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب انرژی سبز به پایداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب انرژی سبز به پایداری

مقدمه -- فهرست مطالب -- درباره ویراستاران -- فهرست مشارکت کنندگان -- پیش گفتار -- پیشگفتار -- قسمت اول: ساختار تجارت انرژی -- 1 رشد اقتصادی و تقاضای جهانی انرژی -- 1.1 زمینه تاریخی و رابطه بین انرژی و توسعه -- 1.2 چارچوب مفهومی برای مسیرهای استفاده از انرژی -- 1.3 روندها و چشم اندازهای جمعیت جهان -- 1.4 تولید ناخالص داخلی (GDP) و رشد اقتصادی -- 1.5 توسعه جهانی انرژی -- 1.6 انتشار جهانی گازهای گلخانه ای -- 1.7 پیوندهای بین عوامل کایا -- 1.8 توسعه سرمایه گذاری انرژی


توضیحاتی درمورد کتاب به خارجی

Intro -- Table of Contents -- About the Editors -- List of Contributors -- Foreword -- Preface -- Part I: Structure of the Energy Business -- 1 Economic Growth and the Global Energy Demand -- 1.1 Historical Context and Relationship Between Energy and Development -- 1.2 Conceptual Framework for Pathways of Energy Use -- 1.3 World Population Trends and Prospects -- 1.4 Gross Domestic Product (GDP) and Economic Growth -- 1.5 Global Energy Development -- 1.6 Global Emissions of Greenhouse Gases -- 1.7 Linkages Between Kaya Factors -- 1.8 Development of Energy Investment



فهرست مطالب

Cover......Page 1
Title Page......Page 5
Copyright......Page 6
Contents......Page 9
About the Editors......Page 23
List of Contributors......Page 27
Foreword......Page 33
Preface......Page 35
Part I Structure of the Energy Business......Page 41
1.1 Historical Context and Relationship Between Energy and Development......Page 43
1.2 Conceptual Framework for Pathways of Energy Use......Page 46
1.3 World Population Trends and Prospects......Page 47
1.4 Gross Domestic Product (GDP) and Economic Growth......Page 48
1.5 Global Energy Development......Page 51
1.6 Global Emissions of Greenhouse Gases......Page 54
1.7.1 Per Capita Energy and Growth......Page 56
1.7.2 Energy Demand and Economic Production......Page 57
1.7.2.1 Energy as a Production Factor......Page 58
1.7.2.2 Empirical Results......Page 59
1.7.3 Emission‐Related Factors......Page 63
1.7.4 Energy‐Related Impacts......Page 65
1.7.5 Relative Comparison of the Kaya Factors......Page 66
1.8 Development of Energy Investment......Page 68
1.9.1 Targets and Pathways of Climate Policy......Page 71
1.9.2 Strategies of Implementation......Page 73
1.9.3 Integrated Assessment and Decision‐Making in Transition Processes......Page 75
1.10 Perspectives......Page 77
References......Page 78
2.1 Greenhouse Gas (GHG) Emissions by Japan......Page 85
2.2 Energy Dependence......Page 86
2.3 The Energy Policy of Japan......Page 88
2.4 Paris Agreement......Page 89
2.6 Improvement in Energy Efficiency......Page 90
2.9 Production and Use of Bioethanol in Japan......Page 91
2.12 Contributions of the Japanese Government to Fundamental Research and Development......Page 92
References......Page 93
3.1 Introduction......Page 97
3.2.1 Current Status......Page 98
3.2.2 Commercial Deployment and Challenges......Page 100
3.2.3 Perspectives on South America......Page 101
3.3.1 Current Status......Page 102
3.3.2 Commercial Deployment and Challenges......Page 104
3.3.3 Perspectives on Africa......Page 105
3.4.1 Current Status......Page 106
3.4.2 Commercial Deployment and Challenges......Page 107
3.5.1 Current Status......Page 109
3.5.3 Perspectives on China......Page 111
References......Page 112
4.1 Introduction......Page 117
4.2 Sunlight and Photosynthesis......Page 118
4.3 Photovoltaic Devices......Page 119
4.4 Overview of Solar Photovoltaic Applications......Page 122
4.5 Perspectives......Page 123
References......Page 124
5.1 Introduction......Page 125
5.2.1 Driving Force of Growing Biojet Fuel Opportunities......Page 126
5.2.2 Biojet Fuel Types and Specifications......Page 128
5.3 Assessment of Environmental Policy and Economic Factors Affecting the Aviation Industry......Page 133
5.3.1 Momentum Building of International Carbon Emission Regulations......Page 134
5.3.2 Increasing Activities to Address the Carbon Emission Control......Page 135
5.3.3 New Technologies and Aviation Operation Improvement......Page 137
5.4.1 Alternative Jet Fuel Deployment and Use......Page 138
5.5 Challenges of Future Biojet Fuel Development......Page 140
5.6 Perspectives......Page 144
References......Page 145
6.1 Introduction......Page 151
6.2.2 Production and Economic Trends......Page 152
6.2.3 Key Players......Page 153
6.3.1.2 Automobile Operation GHG Emissions......Page 154
6.3.2 TRI‐Reported Chemical Waste Management......Page 155
6.3.2.1 US EPA Toxics Release Inventory......Page 156
6.3.2.2 Trends in TRI‐Reported Chemical Waste Management......Page 157
6.3.2.4 Trends in Releases......Page 159
6.3.2.5 Automotive Manufacturing vs. All Other Manufacturing Sectors......Page 160
6.4.1 Sustainability Trends in Automotive Manufacturing......Page 161
6.4.1.2 Eco‐Efficiency......Page 162
6.4.1.3 Process and Technology Modifications......Page 163
6.4.1.4 Safer, Environmentally Friendly Alternative Materials......Page 164
6.4.1.7 Fluids and Solvents......Page 165
6.4.2 Pollution Prevention Activities Reported to TRI......Page 166
6.4.2.3 Barriers to Source Reduction......Page 169
6.5.1 Summary......Page 171
6.5.2 Potential Pollution Prevention Opportunities......Page 173
References......Page 174
7.2 Overview of Global Energy Demand......Page 177
7.3 Petroleum Demand and Petroleum Products for Potential Replacement by Bioproducts......Page 180
7.4 Role of Biofuels and Biobased Chemicals in Renewable Energy Demand......Page 183
7.5 Achieving Petroleum Replacement with Biobased Fuels and Chemicals......Page 185
7.6 Projections of Global Demand for Biobased Fuels and Chemicals......Page 189
7.8 Projection of Energy‐Related CO2 Emissions With or Without Remediation Technology......Page 191
7.9 Government Impact on Demand for Biofuels and Biobased Chemicals......Page 192
7.10 Perspectives......Page 194
References......Page 195
Part II Chemicals and Transportation Fuels from Biomass......Page 197
8.1 Introduction......Page 199
8.2.1 Glycolic Acid......Page 201
8.3.2 Pyruvic Acid......Page 203
8.4.1 Butyric Acid......Page 206
8.4.2 Succinic Acid......Page 207
8.4.4 Putrescine......Page 208
8.5.1 Itaconic Acid......Page 209
8.5.2 Xylitol......Page 210
8.6.1 Adipic Acid......Page 211
8.6.2 Muconic Acid......Page 212
8.6.4 Glucaric Acid......Page 213
8.7 Perspectives......Page 214
References......Page 215
9.1 Introduction......Page 225
9.2 Biofuels......Page 226
9.2.1.2 Bioethanol......Page 227
9.2.2 Feedstock of Biofuel Production Based on Plants......Page 228
9.2.2.2 Aquatic Plants – Algae......Page 230
9.3 Biofuels from Microalgae and Seaweeds......Page 231
9.3.2 Biofuels from Macroalgae (i.e. Seaweeds)......Page 232
9.3.3 Advantages of Algae as the Feedstock of Biofuels......Page 233
9.4.1 Harvesting and Dewatering......Page 235
9.4.2 Extraction Approaches......Page 236
9.4.3 Conversion to Biofuels......Page 238
9.5.1 Role of Biofuels in Energy Supply and Environmental Protection......Page 240
9.5.2 Biofuel Demand and Supporting Policies......Page 241
9.5.3.1 Optimization of Cultivation Processes......Page 242
9.5.3.4 Combining Alga‐Based Biofuel Production with Environment Protection......Page 244
9.6 Progresses in the Commercial Production of Alga‐Based Biofuels......Page 245
9.7 Perspectives......Page 249
References......Page 250
10.1 Introduction......Page 259
10.2 Zymomonas mobilis......Page 262
10.3 Escherichia coli......Page 263
10.5 Inhibitor‐Tolerant Ethanologenic E. coli......Page 267
10.6 Engineering Bacterial Biocatalysts Other than E. coli for the Production of Ethanol Using the PDC/ADH Pathway......Page 269
10.7 Ethanol Production by Non‐PDC Pathways......Page 270
10.9 Other Metabolic Pathways that Contribute to Ethanol Production......Page 271
Acknowledgements......Page 272
References......Page 273
11.1 Introduction......Page 279
11.2.1 Micro‐organisms......Page 281
11.2.2 Novel Substrates......Page 283
11.2.3 Biomass Pretreatment......Page 284
11.2.6 Combining Unit Operations and Use of By‐products......Page 285
11.3.1 Techno‐economic Studies......Page 286
11.3.2.2 ABE Plant......Page 291
11.3.2.3 Approach and Assumptions for the Economic Analysis......Page 295
11.3.2.4 Investment Cost and Energy Efficiency of the ABE Plant......Page 296
11.3.2.5 Minimum Butanol Selling Price......Page 299
11.3.2.6 Value Creation to Pulp Mills......Page 302
Acknowledgements......Page 303
References......Page 304
12.1.1 Technological Aspects......Page 309
12.1.2 Commercialization of Cellulosic Ethanol......Page 311
12.2.1 Analysis Comparing Costs of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks......Page 312
12.2.2 Cost Analysis by Tao et al. for Cellulosic Ethanol......Page 314
12.3 Technological Opportunities to Reduce Cellulosic Ethanol Production Costs......Page 317
12.4 Perspectives: Approaches to Optimize the Use of Lignocellulosic and Waste Materials as Feedstocks......Page 319
References......Page 321
13.1 Introduction......Page 323
13.2 Glycosyl Hydrolases: General Structure and Mechanism......Page 326
13.2.1 Classification of GH......Page 327
13.3 The Cellulase Enzyme System......Page 329
13.3.2 Cellobiohydrolases......Page 330
13.3.3 Beta‐Glucosidases......Page 331
13.3.4 Polysaccharide Monooxygenases and Cellobiose Dehydrogenases......Page 332
13.3.5 Cellulases Synergy and Kinetics......Page 333
13.4 The Hemicellulase Enzyme System......Page 335
13.4.1 Endo‐Xylanases and Beta‐Xylosidases......Page 336
13.4.3 Other Hemicellulases and Accessory Enzymes......Page 337
13.4.4 Hemicellulases and Complete Hydrolysis......Page 338
13.5.1 Diversity of Cellulolytic Microorganisms and Lifestyles......Page 339
13.5.2 Fungi and Their Arsenal for Biomass Hydrolysis......Page 340
13.5.3 Bacteria and Their Cellulolytic Machinery......Page 342
13.5.3.1 The C. thermocellum Cellulosome......Page 343
13.5.3.2 Enzyme‐Microbe Synergy......Page 345
13.5.3.3 Mechanisms of Cell Adhesion......Page 347
13.6 Perspectives......Page 348
References......Page 349
14.1 Introduction......Page 367
14.2 Life Cycle Assessment (LCA)......Page 368
14.4 Developing a Life Cycle Assessment......Page 369
14.5 Scope of the Life Cycle Assessment: Attributional verses Consequential......Page 371
14.7 Feedstocks for Biofuels......Page 372
14.8 Conversion of Feedstock......Page 373
14.8.2 Thermochemical Processes......Page 374
14.10 Using LCA as a Tool to Assess GHG Emissions and Other Impacts Associated with Bioethanol Production and Supply......Page 375
14.11 Discussion on the Suitability of LCA......Page 376
14.12 Perspectives: Moving Forward with the LCA Concept......Page 388
References......Page 389
Part III Hydrogen and Methane......Page 395
15.1 Introduction......Page 397
15.2.1.2 Mixed Cultures and Inoculum Pre‐treatments......Page 398
15.2.1.3 Co‐cultures Used for Hydrogen Production......Page 399
15.2.2 Operational Factors Influencing Hydrogen Production......Page 400
15.2.3 Bioreactors Used for Dark Fermentative Hydrogen Production......Page 402
15.2.4 Substrates Used for Dark Fermentative Hydrogen Production......Page 406
15.4.1 Hydrogen Production by Dark and Photofermentation in Co‐culture......Page 410
15.4.2 Two‐Stage Dark and Photo‐fermentative Hydrogen Production......Page 413
15.4.3 Hydrogen Production by Multiple Stages (Cellulolytic, Dark Fermentative, and Phototrophic Bacteria)......Page 417
15.5 Perspectives......Page 419
15.5.1 Hydrogen Production Potential and Market Barriers......Page 420
15.5.2 Hydrogen Generation Market......Page 421
15.5.3 Microbial Hydrogen Production: Targets and Future Prospects......Page 422
References......Page 423
16.1 Introduction......Page 435
16.2.1 Waste Activated Sludge......Page 437
16.2.2 Lignocellulosic Biomass......Page 438
16.2.3 Algae......Page 441
16.2.4 Food Waste......Page 442
16.2.6 Livestock Manure (Chicken, Pig and Swine Manure)......Page 443
16.3.1 Acidic Pretreatment......Page 444
16.3.2 Alkali Pretreatment......Page 445
16.3.3 Ultrasonication......Page 449
16.3.4 Microwave Irradiation......Page 450
16.3.5 Ozonation......Page 451
16.3.7 Enzymatic Pre‐treatment......Page 452
16.4.1 China......Page 453
16.4.3 Malaysia......Page 454
16.4.5 Thailand......Page 455
References......Page 456
17.1 Importance of Hydrogen Production......Page 465
17.2 Hydrogen Producing Microorganisms......Page 467
17.3 Hydrogen Producing Algae (Macro–Micro) Species......Page 468
17.4.1 Biohydrogen Production......Page 471
17.4.2 Fermentation System for Hydrogen Production......Page 472
17.5 Technologies (Solar Algae Fuel Cell/Microbial Fuel Cell)......Page 473
17.6 Possibility of Commercial Production of Hydrogen......Page 474
17.7 Perspectives and Future Implications of Algae in Biotechnology......Page 477
References......Page 478
18.1 Introduction......Page 487
18.2 Anaerobic Digestion......Page 488
18.3 Mechanism of Anaerobic Digestion......Page 489
18.3.1 Theoretical Methane Biogas Production......Page 492
18.4.2 Effect of pH......Page 495
18.5 Strategies Applied to Enhance Microalgae Methane Biogas Production......Page 496
18.5.2 Co‐Digestion Process......Page 497
18.6 Utilization of Methane Biogas as a Renewable Fuel......Page 498
References......Page 499
Part IV Perspectives......Page 505
19.1 Introduction......Page 507
19.2.1 Flexibility......Page 508
19.2.1.2 Whole Crop Biorefinery......Page 509
19.2.2 Feedstock......Page 510
19.3 Biorefinery Platforms......Page 511
19.4 Integrated Biorefineries......Page 512
19.5.1 Four Carbon 1,4‐Diacids......Page 515
19.5.2 2,5‐Furandicarboxylic Acid (FDA) and 5‐Hydroximethilfurfural (HMF)......Page 516
19.5.5 Glucaric Acid......Page 517
19.5.9 3‐Hydroxybutyrolactone (HBL)......Page 518
19.5.14 Biohydrocarbons......Page 519
19.6 Integrating Ethanol and Biodiesel Refineries......Page 520
19.7 Economical Aspects......Page 522
References......Page 524
20.1 Introduction......Page 529
20.2 Major Lignocellulosic Industrial Crops......Page 532
20.2.1.2 Fibre and Oil Crops......Page 533
20.2.2.1 Herbaceous Biomass Crops......Page 534
20.2.2.2 Woody Crops......Page 537
20.3 Social, Economic and Environmental Aspects in Sustainability Criteria......Page 538
20.3.1 Annual versus Perennial Options......Page 539
20.3.2 Soil Issues......Page 540
20.3.3 Biodiversity Issues......Page 541
20.4 Processing Alternatives for Lignocellulosic Bioenergy Crops......Page 542
20.5 Filling the Gap: From Farm to Industry......Page 543
20.6 Perspectives......Page 546
References......Page 548
21.1 Introduction......Page 555
21.2 Types of Industrial Waste for Biofuel Production......Page 556
21.3.1 Ethanol and Its Market......Page 557
21.3.3 Pretreatment......Page 558
21.3.4 Enzymatic Hydrolysis......Page 559
21.3.5 Fermentation......Page 560
21.3.6 Ethanol Production from Other Industrial Wastes......Page 562
21.4.1 Butanol and Its Market......Page 563
21.4.2 Butanol Production from Food Waste......Page 564
21.4.4 Economic Analysis of Butanol Production......Page 566
21.5.1 Biodiesel and Its Market......Page 567
21.5.2 Feedstocks for Biodiesel Production......Page 568
21.5.4 Biodiesel Production from Waste Cooking Oil with Acid Catalysts......Page 569
21.5.5 Biodiesel Production from Waste Cooking Oil with Acid and Alkali Catalysts......Page 570
References......Page 571
22.1 Introduction......Page 579
22.2 Overview of the Food Manufacturing Industry......Page 580
22.2.1 Production and Economic Trends......Page 582
22.3 Chemicals and Chemical Wastes in the Food Manufacturing Industry......Page 585
22.3.2 Conventional Water Pollutants......Page 586
22.3.3 Refrigerants......Page 587
22.3.5 Trends in TRI‐Reported Chemical Waste Management......Page 588
22.3.5.1 Trends in Releases......Page 592
22.4.1 Sustainability Trends in Food Manufacturing......Page 594
22.4.1.1 Corporate Sustainability Reports......Page 595
22.4.2.1 Energy Efficiency......Page 596
22.4.2.2 Chemical Substitutes......Page 597
22.4.3.2 Food Waste......Page 598
22.4.4 Wastewater Treatment......Page 599
22.4.5 Pollution Prevention Activities Reported to TRI......Page 600
22.4.5.2 TRI Pollution Prevention Analysis – Effectiveness of Source Reduction Activities......Page 601
22.4.5.4 Summary of Pollution Prevention Activities Reported to TRI......Page 602
22.5 Perspectives......Page 603
References......Page 604
23.1.1 Recovery from 2008 Financial Crisis and Global Economic Trends......Page 609
23.1.2 Financial Conditions at Global Level......Page 610
23.2.2 Renewable Ethanol Industry from Grain and Cellulosic Feedstocks......Page 612
23.2.3 Ethanol Biofuels Industry – Co‐products......Page 615
23.2.4 Ethanol Biofuels Industry – Cost and Economic Factors......Page 616
23.3.1 Emergence of Bio‐Based Industry......Page 617
23.3.2 Bio‐Based Industry – Policy Landscape and Competitiveness......Page 618
23.4.1 Financing Challenges for Firms in the New Bioeconomy......Page 619
23.4.2 The Financing of Various Steps in the Bio‐Based Processes......Page 621
23.5 Perspectives and Sustainable Financing Approach – Change in Wall Street Mindset in the Valuation of Bio‐Based Industries......Page 623
Acknowledgements......Page 624
References......Page 625
24.2.1 What Is CSR?......Page 627
24.2.3.1 The Four Eras of Early CSR......Page 629
24.2.3.2 The Impact of Environmental Disasters and Globalization in the 1980s to 2000s......Page 632
24.2.3.3 From the 2000s to Today: The Further Evolution of CSR and its Relationship to Brand Management......Page 633
24.3.1 What Is Sustainability and how Did the Phrase Come about?......Page 637
24.3.3 CSR and Corporate Sustainability Are Not the Same Thing......Page 638
24.3.4 Corporate Sustainability – The Future of CSR......Page 640
24.4 Perspectives......Page 643
24.4.1 Paradigm Shift in Corporate Sustainability Thinking......Page 644
24.4.2 Three Key Capabilities Needed to Support Corporate Sustainability......Page 645
References......Page 647
25.1 Introduction: Energy and Sustainability......Page 653
25.2 Transportation in the Twenty‐First Century: A Carbon Tax Story......Page 662
25.3 Cities of Change......Page 667
25.4 The Chemical Industry Revisited......Page 669
25.5 Paradigm Changes in Modes of Consumption......Page 673
25.6 International Action for Curbing the Pollution of the Atmosphere Commons: The Case of CFCs and the Ozone Layer......Page 674
25.7 Social Activism as an Engine of Change: Requiem for a Wonderful World......Page 675
25.8 Perspectives: A Brave New World......Page 676
References......Page 679
Index......Page 689
EULA......Page 705




نظرات کاربران